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Abstract: Bandgap enlarged Mg-doped aluminum zinc oxide (Mg-doped AZO) film is a potential
transparent conducting oxide for applications in photonics devices. The oxide film normally deposited
by sputtering, particularly using ceramic targets, while maintaining its pristine property for the film
deposited using metallic targets is rarely addressed. This study investigated the optical and electrical
properties of Mg-doped AZO films that were performed by a magnetron reactive co-sputtering
method using metallic Mg and Al–Zn targets. Doping of Mg in the AZO significantly affects the
electrical resistivity and optical transmission of the films because Mg tends to replace part of Zn lattice
sites. The 1.2 at.% Mg-doped AZO film had an electrical resistivity of 7.9 × 10−4 Ω·cm, an optical
transmittance of 92.6% in the visible light range, and a bandgap of 3.66 eV when the film was
post-annealed at 600 ◦C. The Mg doping widens the bandgap and, thus, increases the transmittance of
the AZO film. Because of the superior electrical and optical characteristics, the Mg-doped AZO films
prepared using the metallic targets can be a reliable transparent conducting oxide for applications.

Keywords: Mg-doped AZO; transparent conducting oxide; bandgap engineering; optical
transmittance; metallic targets

1. Introduction

Transparent conducting oxides (TCOs) have been widely used in many photonics applications,
such as light-emitting devices, gas sensors, and laser diodes [1,2]. The most common materials used
for TCOs are metal oxides based on In2O3, ZnO, or SnO2 that were doped with an extra metal element
acting as substitute atom to replace part of the lattice sites. Among these metal oxides, ZnO-based
oxides usually have high transparency in the visible light region. Moreover, the metal element doping in
ZnO enhances its electrical conductivity because the doped atom affects the local atomic configuration
of the lattice and, thus, generates oxygen vacancy-like defects [3]. A trace amount of Al doping is most
frequently used to increase the electrical conductivity of the ZnO film. The doped Al3+ ions can replace
part of Zn2+ lattice sites and create carriers owing to the valence number difference between Al3+ and
Zn2+ [4–6]. Furthermore, Al2O3 is hexagonal in structure, which enables the structural stability of
Al-doped ZnO (AZO) thin films in a wide range solubility of Al3+ in wurtzite ZnO structure [5,7].
As a consequence, AZO is potentially material used in high-temperature devices, especially for those
aiming to replace indium tin oxide films whose cost has been manifestly increasing due to the scarcity
of indium resources.
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However, the transmittance of AZO is usually lower than that of pure ZnO because the absorption
mostly occurs at a wavelength close to the bandgap edge [8,9]. One strategy to improve the transmittance
is to dope the AZO with a suitable element while still maintaining comparable electrical properties.
The transmittance can be achieved by enlarging the bandgap of the AZO by doping an extra metal
element. MgO (bandgap of 7.3–7.8 eV) is one of the best candidates for increasing the bandgap energy
of ZnO due to a small lattice mismatch between Mg (0.72 Å) and Zn (0.74 Å) [10–13]. Therefore,
the bandgap of the AZO oxide can also be adjusted by doping moderate amounts of Mg atoms,
and this, thus, leads to an increase in the transmittance. However, excess doping of Mg in AZO
could degrade the electrical resistivities of resultant Mg-doped AZO films, mostly arising from lower
carrier concentration, due to the same valence number between Mg and Zn [14]. Accordingly, it is
necessary to systemically investigate AZO thin film doped with Mg to optimize electrical resistivity
and optical transmittance.

This work studied the optical and electrical properties of Mg-doped AZO films deposited
by reactive sputtering using metallic targets of Mg and Al–Zn. Comparing with conventionally
used ceramic targets, metallic targets can be easily cast by melting at relatively low temperatures.
Furthermore, the power density of the ceramic target is limited by the thermal loading of the target,
which easily causes cracks in prolonged or high-power sputtering [15]. While the shapes and sizes of
metallic targets are unlimited and are easier industrial implemented to alleviate this concern. Although
Mg-doped AZO films deposited by sputtering using MgO and AZO ceramic targets have been widely
studied [14,16–18], little information is available on the film prepared by reactive sputtering using
metallic targets of Mg and Al–Zn. The results of this study may provide a useful reference for
researchers attempting to fabricate the film for applications.

2. Materials and Methods

The AZO and Mg-doped AZO films were deposited on a Corning Eagle2000 glass substrate
by magnetron reactive co-sputtering (MGS-500, Junsun Tech., New Taipei, Taiwan) using metallic
targets of Mg (99.995% purity) and Al–Zn (Al 2.0 and Zn 98.0 wt.% prepared using elements of 99.95%
purity). The base pressure in the chamber was 4 × 10−4 Pa and the working pressure was 1.3 × 10−2 Pa
(measured by a Baratron 946 vacuum system controller, MKS, Andover, MA, USA) under a constant
Ar and O2 flow rates of 15 and 5 sccm, respectively. The sputtering power of Al–Zn was fixed at 50 W
using a direct current power supply, and that of Mg was from 0 to 100 W using a radio frequency power
supply. The distance between the cathode and the substrate was 6 cm. The substrate temperature was
held at ambient temperature. Before the deposition, the targets were cleaned to remove the surface
oxide layer by sputtering at the respective deposition power with Ar plasma for 5 min. After the
cleaning process, the mixture of Ar and O2 was then introduced into the chamber for the deposition
process. The deposited films had a fixed thickness of 200 nm. The films were then annealed by a rapid
thermal annealing system (ULVAC Mila 5000, Kanagawa, Japan) in an Ar–H2 (5%) atmosphere at
600 ◦C for 5 min. The Ar–H2 annealing is to stabilize the AZO films.

The thickness of the film was determined by a profilometer. The crystalline structure of the film was
characterized by an x-ray diffraction system (XRD, Mac Science M03XHF22, Kanagawa, Japan) with Cu
Kα1 radiation and surface morphology of the film was examined by a field emission scanning electron
microscope (FESEM, JEOL JSM-7500F, Tokyo, Japan). The composition of the film was examined by
an energy dispersive spectroscopy (EDS, Oxford INCA PentalFETx3, Tubney Woods, UK) that was
attached to the FESEM. The surface roughness of the selected samples was performed by atomic force
microscopy (AFM, Digital Instruments Dimension 3000, Milano, Italy). The average surface roughness,
Ra, was calculated for quantitative evaluation of the surface roughness. Electrical resistivity (ρ), carrier
concentration (n), and mobility (µ) were measured using a Hall-effect measurement system (Ecopia
HMS-5000, Ecopia Anyang, South Korea). An ultraviolet-visible-near-infrared (UV-vis-IR, JASCO
V-670, Tokyo, Japan) spectrophotometer was used to record the optical transmittance of the film.
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3. Results and Discussion

3.1. Composition and Structural Changes of the Mg-Doped AZO Films

Compositions of the as-deposited films analyzed by EDS indicated that the films contained Mg
from 1.2 to 3.9 at.% when the film was deposited at the deposition power of Mg target from 25 to 100 W,
while fixing the Al–Zn target at 50 W, as presented in Table 1. Mg content increases with increasing the
sputtering power of the Mg target.

Table 1. Composition of the studied films examined by energy dispersive spectroscopy (EDS).

Mg Deposition Power (W) Mg (at.%) Al (at.%) Zn (at.%) O (at.%)

0 0 1.8 51.7 46.5
25 1.2 1.7 52.7 44.4
50 1.6 1.8 50.6 46.0
75 3.6 1.6 44.5 50.3

100 3.9 1.5 42.9 51.7

Figure 1 shows XRD patterns of the as-deposited films and those isothermally annealed at 600 ◦C.
The as-deposited film, which is shown in Figure 1a, had a wurtzite structure (JCPDS 75-0576) with ZnO
(002) preferential orientation. No Al2O3 or MgO diffraction peak was observed within the detection
sensitivity of the instrument. This preferential orientation implies that the c axis of the Mg-doped AZO
grains perpendicularly towards to the substrate surface because the surface energy of (002) plane is the
lowest in ZnO wurtzite structure [19]. A similar observation on preferred (002) wurtzite structure for
the Mg-doped AZO film can be obtained when the film was deposited using the AZO ceramic target
and metallic Mg target [17] although its (002) peak intensity decreases with Mg content. Mg addition
seems to degrade the (002) preferential orientation. However, a non-preferential orientation of ZnO
could be normally obtained when the film was deposited via reactive magnetron sputtering using a
metallic Zn target pasted with Al and Mg foils [16]. Our result shows a strong (002) ZnO texture for
the as-deposited film in the studied composition range. Further, the diffraction angle of ZnO (002)
(from 33.6◦ for AZO film to 33.8◦ for 3.9 at.% Mg-doped AZO film) was slightly lower than that of
standard wurtzite structure of ZnO (34.3◦ from JCPDS 75-0576). This fact indicates that the film may
experience a large lattice distortion arising from the lattice expansion at the as-deposited state due to
the incorporation of Mg and Al. The MgxZn1−xO film has been found to remain its wurtzite structure
when x < 0.36 [20] and Mg-doped AZO films prepared using ceramic targets also show the structure
remains unchanged with 4.8 wt.% Mg doping [21]. As a result, the wurtzite structure in this study
remains unchanged because the studied concentration of Mg in AZO film ranges from 1.2 to 3.9 at.%.

The diffraction angle of ZnO (002) preferred orientation shifted toward a higher diffraction angle
for the films that were annealed at 600 ◦C, as shown in Figure 1b. This shifted diffraction angle (from
34.3◦ for 0 at.% Mg to 34.5◦ for 3.9 at.% Mg) implies that the lattice constant of the Mg-doped AZO film
reduces slightly due to the smaller ionic radius of Mg2+ in comparison with that of Zn2+. Furthermore,
peak intensity and full-width-at-half-maximum of (002) diffraction gradually decreased with increasing
Mg concentration. By using a Debye–Scherer’s formula, the grain size of the film can be estimated to
be 27.2 nm for AZO film and 14.5 nm for 3.9% Mg-doped AZO film upon annealing. More Mg atoms
incorporated into the AZO seems to yield the film with a smaller grain. The crystallinity and grain
size of Cu, Zn, and Ga doped NiO films also reduce with an increase in the doping concentration,
due to the difference in the ionic size of the dopants in comparison with the ionic size of Ni2+ ion [22].
Moreover, the coordination number and geometry of ions also need to be taken into consideration.
As mentioned, ZnO has a wurtzite structure. The ionic radius for Zn2+ is 0.74 Å and for O2− is 1.40 Å,
corresponding to a ratio between Zn2+ and O2− ionic radius of 0.529. This ratio implies that the ZnO
structure is in a tetrahedral ionic arrangement, in turns with four nearest neighboring atoms from the
crystal structure, i.e., four oxygen atoms surrounded each zinc atom and four zinc atoms surrounded



Coatings 2020, 10, 708 4 of 12

each oxygen atom. The doping atom, Mg (0.72 Å), tends to replace the Zn lattice site and/or part of
existing Al atoms (0.53 Å) that has previously replaced Zn lattice sites. Al-incorporation in the ZnO
lattice tends to induce more lattice strain due to the difference in the ionic radii between the two ions.
While Mg2+ has a comparable ionic radius with Zn2+, Mg-doped is expected to release the lattice strain
on replacing Zn atom and/or Al atom in the ZnO lattice.
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Figure 1. X-ray diffraction system (XRD) spectra of the Mg-doped AZO thin films (a) before and (b) 
annealed at 600 °C for 5 min. 
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Figure 1. X-ray diffraction system (XRD) spectra of the Mg-doped AZO thin films (a) before and (b)
annealed at 600 ◦C for 5 min.

3.2. Electrical Properties of the Mg-Doped AZO Films

Hall effect measurement was used to investigate the electrical properties of the films at room
temperature. All of the as-deposited films had a high electrical resistivity (~MΩ) beyond the limit
of the instrument, while the electrical resistivity could be significantly reduced after the annealing.
The obtained electrical properties of the films post-annealed at 600 ◦C are shown as a function of the
added amount of Mg in Table 2. The variation of the electrical resistivity (ρ), carrier concentration
(n), and mobility (µ) of the films is shown in Figure 2 as a function of Mg composition in the AZO
film. For the AZO film, carrier concentration was 2.1 × 1021 cm−3, carrier mobility was 6.5 cm2/V
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sec, and electrical resistivity was 4.6 × 10−4 Ω·cm, which are comparable with the results in previous
studies [23,24]. Mg doping can reduce both of the carrier concentration and mobility, and, thus,
increases the electrical resistivity of the film, as shown in Figure 2. The reduction in carrier mobility
mostly arises from the high effective mass of Mg (effective mass of electrons in Mg, Al, and Zn is
1.3, 1.2, and 0.85, respectively) which also increases with increasing the Mg content [25]. As a result,
a trace amount of 1.2 at.%, Mg-doped AZO film had the lowest electrical resistivity of 7.9 × 10−4 Ω·cm.
Nevertheless, the resultant electrical resistivity in this study is still much lower than those of previously
reported Mg-doped AZO films, electrical resistivities in a range of 1.55 × 10−1–1.00 × 10−3 Ω·cm
deposited using different approaches [2,20,26–28], and comparable with the Mg-doped AZO films
deposited using sputtering with ceramic targets [29]. Furthermore, the electrical properties of the films
in this study are significantly superior to the films deposited on a c-plane sapphire substrate using
Zn-Mg and Al targets [27].

Table 2. Electrical properties of the films annealed at 600 ◦C.

Mg Composition (at.%) Carrier Concentration (cm−3) Mobility (cm2/Vsec) Resistivity (Ω·cm)

0 2.1 × 1021 6.5 4.6 × 10−4

1.2 1.7 × 1021 5.1 7.9 × 10−4

1.6 1.5 × 1021 3.9 9.7 × 10−4

3.6 9.6 × 1020 3.4 1.9 × 10−3

3.9 6.9 × 1020 3.0 3.0 × 10−3
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Figure 2. Variations of the electrical resistivity (ρ), carrier concentration (n), and mobility (µ) of the
films annealed at 600 ◦C.

Electron mobility is known to be affected by grain boundary scattering, ionized impurity scattering,
and alloying scattering. Thus, the effective electron mobility can be represented by the Equation (1)
shown, as follows [17]:

1
µe

=
1
µgb

+
1
µi

+
1
µa

(1)

where µe is electron mobility, µgb is mobility caused by grain boundary scattering, µi is mobility due to
ionized impurity scattering, and µa is mobility due to alloy scattering. Carrier concentrations of the
studied films were ~1021 cm−3, as shown in Table 2, suggesting that the scattering mechanism affected
by alloying scattering is negligible [27]. Besides, the films with Mg concentration ≤ 1.6 at.% have a
carrier concentration of more than 1021 cm−3, implying that scattering is mostly dominated by ionized
impurity scattering where Mg atom is incorporated in lattice site replacing part of the Zn lattice. As the
mentioned, atomic radius of Mg (0.72 Å) is only slightly smaller than that of Zn (0.74 Å), suggesting
that the doping of Mg, in comparison with Al, generates less lattice strain due to the small lattice
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mismatch. The structural analysis shown in Figure 1 also confirmed that using a small amount of Mg
doping yields the same wurtzite ZnO phase, associated with a slight shift of ZnO (002) orientation
toward a higher diffraction angle, corresponding to the smaller ionic radius of Mg2+ in comparison
with that of Zn2+. Notably, a trace amount of Al-doped in ZnO also suggests that the substitutional
replacing of Zn lattice site in ZnO, although ionic radius of Al3+ (0.53 Å), is much smaller than that of
Zn2+ [4]. In this study, Mg atom is also possible to replace the existing Al sites or to occupy interstitial
sites in the ZnO lattice. As a consequence, the effect of Al doping in ZnO can be partially offset by
Mg because Mg is more atomic size comparable and valance identical. This fact supports that the
reduction of carrier concentration with Mg doping shown in Table 2. For Mg concentration ≥ 3.6 at.%,
the carrier concentration of the film is slightly less than 1021 cm−3, indicating the scattering mechanism
gradually changes to grain boundary scattering because the excess Mg atoms may accumulate at grain
boundaries [17,27]. Crystallinity decreases with increasing Mg content, as the XRD pattern shows in
Figure 1, also supports the scattering mechanism discussed.

Because of Zn2+ and Mg2+ have the same valence number, the substitution between Mg2+ and
Zn2+ should not generate or consume carriers of ZnO [30]. However, Mg and Al may also exist
at grain boundaries and retard carriers’ conduction [11,12]. For Mg-doped AZO film, Mg, instead
of Al, may replace part of the Zn lattice site in wurtzite ZnO. Doping more Mg leads to a lower
carrier concentration because Mg2+ creates fewer carriers than Al3+ [31], and, thus, a higher electrical
resistivity for the resultant Mg-doped AZO film.

3.3. Optical Transmittance and Bandgap of the Mg-Doped AZO Films

Figure 3 shows the transmittance in the UV-vis-IR regions (300–800 nm) for the films before and
after annealing at 600 ◦C. Optical transmittance of the film, determined as an average value in the
visible light range between 400 and 800 nm, was from 89.6% to 93.7% for the as-deposited films (shown
in Figure 3a) and from 90.2% to 94.4% for the annealed films (shown in Figure 3b). The films had a
higher transmittance in the visible light range than previously reported results (~85%) [16,17,21,28].
The average transmittance increases with Mg concentration due to the reduced carrier concentration
from the annihilation of oxygen vacancies [32]. The decrease in carrier concentration also reduces the
overlap of the conduction band and therefore widens the bandgap that will be discussed later. A sharp
increase in the absorption coefficient occurred at a wavelength of ~400 nm, indicating that the electrons
can be excited from a filled band to an empty band by the photoexcitation. Figure 3 also shows that
the absorption in the wavelength ranging from 300 to 400 nm shifted toward a short wavelength
for the film with a high Mg concentration. The phenomena can be explained by the Burstein–Möss
effect [33], in which the bottom of the conduction band might be filled up by the released electrons
from oxygen vacancies. ZnO is well known as an intrinsic n-type material and the Fermi level will be
of the conduction band when it is doped with Al and Mg. Since the states below the Fermi level of the
conduction band are filled, the absorption edge should shift to higher energy [19,34].

The corresponding energy at the onset of this rapid change in the absorption is defined as the
optical energy bandgap, Eg [35,36]. To calculate the bandgaps of the films, the absorption coefficient
was assumed corresponding to the direct bandgap of wurtzite structured Mg-doped AZO. Plots of
(αhν)2 against the photon energy hν, i.e., Tauc’s model equation, where α is the absorption coefficient,
h is the Plank’s constant, and v is the photon frequency [37,38], are shown in Figure 4. Sharp absorption
edges shifted to a blue light region for the high Mg-doped AZO film, implying an increase in the
bandgap energy. The optical bandgap energies determined from the obtained absorption spectra
were from 3.33 to 3.54 eV for the as-deposited Mg-doped AZO thin films, as shown in Figure 4a,
showing that it increased linearly with increasing Mg dopant concentration. After annealing at 600 ◦C,
the bandgap further increased with increasing Mg concentration from 3.62 to 3.75 eV, as shown in
Figure 4b. The obtained results show that the bandgap of Mg-doped AZO thin films is larger than that
of pure ZnO thin film (3.27–3.37 eV) [39–41] and those of AZO films (3.25–3.51 eV) [4,5], depicting that
the remarkable effect of bandgap enlargement by Mg doping.



Coatings 2020, 10, 708 7 of 12Coatings 2020, 10, x FOR PEER REVIEW 7 of 12 

 

300 400 500 600 700 800

0

20

40

60

80

100 (a)

(e)

 (e) 100 W   Tavg= 93.2 %
 (d) 75 W    Tavg= 93.7 %
 (c) 50 W    Tavg= 90.6 %
 (b) 25 W    Tavg= 90.7 %
 (a) 0 W      Tavg= 89.6 %

 

 

Tr
an

sm
itt

an
ce

 (%
)

Wavelength (nm)

(a)
(b)

(c)
(d)

300 400 500 600 700 800
0

20

40

60

80

100
(b)

 

 

Tr
an

sm
itt

an
ce

 (%
)

Wavelength (nm)

 (e) 100 W   Tavg= 93.8 %
 (d) 75 W    Tavg= 94.4 %
 (c) 50 W    Tavg= 92.9 %
 (b) 25 W    Tavg= 92.6 %
 (a) 0 W      Tavg= 90.2 %

(e)

(a)
(b)

(c)
(d)

 

Figure 3. Optical transmission spectra for the studied film (a) as-deposited state and (b) post-annealed 
at 600 °C. 

The corresponding energy at the onset of this rapid change in the absorption is defined as the 
optical energy bandgap, Eg [35,36]. To calculate the bandgaps of the films, the absorption coefficient 
was assumed corresponding to the direct bandgap of wurtzite structured Mg-doped AZO. Plots of 
(αhν)2 against the photon energy hν, i.e., Tauc’s model equation, where α is the absorption coefficient, 
h is the Plank’s constant, and v is the photon frequency [37,38], are shown in Figure 4. Sharp 
absorption edges shifted to a blue light region for the high Mg-doped AZO film, implying an increase 
in the bandgap energy. The optical bandgap energies determined from the obtained absorption 
spectra were from 3.33 to 3.54 eV for the as-deposited Mg-doped AZO thin films, as shown in Figure 
4a, showing that it increased linearly with increasing Mg dopant concentration. After annealing at 
600 °C, the bandgap further increased with increasing Mg concentration from 3.62 to 3.75 eV, as 
shown in Figure 4b. The obtained results show that the bandgap of Mg-doped AZO thin films is 
larger than that of pure ZnO thin film (3.27–3.37 eV) [39–41] and those of AZO films (3.25–3.51 eV) 
[4,5], depicting that the remarkable effect of bandgap enlargement by Mg doping. 
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The widening bandgap by Mg doping in AZO also suggests that Mg is successfully incorporated
into the wurtzite ZnO matrix, replacing Zn lattice sites, due to the electronegativity effect and the small
difference between the ionic radius. Furthermore, annealing the sample also widens the bandgap of the
studied films. Thus, this study shows that the bandgap of AZO thin films can be enlarged through Mg
doping for the film deposited by sputtering using metallic targets, whereas the transmittance of AZO
films can also be improved simultaneously by Mg doping. The improvement makes the Mg-doped
AZO thin film a potential material for applications in optoelectronics UV-light devices.
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Figure 4. The (αhν)2 versus hν plots of the studied films (a) as-deposited state and (b) isothermally
annealed at a temperature of 600 ◦C.

Using the Vegard’s law EgMg:AZO = (1 − x) EgAZO + x EgMgO and taking EgAZO = 3.33 eV for the
as-deposited film, 3.62 eV for the 600 ◦C-annealed film (Figure 3), and EgMgO = 7.8 eV [28,42] reported
previously, the expected variation of the energy band gap of the studied Mg-doped AZO films are
consistent with those of the Eg obtained, as shown in Figure 5. Figure 5 also summarizes some of the
results reported previously to demonstrate most of the measured bandgap in AZO films prepared by
various processes. As shown, Eg of the as-deposited Mg-doped AZO in this study is comparable to
the AZO, suggesting that poor crystallinity of the as-deposited film indeed affects the Eg. However,
600 ◦C-annealed Mg-doped AZO films have a higher Eg than that of the as-deposited state because the
incorporated Mg atoms substitute part of the Zn lattice sites, and, thus, enlarge the bandgap energy of
the AZO film. Notably, the Vegards’s law needs to be modified with a bowing parameter in terms of
EgMg:AZO = (1 − x) Eg AZO + x Eg MgO − bx (1 − x), where b is bowing parameter [43,44]. Since the
modification from the bowing parameter is ~0.07 eV for the composition range studied due to lattice
distortion and charge exchange by alloying of the ZnO crystal [13], the Eg predicted by Vegard’s law
due to modification of the bowing parameter should be negligible.
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3.4. Surface Morphologies of the Mg-Doped AZO Films

Figure 6 shows the surface morphologies of the representative films before and after annealing at
600 ◦C. The surface morphology of the as-deposited AZO film is shown in Figure 6a, wherein the film
remained smooth after the annealing (inset in Figure 6a). As observed, no obvious grain boundary
can be found on the surface of the film, suggesting that the grain is too small to be observed. Surface
morphologies of the as-deposited 1.2 at.% Mg-doped AZO film and the film annealed at 600 ◦C are
shown in Figure 6b, indicating that the films also remained smooth. The as-deposited AZO film had a
small Ra of 2.3 nm and the annealed film had a Ra of 4.4 nm due to grain growth after the annealing,
as AFM images shown in Figure 7a,b, respectively. The 1.2 at.% Mg-doped AZO film also had a smooth
surface both for the as-deposited state, with a Ra of 3.4 nm (Figure 7c), and that being annealed at
600 ◦C, with a Ra of 5.3 nm (Figure 7d). The films have a smooth surface both on the as-deposited state
and those isothermally annealed at 600 ◦C, which is in terms an essential factor for applications in
TCOs industry.
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4. Conclusions

Structural, optical, and electrical properties of Mg-doped AZO films prepared by the reactive
co-sputtering method, using metallic targets of Mg and Al–Zn, were systematically investigated. Mg
doping increased effectively in the bandgap energy of AZO from 3.62 to 3.75 eV. Besides, optical
transmittances of all the films were over 90% in the visible light region, and all films showed a sharp
absorption edge in the UV region. Meanwhile, Mg-doped AZO (002) preferential orientation still
preserved after the 600 ◦C-annealing, demonstrating that dopant of Mg has substituted part of the Zn
lattice site. The 1.2 at.% Mg-doped AZO film had the lowest electrical resistivity of 7.9 × 10−4 Ω·cm,
the optical transmittance of 92.6% in the visible light range, and bandgap of 3.66 eV when the film
was annealed at 600 ◦C. The results demonstrate that a superior transparent conductive Mg-doped
AZO film can be deposited using metallic targets. This study may provide insight into a potential
application of the Mg-doped AZO film as a transparent conducting oxide.
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