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Abstract: In this study, we demonstrate that a uniform coating of hydroxyapatite (HAp, Ca10(PO4)6(OH)2)
can be electrochemically deposited onto metallic 3D-woven bone scaffolds to enhance their bioactivity.
The HAp coatings were deposited onto metallic scaffolds using an electrolyte containing Ca(NO3)2·4H2O,
NH4H2PO4, and NaNO3. The deposition potential was varied to maximize the uniformity and adhesion
of the coating. Using X-ray diffraction (XRD), Raman spectroscopy, and energy-dispersive spectroscopy
(EDS), we found crystallized HAp on the 3D-woven lattice under all deposition potentials, while the
−1.5 V mercury sulfate reference electrode potential provided the best local uniformity with a satisfactory
deposition rate. The coatings generated under this optimized condition were approximately 5 µm
thick and uniform throughout the internal and external sections of the woven lattice. We seeded and
cultured both coated and uncoated scaffolds with human adipose-derived stromal/stem cells (ASCs)
for 12 h and 4 days. We observed that the HAp coating increased the initial cell seeding efficiency by
approximately 20%. Furthermore, after 4 days of culture, ASCs cultured on HAp-coated stainless-steel
scaffolds increased by 32% compared to only 17% on the uncoated scaffold. Together, these results
suggest that the HAp coating improves cellular adhesion.
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1. Introduction

Designing and manufacturing metallic bioscaffolds to treat critical-sized or non-healing skeletal
defects have drawn significant attention in the fields of tissue engineering [1,2] and regenerative
medicine [3]. Researchers typically design bioscaffolds to meet the following design criteria: (i) The
scaffold should possess proper surface functionalization to promote cell adhesion and growth [4], (ii) the
architecture of the scaffold should permit sufficient penetration of nutrients, and transportation of gases
and wastes [5], and (iii) the scaffold should include materials with sufficient biocompatibility [6,7].
While new materials are being explored [8], current materials for manufacturing bone replacement
scaffolds typically include either biodegradable thermoplastic polymers or non-degradable metals.

The biodegradable polymers used to manufacture bone scaffolds include polylactic acid (PLLA),
poly(lactide-co-glycolide) (PLGA), and polycaprolactone (PCL), and many studies have been conducted,
particularly given the rapid rise in the three-dimensional printing (3DP) of porous polymeric scaffolds.
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However, these polymeric materials have two major limitations. Their elastic moduli are far lower
than cancellous bone [9,10], thereby limiting their efficacy in load-bearing tissues, and they degrade
more slowly than the bone matrix remodels, which may result in device failure.

The most common metals used to manufacture nondegradable scaffolds are stainless steel (SS),
titanium (Ti) alloys, and cobalt (Co) alloys due to their biocompatibility, resistance to corrosion,
and adequate mechanical strength [11]. Techniques for manufacturing the porous metallic scaffold
include additive manufacturing approaches such as laser beam powder bed (LBPB), wire-fed laser beam
(WFLB), and selective laser sintering (SLS) [12–16]. While these techniques enable the fabrication of
metallic scaffolds with complex external shapes and predefined internal lattices, the rapid solidification
and directional cooling inherent to these techniques present challenges in controlling the microstructure
and mechanical properties of the scaffold material [17–19]. Three-dimensional (3D) weaving using
metallic wires with well-controlled microstructures and properties offers an attractive alternative,
particularly given that weave stiffness, porosity, and permeability can be optimized to enhance bone
growth. However, for all of these scaffolds, coatings are often needed to improve biocompatibility and
cell growth.

A common approach to achieving functionalized porous, inert metallic scaffolds is to coat them
with hydroxyapatite (HAp, Ca10(PO4)6(OH)2) [11]. The hybrid material adopts the superior mechanical
integrity of the metal and the favorable biological features of HAp [20]. As a pure calcium phosphate
phase, HAp is a common biomaterial in orthopedic and dental fields due to its osteoconductive and
bioactive properties [21]. HAp coatings can enhance both cell seeding efficiency and proliferation by
increasing the surface roughness and binding sites of the scaffolds [22,23]. Furthermore, HAp coatings
can promote interfacial bonding between newly formed bone tissue and the implants; bone tissue will
keep growing until it fills the porosity of the implants. This “mechanical interlocking” feature will
increase the strength of the bond between the growing bone and the scaffold [20].

The conventional technique for coating metallic implants with HAp is plasma spraying [24].
Although studies show encouraging results for plasma-sprayed HAp coatings [25], some of
the intrinsic features of this method remain concerning for tissue engineering applications.
These include the presence of amorphous phases resulting from the extremely high process
temperatures [26] and the difficulty of coating implants with complex geometrical features due
to the line-of-sight nature of the process [27]. Alternative methods include: Sol-gel processing [28,29],
biomimetic deposition [30–32], hydrothermal processing [33], electrophoresis [34], gas detonation
deposition [35–37], and electrodeposition [38–40]. Among these, electrodeposition is the most promising
technique because it can deposit homogeneous HAp coatings on interior and exterior surfaces of
metallic scaffolds, regardless of a sample’s size or pore geometry. Additionally, electrodeposition
offers a higher degree of tailoring than plasma spraying; morphology and coating thickness can be
modified in a controlled manner by varying the deposition parameters such as temperature, potential,
and electrolyte. Successful synthesis of HAp coatings via the electrodeposition method has been
reported for various porous substrates [41–44]. However, to date, there are no reports of HAp
being electrodeposited onto 3D metallic weaves. To enhance our understanding and to improve the
clinical relevance of electrodeposition, in this pilot study, we seek to electrochemically coat 3D-woven
stainless-steel scaffolds with HAp. This proof-of-concept study will be followed by coating 3D-woven
scaffolds that are fabricated with biodegradable Mg wires.

To conduct the study, we employed a three-dimensional (3D) weaving system [45,46] to
manufacture a woven lattice using stainless-steel wires. Guided by topology optimization, the pore
structure and properties of the scaffolds, such as stiffness and fluid permeability [47–49], can be tailored
by changing lattice architecture, wire diameter, and wire format (solid, hollow, or yarn) to promote
cellular infiltration and bone regeneration [50,51]. To enhance biocompatibility, hydroxyapatite was
electrodeposited onto the 3D-woven lattice using a customized three-electrode setup that promotes a
more uniform electron field distribution, thus helping ion diffusion and aiding HAp nuclei deposition
onto the wires’ surfaces found within the woven lattice. Various deposition potentials were applied,
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and their effect on coating morphology, microstructure, and atomic ratio was explored. Once optimized,
the effect of HAp coatings on adipose-derived stem cells (ASCs) adhesion and growth was evaluated.

2. Materials and Methods

2.1. Fabrication of 3D-Woven Lattices and Sample Pretreatment

We manufactured 3D-woven lattices with a standard architecture containing five layers of warp
wires and six layers of fill wires (Figure 1a–d) with a semi-automated weaving machine (SAERTEX
USA LLC, Huntersville, NC, USA). The wires were 304 stainless steel (304 SS) with diameters of
152 µm in the Z direction and 202 µm in the warp and fill directions, and the resulting weaves have a
theoretical hydraulic diameter near 170 µm. (Note: While 316 L stainless steel is typically used for
bioimplants, and biodegradable Mg wires will be used in our future in vivo studies, we utilized 304 SS
wires that were available to fabricate a non-degradable substrate for this preliminary in vitro study).
The fabricated weave measured 500 × 36 × 3.6 mm3 and was cut into 10 × 10 × 3.6 mm3 samples using
a diamond wire saw. We then cleaned samples ultrasonically with a NaOH solution (1 M), ethanol,
and deionized water.
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measured 57 mm in diameter and 80 mm in height. All the electrodes were submerged in 200 mL of 
electrolyte containing 15 mM Ca(NO3)2·4H2O and 9 mM NH4H2PO4 with the Ca/P ratio being 1.67. To 
improve the conductivity of the electrolytes, 30 mM NaNO3 was added. This solution had a pH value 
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Figure 1. (a) A schematic of the 3D-woven lattice with warp, fill, and Z wires woven in three orthogonal
directions; (b) 2D view in fill direction; (c) 2D view in warp direction; (d) 2D view in Z direction; (e) a
schematic of the modified 3D electrodeposition system consisting of a working electrode (3D-woven
lattice), counter electrode (graphite cylinder), and a reference electrode (Hg/HgSO4).

2.2. Synthesis of HAp Coatings

Figure 1e shows the modified three-electrode electrodeposition setup that we designed and
employed in this study. In order to ensure a more even distribution of the electric field, we nested the
working electrode (woven lattice) and the mercury sulfate reference electrode (MSRE, filling solution:
Saturated K2SO4) inside the counter-electrode (graphite cylinder). The graphite cylinder measured
57 mm in diameter and 80 mm in height. All the electrodes were submerged in 200 mL of electrolyte
containing 15 mM Ca(NO3)2·4H2O and 9 mM NH4H2PO4 with the Ca/P ratio being 1.67. To improve
the conductivity of the electrolytes, 30 mM NaNO3 was added. This solution had a pH value of 4.8
when measured at 50 ◦C.

We used an Autolab PGSTAT204 potentiostat/galvanostat (Metrohm, Herisau, Switzerland) to
perform linear sweep voltammetry and electrodeposition. We conducted the linear sweep voltammetry
from an open-circuit potential (OCP) to −2.0 V at a scan rate of 20 mV/s. Then, three different
potentials were chosen for the electrodeposition: −1.3, −1.5, and −1.7 V. We adjusted the duration
of each trial to obtain a similar coating thickness: The higher the voltage, the shorter the duration.
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During these depositions, we kept the temperature constant at 50 ± 0.2 ◦C by utilizing a water bath
(PolyScience, Niles, IL, USA). Instead of continuous electrodeposition, we programmed the system
to alternate between 5 min of deposition at the selected potential and 5 min of non-deposition with
a 0 V potential (Figure 2b) to allow ion refilling of the depletion layers throughout the 3D-woven
lattice. As a result, the durations of deposition were 320, 80, and 64 min under a potential of −1.3, −1.5,
and −1.7 V, respectively.

Coatings 2020, 10, x FOR PEER REVIEW 4 of 15 

 

voltammetry from an open-circuit potential (OCP) to −2.0 V at a scan rate of 20 mV/s. Then, three 
different potentials were chosen for the electrodeposition: −1.3, −1.5, and −1.7 V. We adjusted the 
duration of each trial to obtain a similar coating thickness: The higher the voltage, the shorter the 
duration. During these depositions, we kept the temperature constant at 50 ± 0.2 °C by utilizing a 
water bath (PolyScience, Niles, IL, USA). Instead of continuous electrodeposition, we programmed 
the system to alternate between 5 min of deposition at the selected potential and 5 min of non-
deposition with a 0 V potential (Figure 2b) to allow ion refilling of the depletion layers throughout 
the 3D-woven lattice. As a result, the durations of deposition were 320, 80, and 64 min under a 
potential of −1.3, −1.5, and −1.7 V, respectively. 

 
Figure 2. (a) Linear sweep voltammetry curve for hydroxyapatite (HAp) formation on stainless-steel 
(SS) 3D-woven lattice in an electrolyte containing 15 mM Ca(NO3)2·4H2O, 9 mM NH4H2PO4, and 30 mM 
NaNO3. The potential was swept from open-circuit potential (OCP) to −2.0 V, at a rate of 20 mV/s and 
a temperature of 50 °C. (b) Schematic diagram of deposition waveforms used in the electrodeposition 
coating process. 

After the deposition, we rinsed the samples thoroughly with distilled water to remove any 
residual electrolyte, and then air-dried them for 12 h. To produce more material for crystallographic 
analysis via X-ray diffraction, we repeated the same sample preparation and electrodeposition 
protocol on 10 mm × 10 mm × 1.5 mm 304 SS plates. However, we first mechanically polished the 
plates with SiC sandpaper up to 1200 grit before cleaning. 

2.3. Characterization of the Deposited Coatings on 3D-Woven Lattice 

We studied the surface morphology and elemental composition of the HAp coatings deposited 
onto the woven samples using a scanning electron microscope (SEM) (Tescan Mira 3 GM, Brno, 
Czechia) equipped with energy-dispersive spectroscopy (EDS) (EDAX Inc, Mahwah, NJ, USA) on 
platinum-sputtered samples. We also employed Raman spectroscopy (micro-Raman setup and 
Horiba JY T64000 spectrometer, Kyoto, Japan) to identify the functional groups on the HAp coatings. 
The Raman spectra were obtained using an excitation wavelength of 514.5 nm with a laser power of 
2 mW. A pure HAp powder sample (Sigma-Aldrich, reagent grade) was used as the Raman reference. 
We characterized the crystal structure of the HAp coatings deposited onto 304 SS plates using 
symmetric X-ray diffraction (XRD) (Philips/PANalytical X’Pert Pro-MPD, Malvern, UK), Cu-Kα 
radiation (λ = 1.5418 Å), a step size of 0.0033°, and a 2θ range from 10.0° to 90.0°. We also obtained 
an XRD pattern for commercial HAp powders using the same diffraction parameters to serve as a 
reference. 

To evaluate the HAp coating thickness distribution within the weave, we chose a sample with 
the optimal coating condition (−1.5 V) based on morphological and structural results. We cut the 
sample across its middle with a diamond wire saw to quantify the chemistry and thickness of coatings 
on the fill wires. We conducted energy-dispersive spectroscopy (EDS) to evaluate the elemental 
distribution of the coating, and we imaged each wire using a backscattered electron (BSE) detector to 
measure absolute coating thicknesses at 12 equally spaced points around each wire’s perimeter. The 

Figure 2. (a) Linear sweep voltammetry curve for hydroxyapatite (HAp) formation on stainless-steel (SS)
3D-woven lattice in an electrolyte containing 15 mM Ca(NO3)2·4H2O, 9 mM NH4H2PO4, and 30 mM
NaNO3. The potential was swept from open-circuit potential (OCP) to −2.0 V, at a rate of 20 mV/s and
a temperature of 50 ◦C. (b) Schematic diagram of deposition waveforms used in the electrodeposition
coating process.

After the deposition, we rinsed the samples thoroughly with distilled water to remove any residual
electrolyte, and then air-dried them for 12 h. To produce more material for crystallographic analysis
via X-ray diffraction, we repeated the same sample preparation and electrodeposition protocol on
10 mm × 10 mm × 1.5 mm 304 SS plates. However, we first mechanically polished the plates with SiC
sandpaper up to 1200 grit before cleaning.

2.3. Characterization of the Deposited Coatings on 3D-Woven Lattice

We studied the surface morphology and elemental composition of the HAp coatings deposited
onto the woven samples using a scanning electron microscope (SEM) (Tescan Mira 3 GM, Brno,
Czechia) equipped with energy-dispersive spectroscopy (EDS) (EDAX Inc., Mahwah, NJ, USA) on
platinum-sputtered samples. We also employed Raman spectroscopy (micro-Raman setup and Horiba
JY T64000 spectrometer, Kyoto, Japan) to identify the functional groups on the HAp coatings. The Raman
spectra were obtained using an excitation wavelength of 514.5 nm with a laser power of 2 mW. A pure
HAp powder sample (Sigma-Aldrich, reagent grade) was used as the Raman reference. We characterized
the crystal structure of the HAp coatings deposited onto 304 SS plates using symmetric X-ray diffraction
(XRD) (Philips/PANalytical X’Pert Pro-MPD, Malvern, UK), Cu-Kα radiation (λ = 1.5418 Å), a step size
of 0.0033◦, and a 2θ range from 10.0◦ to 90.0◦. We also obtained an XRD pattern for commercial HAp
powders using the same diffraction parameters to serve as a reference.

To evaluate the HAp coating thickness distribution within the weave, we chose a sample with the
optimal coating condition (−1.5 V) based on morphological and structural results. We cut the sample
across its middle with a diamond wire saw to quantify the chemistry and thickness of coatings on the
fill wires. We conducted energy-dispersive spectroscopy (EDS) to evaluate the elemental distribution of
the coating, and we imaged each wire using a backscattered electron (BSE) detector to measure absolute
coating thicknesses at 12 equally spaced points around each wire’s perimeter. The position of the wires
is registered based on a coordinate system detailed in Section 3.3. We measured 129 of 132 wires in
this cross-section, excluding three wires that were lost during the cutting process. We then utilized
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the mean coating thickness measured for each individual fill wire to create a heatmap to visualize
the coating uniformity within the weave. Specifically, the X and Y-axis of the map correspond to the
horizontal and vertical directions, and the color of the cell corresponds to the thickness of the HAp
coating on the individual fill wires. The average fill wire coating thickness in both X and Y directions
was also calculated and plotted. While a quantitative evaluation of the coating’s bond strength will be
performed in a future study, we do provide qualitative observations, as noted below.

2.4. Cell Isolation and Culture

We obtained adipose-derived stem cells (ASCs) from human subcutaneous adipose tissue in
the form of lipoaspirate from one female Caucasian donor undergoing elective surgery, with written
informed consent, and approval from the Institutional Review Board. We isolated ASCs as previously
described [52]. Briefly, lipoaspirate was washed in phosphate-buffered saline, and tissue was digested
for 1 h under agitation in a solution of collagenase type I (1 mg/mL) and bovine serum albumin
(10 mg/mL) diluted in phosphate-buffered saline (PBS) with calcium and magnesium. The stromal
vascular fraction was obtained using differential centrifugation. We filtered the remaining cells
through a 100 µm cell strainer to remove large tissue aggregates. Red blood cells were lysed using
a solution of ammonium chloride (0.155 M), potassium bicarbonate (0.01 M), and EDTA (0.1 mM).
We then plated the remaining cells onto tissue culture plastic and expanded them through two
subsequent passages to enrich for ASCs. The expansion media consisted of Dulbecco’s Modified Eagle
Medium (Gibco, 4.5 g/L of glucose) supplemented with 10% fetal bovine serum (Atlanta Biologicals),
1% penicillin/streptomycin, and 1 ng/mL basic fibroblast growth factor-2 (FGF-2). Cells were trypsinized,
suspended in stromal media (expansion media without FGF-2), and seeded onto the stainless-steel
scaffolds dropwise in 20 µL increments. We seeded a total of 100 µL of cell suspension at a concentration
of 20 × 106 cells/mL onto both Hap-coated and -uncoated SS scaffolds, and we then incubated them
for 30 min to promote adhesion. We subsequently added 5 mL of stromal media to completely cover
all surfaces of the scaffolds.

After 12 h and 4 days of culture, we fixed cells in 4% paraformaldehyde for 20 min and stained them
for nuclei and F-actin using 4’,6-diamidino-2-phenylindole (DAPI) and phalloidin stains, respectively.
Prior to staining, we blocked non-specific binding using 10% fetal bovine serum in PBS for 30 min at
room temperature. To stain, we diluted DAPI and phalloidin 1:2000 and 1:40 in 10% fetal bovine serum
in PBS, respectively. We then imaged samples using a Zeiss 510 Confocal microscope (Zeiss, Oberkochen,
Germany) and the same fluorescence settings for each sample. Following 12 h or 4 days of culture,
we measured DNA content as previously described using the Quant-IT PicoGreen dsDNA assay
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer instructions [53]. To determine cell
attachment and proliferation following 12 h or 4 days of culture, we normalized DNA content on the
scaffolds to the initial DNA content prior to seeding.

3. Results and Discussion

3.1. Linear Sweep Voltammetry and Determination of the Deposition Potential

In order to understand the effect of deposition potential, we performed linear sweep voltammetry
(LSV) on the 304 SS woven lattices in an electrolyte containing 15 mM Ca(NO3)2·4H2O, 9 mM
NH4H2PO4, and 30 mM NaNO3. Figure 2a shows the LSV data, which are similar to data reported
in [54]. As they note, a sequence of reactions is thought to occur as potential changes. When the
applied potential is more negative than −0.4 V, the reduction of oxygen commences:

O2 + 2H2O + 4e− → 4OH−ads (1)
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In the next stage (−1.0 to −1.85 V), a further increase in the cathodic current is observed, and the
following reactions are likely to happen:

H2PO−4 → HPO2−
4 + H+ (2)

HPO2−
4 → PO3−

4 + H+ (3)

H2PO−4 → PO3−
4 + 2H+ (4)

2H+ + 2e− → H2 ↑ (5)

NO−3 + H2O + 2e− → NO−2 + 2OH− (6)

when the voltage drops below −1.85 V, a typical water reduction curve was observed with a rapid
increase in the cathodic current, suggesting the following reaction:

2H2O + 2e− → H2 ↑ +2(OH)−ads (7)

To form HAp nuclei (Equation (8)), positive Ca2+ ions migrate to the working electrode and
react with electrochemically formed PO3−

4 and OH−. The nuclei then adhere to the substrate, growing
into coatings:

10Ca2+ + 6PO3−
4 + 2OH− → Ca10(PO4)6(OH)2 (8)

We chose three electrodeposition potentials for HAp deposition onto the woven SS lattices based
on the analysis of the linear sweep voltammetry: −1.3, −1.5, and −1.7 V. We adjusted the duration of
each deposition to 320, 80, and 65 min, respectively, to obtain similar coating thicknesses in each case,
and we performed all electrodepositions at 50 ◦C using alternating potentials, as shown in Figure 2b
for the −1.5 V deposition.

3.2. Coating Morphology and Microstructure

Figure 3 presents SEM micrographs showing the typical morphology of the coatings deposited at
−1.3, −1.5, and −1.7 V. Due to the low deposition rate at −1.3 V, uncoated areas are observed (Figure 3b)
at low magnification. Figure 3c reveals, under high magnification, that the coatings are not compact and
display an irregular plate-like morphology. This plate-like morphology is found in coatings generated
under −1.5 and −1.7 V (Figure 3f,i) as well. These plates typically measure 2–5 µm in length with a
submicron thickness. The coatings appear to be uniform and porous. The porosity increases the specific
surface area of the 3D-woven lattices, as well as the surface area for cell adhesion [55]. A larger contact
area should accelerate the healing of the damaged bone by increasing material transport between the
implant and the surrounding tissue [56].

Coatings generated at −1.7 V show mixed features (Figure 3g,h). In some areas, coatings display
coral-like features; in other areas, no coating or only a partial coating is found. These features are
thought to be caused by the high HAp deposition rate and interference from hydrogen bubbles forming
on the lattice surface. Figure 3i further reveals the impact of the hydrogen bubbles. In this figure,
two distinct morphologies are found. On the right, plate-like HAp crystals consistent with those of
the −1.3 and −1.5 V samples are seen (Figure 3c,f). On the left, we observe finer plate-like crystals,
which are widely considered to be freshly formed nuclei of the plate-like structure [57].

Coatings generated under −1.5 V show the most promising features of the three potentials that
we examined. The HAp coatings on the surface of the SS woven lattice are composed of irregular,
plate-like crystals, providing a coating that is smooth on a macro-level yet rough and porous on a
micro-level (Figure 3f). Furthermore, we do not observe evidence of the coral-like features that are
attributed to hydrogen evolution as a result of rapid, non-uniform deposition. In contrast to −1.7 V,
the coatings are uniform across the SS wires.
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The Ca/P atomic ratios obtained by EDS analysis are 1.69 ± 0.06, 1.67 ± 0.06, and 1.73 ± 0.08 for
HAp coatings electrodeposited under −1.3, −1.5, and −1.7 V potentials, respectively. These ratios are
very close to the stoichiometric value of hydroxyapatite, 1.67. Previous studies [40] note the importance
of the Ca/P ratio as it is considered to be critical for the chemical stability of HAp. The typical EDS
spectra of coatings generated under different electrodeposition potentials are also plotted and detailed
in Appendix A, (Figure A1). The Raman spectra collected from the three deposited coatings (Figure 4)
show nearly identical profiles compared to the pure HAp powder reference. In addition, most of
the Raman bands correspond to the stretching mode of PO3−

4 (V2: 443 and 447 cm–1; V4: 582, 594,
610, and 620 cm−1; V1: 961 cm−1; V3: 1030, 1046, 1054, and 1076 cm−1) [58]. No obvious shifts in
the Raman band positions were observed from sample to sample, and the position of the Raman
bands indicate that the coatings are primarily hydroxyapatite. There also exists a broad low-intensity
peak at 1010 cm−1 and a narrow low-intensity peak at 1125 cm−1. A possible explanation for these
low-intensity peaks is the existence of other calcium phosphate phases formed during the deposition
process. Specifically, the 1025 cm−1 peak has been associated with a stretching mode of the HPO2−

4
group (V3: 1121 cm−1) in dicalcium phosphate dihydrate (DCPD), and the 1010 cm−1 peak has been
associated with a stretching mode of the HPO2−

4 group (V1: 1010 cm−1) in octacalcium phosphate
(OCP) [58,59]. Interestingly, the relative peak intensity of the broad 1010 cm−1 peak increases as the
deposition potential decreases. One explanation is that lower deposition potentials may yield lower
local pH, which favors the formation of the OCP more than HAp. Therefore, an increase in the volume
of OCP could result when the deposition potential decreases [60]. However, the Ca/P ratio of the
coatings is significantly larger than those of OCP (1.33) and DCPD (1.00), and it very similar to HAp.
Therefore, we conclude that the coatings generated under different deposition potentials are still mainly
HAp with a limited amount of OCP and/or DCPD.

Figure 5 shows the X-ray diffraction patterns of coatings deposited onto SS plates. All peaks
not associated with SS can be assigned to the most intense crystalline planes of HAp based on
the XRD pattern of the HAp reference powder and the standard powder diffraction files (JCPDS,
PDF#01-072-1243). The strong peaks at 2θ = 25.9◦, 31.8◦, and 32.2◦ correspond to the (002), (211),
and (112) planes. The unusually strong peak at 25.9◦ for the coatings compared to the reference
HAp powders indicates that the HAp crystals grow in the preferred direction of [002] during the
electrodepositions. This corresponds to the crystals growing with their c-axis perpendicular to the
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electrode surface, as reported in earlier electrodepositions [61–64]. Coatings deposited at potentials of
−1.3 and −1.7 V generate broad peaks with relatively low intensities from around 31◦ to 33◦. This is
indicative of a thin coating and/or fine crystals, which could be due to the low deposition rate at −1.3 V
and the interference of hydrogen bubble formation at −1.7 V, respectively. The coatings deposited at
−1.5 V are stronger and sharper, indicating thicker films and/or larger crystals. Overall, the XRD results
suggest that the coatings deposited onto the 3D SS woven lattice under similar deposition conditions
as the SS plates samples will also contain crystallized HAp.
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3.3. HAp Coating Thickness and Chemistry

The cross-sectional SEM images in Figure 6a,b show a uniform HAp coating adhering to the
wires following deposition at −1.5 V. Porosity is observed in the coating and corresponds to the
surface morphology seen in Figure 3. The absence of delamination from the wires or crack along the
wire/coating interface, particularly after mechanical polishing of the sample, suggests that the adhesion
of the coating to the wires is strong. The EDS analysis shows a uniform distribution of calcium and
phosphorus in the coatings.

A heatmap (Figure 7b) was created to visualize the measured HAp coating thickness on fill wires
on one cross-section from a sample electrodeposited at −1.5 V. The X- and Y-axis of the map correspond
to the horizontal and vertical directions, and the color of the cell corresponds to the thickness of the
HAp coating of each fill wire. Three wires, labeled as “M” in the heatmap, were lost during cutting of
the sample. The heatmap reveals a relatively uniform coating of the fill wires across the woven lattice
with some variation in small areas such as (Y2-Y5, X1-X4). The defects are likely caused by hydrogen
bubbles trapped within the weave during the deposition process, causing some of the wires to receive
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more coating than others. The fill coating thicknesses were averaged in the vertical (Y) and horizontal
(X) directions and are plotted in Figure 7c,d. These plots suggest that both directions have a relatively
uniform coating, and overall, there are no significant differences in coating thickness between the
internal and the external sections of the woven lattice. Such uniformity of the HAp coatings is critical
for applications involving porous metallic substrates.
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global average and one standard deviation of all HAp coating thickness measurements (mean ± SD).

Lastly, the average thickness of coatings is 5.1 µm, corresponding to a deposition rate of
0.0625 µm/min. While other methods such as plasma spray or gas detonation deposition allow
a much higher deposition rate (for example, the deposition rate of gas detonation can reach
10 µm/s [35]), the “line-of-sight” nature of these processes limit their application on 3D porous
scaffolds. The electrodeposition method, on the other hand, enables uniform coating throughout a
porous structure. The downside is a much lower electrodepositing rate that typically ranges from
0.05 to 0.3 µm/min [39]. In this study, the relatively low deposition rate can also be attributed to the
alternating voltage pattern that we employed to ensure a uniform electrolyte concentration throughout
the scaffold. In the future, we will try to optimize the deposition rate by altering the deposition
temperature and electrolyte concentration.

3.4. In Vitro Biocompatibility Analysis

After culturing ASCs on the surface of coated and uncoated HAp scaffolds for 4 days, we observed
that cells are able to adhere to the surface of the scaffolds. Additionally, actin filaments can be seen
stretching across the pores of the woven scaffolds in both coated and uncoated groups (Figure 8).
However, fluorescence images could not be obtained throughout the scaffolds, due to the opacity of
the metallic scaffolds. Furthermore, the hardness of the wires relative to the cells prevents sectioning.
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To quantify the effect of the HAp coating on both cellular adhesion and proliferation, ASCs were
seeded on scaffolds and cultured for 12 h and 4 days. The 12 h time scale allows cells the opportunity to
adhere to the surface without providing significant time to proliferate. After normalizing to the initial
DNA seeded on each group, we observed that the HAp coating increases initial cell seeding efficiency by
approximately 20%. Furthermore, after 4 days of culture, ASCs cultured on HAp-coated stainless-steel
scaffolds had increased by 32%, whereas ASCs on the uncoated proliferated only 17% (Figure 9).
Together, these results suggest that coating stainless-steel scaffolds with HAp using electrodeposition
can improve cellular adhesion.
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Figure 9. DNA content comparison between uncoated and Hap-coated SS woven lattice after culturing
for 12 h and four days (n = 3 samples per group at each time point), (mean± SE); significance determined
by two-tailed Student’s t-test, p = 0.0026.

4. Conclusions

In summary, HAp coatings with nearly ideal Ca/P atomic ratios were deposited onto 3D-woven SS
lattices with a customized electrodeposition setup. We determined an optimal potential of −1.5 V for
electrodeposition at 50 ◦C within an electrolyte containing 15 mM Ca(NO3)2·4H2O, 9 mM NH4H2PO4,
and 30 mM NaNO3. A higher potential of −1.7 V appears to generate hydrogen bubbles, causing
noticeable damage to the coating, while a lower deposition potential of −1.3 V yields a low deposition
rate and uneven coatings. The optimized HAp coatings are relatively uniform in thickness throughout
the interior of the porous SS weaves and contain sub-micron-scale HAp crystals. The finely structured
coatings improve the bioactivity of the scaffold in short-term cell interaction studies.
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