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Abstract: Flexible electronics exhibit tremendous potential applications in biosensing and human–machine
interfaces for their outstanding mechanical performance and excellent electrical characteristics. In this work,
we introduce a soft, skin-integrated strain sensor enabled by a ternary elastomer composite of
graphene/carbon nanotube (CNT)/Ecoflex, providing a low-cost skin-like platform for conversion of
mechanical motion to electricity and sensing of human activities. The device exhibits high sensitivity
(the absolute value of the resistance change rate under a testing strain level, 26) and good mechanical
stability (surviving ~hundreds of cycles of repeated stretching). Due to the advanced mechanical design of
the metallic electrode, the strain sensor shows excellent mechanical tolerance to pressing, bending, twisting,
and stretching. The flexible sensor can be directly mounted onto human skin for detecting mechanical
motion, exhibiting its great potential in wearable electronics and human–machine interfaces.
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1. Introduction

Thin, soft, and skin-integrated electronics have attracted extensive attention in the field of
biomedical engineering [1–4], owing to their advantages of being multifunctional, wearable [5–8],
and flexible [9,10]. They have shown their great potential in various applications, including wearable
electronics [11–13], human–machine interfaces [14–16], gaseous monitoring [17,18], and healthcare
monitoring [19,20]. The key of developing this kind of electronics is exploring flexile/stretchable
sensors with high sensitivity and stability that can accurately detect signals such as strain, temperature,
and flows [4,21–24]. In the past decades, extensive efforts have been made to develop flexible strain
sensors for continuously monitoring of human health status [25,26]. One successful example of
exploring soft strain sensors is adopting intrinsically flexible or stretchable materials serving as
the functional layer that exhibits great electrical conductivity [27,28]. Graphene, a two-dimensional
material, has outstanding electrical properties that has been used in strain sensors [29–31]. However,
due to the intrinsic brittle nature, graphene-based strains sensor encounters a limitation of low
stretchability (maximum ε = 5%) [9,21,32–35]. Similar to graphene, carbon nanotube (CNT) is
also an outstanding material for electronic devices [36–40]. It shows great mechanical properties
due to its small-sized and ultimate fibril structures that has been reported in various kinds of
sensors [36,41]. Nevertheless, the CNT-based strain sensors are limited with their low sensitivity
and poor restorability [38]. Combing these conductive nanostructures with elastomer such as
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polydimethylsiloxane (PDMS) enables intrinsically stretchable stain sensors [32,42]. However,
considering the using of such composite for flexible sensors electronics and practical applications,
several challenges, such as integration complexity, flexible circuit design, long-term stability, and cost
issues remain. Table S1 provide the typical performances of recently reported strain sensors based
on piezoresistance.

Here, we present a skin-integrated strain sensor based on graphene/CNT/Ecoflex via a simple
fabrication process and low mass production cost. The reported strain sensor exploits intrinsically
stretchable piezoresistive elastomer as sensing pixels by blending graphene and CNT nanoparticles
with Ecoflex. One step screen-printing of the piezoresistive elastomer on the preformed in-plane
electrodes coated soft substrate forms the strain sensor with high sensitivity and excellent stability.
Due to its simple structure and flexible functional material, it owns the properties of softness, ultrathin
thickness, 0.64 mm, and lightweight, ~0.27 g/cm2, that could be stretched and compressed along
any directions. It is wearable that can be tightly mounted onto the epidermis of the human body
for stable signal measurement. Besides, the strain sensors could capture the signal not only at
static state but also at the moment of stretching status. The sensors were integrated into circuit to
demonstrate the applications in human–machine interfaces, where the strain sensors were mounted
on a human hand for imitating motions and controlling a robotic hand. Rapid and precise imitations
of different gestures (“tick”, “eight”, “yeah” and “okay”) were realized for this system. The soft
sensors and system show great potential in machine control and offers a new strategy for real-time
human–machine interfaces.

2. Experimental Section

2.1. Fabrication of the Graphene/CNT/Ecoflex Composite

Graphene powder (average thickness of 1.75 nm; purity >99 wt.%.) and CNT (diameter, 10–20 nm;
length, 10–30 µm) were purchased from Suzhou Hengzhu Graphite Technology Co., Ltd., Suzhou,
Jiangsu, China. Ecoflex 00-30 was purchased from Smooth-On, Inc., Macungie, PA, USA. Graphene
(0.1 g), CNT (0.6 g), and Ecoflex (34 g; A:B, 1:1) were poured into a speed mixer at the speed of 500 rpm
for 1 h to form the rubbery precursors. Then, the mixtures were transferred into an agate mortar and,
subsequently, ground for 1 h at room temperature. After full dispersion, the graphene/CNT/Ecoflex
composite was poured into marked beakers for film casting.

2.2. Assembly of the Piezoelectric Rubbery Devices

The fabrication started on a quartz glass, which was first sequentially cleaned by acetone, alcohol,
and deionized water (DI water). A thin sacrificial layer (liquid soap) was spin coated on the glass sheet
for later releasing the device. Then, spin-coating of a thin PDMS film (0.17 mm) was done at 600 rpm
for 30 s, and further, it was baked at 110 ◦C for 5 min. To ensure enough adhesion strength between
the copper film and PDMS substrate, another ultrathin PDMS film was spread over the cured PDMS
substrate before attaching copper film (thickness, 6 µm) on it. After smoothly attaching copper film onto
the PDMS substrate, the sample was cured at 110 ◦C for 5 min and then, patterned by photolithography
and etching, yielding metal traces in the desired geometries. Here, a positive photoresist (PR, AZ 4620,
AZ Electronic Materials, Ulm, Germany) was spin-coated at 3000 rpm for 30 s, soft baked on a hot plate
at 110 ◦C for 5 min, then exposed to ultraviolet light (light intensity, 15 mW/cm2) for 45 s, and finally,
developed for 1 min in a solution (liquid ratio, AZ 400K: DI water = 1:3). After development, the PR
was removed by acetone and rinsed by DI water. Next, the piezoresistive rubbery precursor was
screen-printed onto the stretchable electrodes via screen-printing assisted by a laser-cut steel mask
(0.3 mm thick, area of 5 mm × 5 mm). After blade-coating the piezoresistive rubbery precursor,
the sample along with the steel mask was heated at 150 ◦C for 45 min until the PZT rubber completely
cured. After tearing off the steel mask, the top PDMS encapsulation layer with a thickness of 0.17 mm
was spin-coated and cured.
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2.3. Characterization

Data presented in Figure 2a,c,d and Figure 3c,f,i were collected under a self-developed oscillator
with controllable stress and frequencies, using Keysight B1500A Semiconductor Analyzer (Keysight
Technologies, Santa Rosa, CA, USA). Data shown in Figure 2b was collected by finger touching, tapping,
and hitting, using Keysight B1500A Semiconductor Analyzer. The complete data acquisition chain
is shown in Figure S1. The surface morphology was observed by a field emission scanning electron
microscopy (FEI Quanta 450 FESEM, FELMI-ZFE, Graz, Austria). Informed consent was obtained from
the volunteers.

3. Results and Discussion

Figure 1a presents a schematic illustration of the graphene/CNT/Ecoflex composite-based
strain sensor. It has a multilayered structure where two pieces of thin PDMS layers (thickness,
0.34 mm; PDMS: crosslink, 30:1) serves as the substrate and the encapsulation, and the piezoresistive
graphene/CNT/Ecoflex composite in the middle serves as the sensing layer. The blend ratio of
the ternary graphene/CNT/Ecoflex was set as 97.98 wt.% Ecoflex, 1.73 wt.% CNT, and 0.29 wt.%
graphene (Figure 1b). The conductive electrode adopted a structurally designed copper trace, 6 µm,
for collecting strain responses. The sensor is stretchable, reversible, soft, and adhesive to various
surfaces, which can be directly laminated on the skin. The overall dimension of the strain sensor
is 11.6 mm × 6.3 mm × 0.64 mm. Figure 1c shows the details of the copper electrode of the strain
sensor, whose serpentine design can ensure great stretchability in different directions. By integrating
the graphene/CNT/Ecoflex composite, the stretchable electrodes and the PDMS encapsulation layers,
the entire system owns superb flexibility and stretchability. It is soft enough to be integrated with skin
even under stretching, twisting, and squeezing (Figure 1d). Figure 1e presents a scanning electron
microscopy (SEM) image of the graphene/CNT/Ecoflex composite where we can observe the uniform
and smooth surface.
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Figure 1. Flexible, skin-integrated strain sensor with a graphene/CNT/Ecoflex composite as a functional
layer. (a) Schematic illustration of the strain sensor. (b) Fabrication process of the graphene/CNT/Ecoflex
composite. (c) Optical image of the in-plane electrodes (copper), and its enlarged optical image of
the electrode pattern. (d) Optical image of the strain sensor attached on the skin surface with
three mechanical deformations, including stretching, twisting, and squeezing. (e) Scanning electron
microscope of the surface morphology for the graphene/CNT/Ecoflex composite thin film.
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To characterize the performance of the strain sensor, the response (∆R/R0) curves versus different
parameters are measured and calculated in Figure 2a, where R0 (measured of 8 Megohm) is the initial
resistance before any mechanical loadings, and ∆R is the resistance variations. It is found that
the electrical signal raised monotonously when the strain sensor is stretched from 0% to 20% (∆R/R0

increase from 0.0144 to 4.856), demonstrating its high sensitivity (the absolute value of the relative
resistance change rate induced under one testing unit strain level, 26). Figure 2b presents the electrical
signal of the device triggered by finger touching, tapping, and hitting with the electrical signal of
0.0988, 0.32, and 1.1, respectively, exhibiting its ability in distinguishing applied pressure differences.
To investigate the electrical stability in converting human motion into electrical signal, we studied
relationship between performance and various low frequencies that are relevant to daily body motions,
ranging from 0.1 to 0.4 Hz with a constant strain of 5% (Figure 2c). It is found that the low frequency
has a negligible effect on the device signal outputs, demonstrating its sufficient response time (~41 ms).
Fatigue tests were conducted for the strain sensor that associated with repeated stretching for 80 cycles
at 1 Hz (Figure 2d) with the electrical signal ranging from 0 to 1. These results prove that the sensor is
stable enough to endure highly intensive stretching motions.
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Figure 2. Electrical properties of the graphene/CNT/Ecoflex composite-based strain sensor. (a) Electrical
signals (∆R/Ro) of the device at different strain values. (b) Electrical signals of the device to three loads
(touching, tapping, and hitting). (c) Electrical signals of the device under different frequencies under 5%
strain. (d) Electrical signals of the device in a fatigue test for 80 cycles at a constant frequency of 1 Hz.
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To demonstrate the remarkable sensitivity of the strain sensor, a blowing test is conducted as
the sensor is mounted on a clean cloth (Figure 3a,b) for recording the blows. The intensity of airflow
is ~7.38 standard liter per minute (SLPM), at a frequency of 0.25 Hz. The strain sensor has a clear
response to the blowing with the ∆R/R0 values of 0–0.69 (Figure 3c). To demonstrate its high sensitivity,
the sensor was mounted on the neck of a volunteer for detecting the swallowing motion, as shown
in Figure 3d,e. The ∆R/R0 shows a regular variation along with the swallowing motion, ranging
from 0 to 0.295 (Figure 3f). Its high sensitivity towards blowing and throat movements demonstrates
the potential of the flexible strain sensor in clinical-related applications and many other fields in
biomedical engineering. Figure 3g show optical images of a strain sensor mounted on the back of
hand, where the index finger is at different bending angles. The electrical signal at the bending angle
of 30◦, 60◦, and 90◦ are 0.4285, 0.6812, and 2.59, respectively, where the maximum ∆R/R0 at 90◦ is 6.19
(Figure 3h,i). It shows that the strain sensor is capable of measuring tiny body motion, and this is
applied for further robotic control.
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Figure 3. The electrical signals of the flexible strain sensor under different external stimuli. (a) Optical
image of the flexible strain sensor under human directly blowing. (b) An enlarged optical image of
the flexible strain sensor. (c) Electrical signals of the flexible strain sensor in the blowing test shown
in (a). (d) Optical image of the flexible strain sensor mounted on a throat for a swallow test. (e) An
enlarged optical image of the flexible strain sensor mounted on a throat. (f) Electrical signals of
the flexible strain sensor in the swallow test shown in (d). (g) Optical image of a flexible strain sensor
mounted on the back of a hand, and the index finger bending at different angles (original, 30◦, 60◦,
and 90◦). (h) Electrical signals of the flexible strain sensor under different finger bending angles shown
in (g). (i) Detailed statistics of the measurement at 90◦ shown in (h).
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Next, we used the strain sensors for human–machine interfaces with the schematic diagram
of testing circuit shown in Figure 4a. To accurately capture hands and fingers motions, sensors
were mounted on a rubber glove (Figure 4b). Figure 4c–f shows different gestures (tick, eight, yeah,
and okay) created by the tester, and the same gestures are also reproduced by the robotic hand.
Figure S2 presents the controlling code with a channel signal. The high sensitivity and accuracy of
the sensors lead to smooth control of the robotic hand, and it bends almost without any time delay
after the finger bends. Moreover, the robotic fingers could imitate the bending angle of the human
hand due to the verifying electrical signals. It is concluded that the strain sensors can control the robotic
hand in smooth and natural approach, and the feasibility of applying strain sensors in machine control
and human–machine interface is demonstrated.
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Figure 4. Robotic hand controlling performed by the flexible strain sensors. (a) The schematic diagram
of the testing circuit for controlling robotic hand. (b) Optical image of strain sensors mounted on a
rubbery glove. Optical image illustrating that the strain sensors control a robotic hand to make gestures
of “tick” (c), “eight” (d), “yeah” (e), “okay” (f).

4. Conclusions

In summary, a graphene/CNT/Ecoflex composite-based strain sensor and their applications in
human–machine interfaces are introduced in this work. With the advantages of flexible, stretchable,
and skin-integrated characteristics, the soft strain sensors could be laminated on human skin surfaces
for body activity sensing. The simple processing route can significantly lower the fabrication cost.
With experimental integration studies of the ternary-designed flexible strain sensor, we provide a
new strategy for intrinsically stretchable sensor development and robotics controlling with a terrific
performance. The results presented in this work indicate a new route for developing wearable
electronics for human–machine interfaces.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6412/10/8/711/s1,
Figure S1: The complete data acquisition chain as measuring the data in Figure 3c, Figure S2: The self-developed
software interface for controlling robotic hand, Table S1: Summary for the flexible strain sensors based
on piezoresistance.
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and K.Y.; formal analysis, L.Z. and Z.H.; investigation, L.Z.; resources, D.L. and H.Z.; data curation, T.H.W.;
writing—original draft preparation, T.H.W.; writing—review and editing, Y.L.; visualization, Y.L.; supervision, X.Y.;
project administration, Z.W. and X.Y.; funding acquisition, X.Y. All authors have read and agreed to the published
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