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Abstract: This study presents the theoretical investigation of a roll-over thin layer formation under
the lubrication approximation theory. The set of differential equations derived by lubrication
approximation is solved by the optimal homotopy asymptotic method (OHAM) to obtain precise
expressions for pressure and velocity gradients. Critical quantities such as velocity, pressure gradient,
and coating layer depth are numerically estimated. The impact of parameters affecting the coating and
layer formation is revealed in detail. Results indicate that the transport properties of the higher-grade
fluid play an essential role in regulating velocity, pressure, and the final coated region. Moreover,
couple stress effects on the properties of fluid particles to be coated on roller-surface have also
been studied.

Keywords: roll-over-web coating; couple stress fluid; lubrication approximation theory; optimal
homotopy asymptotic method (OHAM)

1. Introduction

Roll-coating is a technique in which liquid is allowed to flow over a sheet/web to form
a micro-nano scale thin layer coating over a surface. The main objective of the thin layer coating is to
improve the quality, service life, and efficiency of the surface. As a result of its practical advantages
and application, the coating is extensively used at the industrial level. It is mostly involved in
various processes such as the production of paper, paperboard, cellulose thin films, plastic coatings,
fibrous fabric sheets, metallic foils, etc. Most of the materials used during the roll-coating process are
non-Newtonian fluids, which exhibit either viscoelastic or pseudoelastic behavior [1,2].

Greener and Middleman [3] conducted the theoretical analysis on roll-coating under the
assumption of a small roll curvature and discussed the case when both roll and sheet are at the
same speed. For a Newtonian fluid, they obtained the exact expression for film thickness and pressure
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distribution under the approximation of lubrication. For viscoelastic and power law fluids they also
numerically computed film thickness, pressure, and roll-separating force. Coyle et al. [4] solved the
complete Navier-Stokes equations by finite element method, compared the results of the approximation
lubrication model, and observed that the lubrication model was accurate only for high capillary
number with low surface tension. Hintermaier and White [5] studied the movement of water between
the two rollers by adding a lubricating pattern, and their measured approaches were close to their
experimental findings. Benkreira et al. [6–9] examined the coating flows for Newtonian and different
non-Newtonian fluid models theoretically and experimentally. Sofou and Missoula [10] investigated
the roll over-web coating flow numerically using the power lubrication theory, Bingham plastics, and
Hershel–Bulkley models. Zahid et al. [11] investigated the roll coating process using a third-grade fluid
lubrication approximation and numerically estimated all the important properties. Zahid et al. [12]
also theoretically investigated the second grade fluid roll coating process by taking both the roller
and sheet as porous. It is assumed that the rate of fluid entering the roller surface is equal to the rate
of fluid leaving across the surface of the web. Ali et al. [13] studied the web-coating technique for a
couple stress fluid by using the lubrication approximation theory. Moreover, they measured all the
essential properties such as pressure gradient, pressure, velocity, roll-separating force, power input,
and velocity. Compared the results with Newtonian fluid by reaching infinity to the couple stress
parameter. Gaskell et al. [14] used an optical sectioning procedure to study both the forward and the
reverse roll-coating process in meniscus fluid mechanics experimentally. A series of experiments were
conducted to calculate essential properties such as inlet flow rate, film thickness, meniscus location,
and pressure field. However, no attempt was made to measure the effects of couple stresses initiated
during the roll-over-web process through the optimal homotopy asymptotic method (OHAM).

Optimal homotopy asymptotic method is a semi-analytical approximate approach to solve
non-linear problems [15–20]. This technique is independent of any large/small parameters as compared
to other method of perturbation. This technique provides an appropriate approach to control the
approximation solution convergence and adjust the convergence regions when necessary. In this study,
OHAM is proposed and has been applied to roll-over-web process for high-grade fluid (HGF) flow.
The model of roll-web coating is taken from [12,21–23]. This manuscript is categorized in four sections.
In Section 1; the governing equation based upon roller-web approach is formulated. In Section 2;
computational remarks for solution based on OHAM are given. The results are discussed in Section 3,
narrating some cases as examples. Finally, whole work is summarized.

2. Materials and Methods

Consider a coating on a sheet of fluid with stress which is couple in state operation with isothermal
steady as shown in Figure 1. The radius of roll in cylindrical is R∗, with its anti-clockwise rotation
and with angular velocity ω∗. U∗2 = ω∗R∗ is its linear velocity. The movement of plate considered is
with uniform velocity U∗1 and in the direction of positive x-axis H0 is the width called as nip-region
between plate and roll. The melt polymer first bites the plane at x∗ = η∗b is the position where melted
polymer crosses the plane. For the consideration of flow in either sides in the parallel boundaries and
the nip region, the assumption H0

R∗ � 11 is made [1,13]. The above assumptions assure the validity of
theory of lubrication in nearby nip region.

For the velocity field in two-dimensions [u∗(x∗, y∗), ν∗(x∗, y∗), 0], the equations depicting the flow
of couple stress fluid which is incompressible, without taking into account the presence of body force
are given by [1,13]

∂u∗

∂x∗
= − ∂ν∗

∂y∗
(1)

ρ

[
u∗

∂u∗

∂x∗
+ ν∗

∂u∗

∂y∗

]
+

∂p∗

∂x∗
+ η

(
∂4u∗

∂x∗4
+

∂4u∗

∂y∗4

)
= µ

(
∂2u∗

∂x∗2
+

∂2u∗

∂y∗2

)
(2)

ρ

[
u∗

∂ν∗

∂x∗
+ ν∗

∂ν∗

∂y∗

]
+

∂p∗

∂y∗
+ η

(
∂4ν∗

∂x∗4
+

∂4ν∗

∂y∗4

)
= µ

(
∂2ν∗

∂x∗2
+

∂2ν∗

∂y∗2

)
(3)



Coatings 2020, 10, 691 3 of 16

with the appropriate boundary conditions

u∗(x∗, 0) = U∗1 (4)

u∗(x∗, h∗(x∗)) = U∗2 (5)

where ρ, p∗, µ and η represent the density, pressure, viscosity and momentum constant respectively.
Due to the requirement that at roll and sheet surfaces the couple stress must vanish, also microelement
rotational motion is absent near solid boundaries, the two more conditions are as follows [1,13]:

∂2u∗

∂y∗2
(x∗, 0) = 0 (6)

∂2u∗

∂y∗2
(x∗, h∗(x∗)) = 0 (7)

Here from the sheet, roll height is denoted by h∗(x∗)

h∗(x∗) =
x∗2

2R∗
+ H0 (8)

With the scales for x∗, y∗ and u∗

x∗ ∼ L∗c , u∗ ∼ U∗1 , y∗ ∼ H0 (9)

For velocity and pressure, their characteristic scales are [1,13]

L∗c =
√

2R∗H0 (10)

p∗ ∼

√
2R∗

H0

µU∗1
H0

(11)

Defining the non−dimensional variables as follows [1,13]:

x =
x∗√

2R∗H0
, y =

y∗

H0
, h(x) =

h∗(x∗)
H0

, u =
u∗

U∗1
, ν =

√
2R∗

H0

ν∗

U∗1
,

p =

√
H0

2R∗
H0

µU∗1
p∗, γ =

H0

l
(12)

With these variables, the Equations (1)–(3) become

∂u
∂x

= −∂ν

∂y
(13)

ReB
[

u
∂u
∂x

+ ν
∂u
∂y

]
+

∂p
∂x

+
1
y2

(
B2 ∂4u

∂x4 +
∂4u
∂y4

)
= B2 ∂2u

∂x2 +
∂2u
∂y2 (14)

ReB3
[

u
∂ν

∂x
+ ν

∂ν

∂y

]
+

∂p
∂y

+
B4

γ2

(
B4 ∂4ν

∂x4 +
∂4ν

∂y4

)
= B2

(
B2 ∂2ν

∂x2 +
∂2ν

∂y2

)
(15)

In the above equations, Re =
ρU∗1 H0

µ is Reynolds value, B =

(
H0/2R∗

)1/2

<< 1 is dimensionless

entity, γ = H0/l is the dimensionless couple stress parameter and l =
√

η/µ is the material constant.
Main velocity component u and pressure gradient dp/dx are determined in further analysis and

normal velocity component ν is not involved but can be computed using Equation (13) with known
value of u [1,13].
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Figure 1. Process of roll-coating with physical variables.

Here geometric parameter B =

(
H0/2R∗

)1/2

<< 1, from Equations (14) and (15)

0 = −∂p
∂x

+
∂2u
∂y2 −

1
γ2

∂4u
∂y4 (16)

0 = −∂p
∂y

(17)

From Equation (17), it follows

∂2u
∂y2 −

1
γ2

∂4u
∂y4 = P (18)

where P = dp
dx , and with

u(0) = 1, u(1 +
x2

2
) = U,

∂2u
∂y2 (0) = 0,

∂2u
∂y2 (1 +

x2

2
) = 0 (19)

Assume that U = 1 is the same speed of sheet and roll. The condition for faster speed of roll than
web is U > 1. In addition, U < 1 is the condition for above reverse case.

3. Results

In this section, we will apply the Optimal Homotopy Analysis Method to nonlinear ordinary
differential Equation (18). According to the OHAM, we can construct homotopy of Equation (18)
as follows:

(1− q)
{

1
γ2

d4u
dy4 + P

}
−
(

C1q + C2q2 + C3q3
){ 1

γ2
d4u
dy4 −

d2u
dy2 + P

}
= 0 (20)

We consider u as follows:

u = u0(η) + qu1(η) + q2u2(η) (21)
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Substituting value of u from (26) into (20), and some simplifications and rearranging based on
powers of q-terms, we have

q0 :
1

γ2
d4u0

dy4 + P = 0 (22)

q1 : −P− PC1 + C1
d2u0

dy2 −
1

γ2
d4u0

dy4 − C1
1

γ2
d4u0

dy4 +
1

γ2
d4u1

dy4 = 0 (23)

q2 : −PC2 + C2
d2u0

dy2 + C1
d2u1

dy2 − C2
1

γ2
d4u0

dy4 −
1

γ2
d4u1

dy4 − C1
1

γ2
d4u1

dy4

+
1

γ2
d4u2

dy4 = 0 (24)

q3 : −PC3 + C3
d2u0

dy2 + C2
d2u1

dy2 + C1
d2u2

dy2 − C3
1

γ2
d4u0

dy4 + C2
1

γ2
d4u1

dy4

− 1
γ2

d4u2

dy4 − C1
1

γ2
d4u2

dy4 +
1

γ2
d4u3

dy4 = 0 (25)

With the conditions from Equation (19)

u0(0) = 1, u0(1 +
x2

2
) = U u′′0 (0) = 0, u′′0 (1 +

x2

2
) = 0

we get from Equation (22)

u0(y) = − 1
192 (x2 + 2)

{
γ2Px8y + 8γ2Px6y− 8Px4yγ2

(
y2 − 3

)
+8x2

(
γ2Py

(
y3 − 4y2 + 4

)
− 24

)
+ 16

(
γ2Py4 − 2γ2Py3 − 24

+y
(

γ2P− 24U + 24
))}

and similarly with the conditions

u1(0) = 0, u1(1 +
x2

2
) = 0, u′′1 (0) = 0, u′′1 (1 +

x2

2
) = 0

we get u1(y) from Equation (23)

u1(η) =
1

23040
+ Py

{
− 3x10 − 30x8 + 20x6

(
y2 − 6

)
+ 120x4

(
y2 − 2

)
−48x2

(
5− 5y2 + y4

)
+ 32

(
− 3 + 5y2 − 3y4 + y5

)}
γ4C1.

Now for u2(y), with the conditions

u2(0) = 0, u2(1 +
x2

2
) = 0, u′′2 (0) = 0, u′′2 (1 +

x2

2
) = 0, u′′2 (0) = 0

u′′2 (1 +
x2

2
) = 0
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we get u2(y) from Equation (24)

u2(η) = − γ4Py
5160960

[
224
{

3x10 + 30x8 − 20x6
(

y2 − 6
)
− 120x4

(
y2 − 2

)
+48x2

(
y4 − 5y2 + 5

)
− 32

(
y5 − 3y4 + 5y2 − 3

)}
C1

{
17γ2x14

+238γ2x12 − 28x10
(

γ2(4y2 − 51− 24
)
− 280x8

(
γ2(4y2 − 17)

−24
)
+ 112x6

(
85γ2 + 2γ2y4 − 40(γ2 + 1)y2 + 240

)
+ 224x4

(
51γ2

+6γ2y4 − 40(γ2 + 3)y2 + 240
)
+ 128

(
17γ2 + γ2y7 − 4γ2y6 − 56y5

+14(γ2 + 12)y4 − 28(γ2 + 10)y2 + 168
)
− 64x2

(
− 7(17γ2 + 120)

+4γ2y6 − 42(γ2 + 4)y4 + 140(γ2 + 6)y2
)}

C2
1 + 224

(
3x10 + 30x8

−20x6(y2 − 6)− 120x4(y2 − 2) + 48x2(y4 − 5y2 + 5)− 32(y5 − 3y4

+5y2 − 3)
)

C2

]

Now, substituting the values in Equation (26), it gives

u(y) =
1

5160960

[
− 1

x2 + 2
26880

{
16
(

y(γ2P− 24U + 24) + γ2Py4 − 2γ2Py3

−24
)
+ γ2Px8y + 8γ2Px6y− 8γ2Px4y(y2 − 3) + 8x2

(
γ2Py(y3 − 4y2

+4)− 24
)}

+ 224Py
{
− 3x10 − 30x8 + 20x6(y2 − 6) + 120x4(y2 − 2)

−48x2(y4 − 5y2 + 5) + 32(y5 − 3y4 + 5y2 − 3)
}

γ4C1 − γ4Py
{

224
(

3x10

+30x8 − 20x6(y2 − 6)− 120x4(y2 − 2) + 48x2(y4 − 5y2 + 5)− 32(y5 − 3y4

+5y2 − 3)
)

C1 +

[
17γ2x14 + 238γ2x12 − 28x10

(
γ2(4y2 − 51)− 24

)
−280x8

(
γ2(4y2 − 17)− 24

)
+ 112x6

(
85γ2 + 2γ2y4 − 40(γ2 + 1)y2

+240
)
+ 224x4

(
51γ2 + 6γ2y4 − 40(γ2 + 3)y2 + 240

)
− 64x2

(
− 7(17γ2

+120) + 4γ2y6 − 42(γ2 + 4)y4 + 140(γ2 + 6)y2
)
+ 128

(
17γ2 + γ2y7

−4γ2y6 − 56y5 + 14(γ2 + 12)y4 − 28(γ2 + 10)y2 + 168
)]

C2
1 + 224

(
3x10

+30x8 − 20x6(y2 − 6)− 120x4(y2 − 2) + 48x2(y4 − 5y2 + 5)− 32(y5 − 3y4

+5y2 − 3)

)
C2

}]
(26)

Now finding the constants C1 and C2, we apply method of least squares as in [15–18]. With the
choice of P = −0.5; x = 0; U = 1. and with different values of γ, the values of constants are calculated
as shown in the Table 1.
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Table 1. Values of γ, C1 and C2.

P = −0.5; x = 0; U = 1.

γ C1 C2

2 −0.7117859161990184 0.22998908723027278
3 −0.5231969223195763 0.36317986919894485
4 −0.3816089014437683 0.4631762625722552
5 −0.2830976700342593 0.5327497179167221

Corresponding to these values of constants as in Table 1, the values of u(y) are calculated as
shown in the Equations (27)–(30).

u(γ=2) = 0.000402095y8 − 0.00160838y7 + 0.00763271y6 − 0.0172688y5

+0.0833333y4 − 0.139762y3 + 0.0672708y + 1 (27)

u(γ=3) = 0.00247461y8 − 0.00989845y7 + 0.0230332y6 − 0.034455y5

+0.1875y4 − 0.329123y3 + 0.160469y + 1 (28)

u(γ=4) = 0.00739684y8 − 0.0295874y7 + 0.0274518y6 + 0.0212005y5

+0.333333y4 − 0.736519y3 + 0.376724y + 1 (29)

u(γ=5) = 0.015529y8 − 0.0621158y7 − 0.0202685y6 + 0.278211y5

+0.520833y4 − 1.57782y3 + 0.845631y + 1 (30)

Now with the choice of P = 0.5; x = 0; U = 1. and with different values of γ, the values of
constants are calculated as shown in the Table 2.

Table 2. Values of γ, C1 and C2.

P = 0.5; x = 0; U = 1.

γ C1 C2

2 −0.7117859161990184 0.22998908723027278
3 −0.5231969223195763 0.36317986919894485
4 −0.3816089014437683 0.4631762625722552
5 −0.2830976700342593 0.5327497179167221

Corresponding to these values of constants as in Table 2, the values of u(y) are calculated as
shown in the Equations (31)–(34).

u(γ=2,P=0.5) = −0.000402095y8 + 0.00160838y7 − 0.00763271y6 + 0.0172688y5

−0.0833333y4 + 0.139762y3 − 0.0672708y + 1 (31)

u(γ=3,P=0.5) = −0.00247461y8 + 0.00989845y7 − 0.0230332y6 + 0.034455y5

−0.1875y4 + 0.329123y3 − 0.160469y + 1 (32)

u(γ=4,P=0.5) = −0.00739684y8 + 0.0295874y7 − 0.0274518y6 − 0.0212005y5

−0.333333y4 + 0.736519y3 − 0.376724y + 1 (33)

u(γ=5,P=0.5) = −0.015529y8 + 0.0621158y7 + 0.0202685y6 − 0.278211y5

−0.520833y4 + 1.57782y3 − 0.845631y + 1 (34)

Now with the choice of P = 0.5; x = 1; U = 1. and with different values of γ, the values of
constants are calculated as shown in the Table 3.
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Table 3. Values of γ, C1 and C2.

P = 0.5; x = 0; U = 1.

γ C1 C2

2 −0.5231969223195738 0.36317986919894657
3 −0.32775265538407 0.5012121806766487
4 −0.21519795933137797 0.5807038184075737
5 −0.1492838624605476 0.6272555811822184

Corresponding to these values of constants as in Table 3, the values of u(y) are calculated as
shown in the Equations (35)–(38).

u(γ=2,x=1) = −0.00021725y8 + 0.0013035y7 − 0.00454977y6 + 0.0102089y5

−0.0833333y4 + 0.219415y3 − 0.240703y + 1. (35)

u(γ=3,x=1) = −0.000971112y8 + 0.00582667y7 − 0.00263651y6 − 0.0340208y5

−0.1875y4 + 0.724492y3 − 0.85482y + 1 (36)

u(γ=4,x=1) = −0.00235226y8 + 0.0141136y7 + 0.0349543y6 − 0.268439y5

−0.333333y4 + 2.09y3 − 2.60454y + 1 (37)

u(γ=5,x=1) = −0.00431813y8 + 0.0259088y7 + 0.152332y6 − 0.889527y5

−0.520833y4 + 5.05125y3 − 6.48238y + 1 (38)

Now for determining the pressure, we have by [1]

λ =
∫ x2

2 +1

0
u dy (39)

After substitution the expression of u from Equation (26) into (39), gives

λ = − 1
185794560 (x2 + 2)

{
γ4P(x2 + 2)8

[
C1

{
C1

(
31γ2(x2 + 2)2 + 1224

)
+2448

}
+ 1224C2

]
+ 48384(x2 + 2)2

(
γ2P(x2 + 2)4 − 960(U + 1)

)}
which implies

dP
dx

=
(1/4)(1 + U)(2 + x2)− λ

Denominator

where

Denominator =
γ2 (x2 + 2

)5

3840
+

1
185794560

γ4
(

x2 + 2
)7
{

C1

[
C1(

31γ2(x2 + 2)2 + 1224
)
+ 2448

]
+ 1224C2

}
Now with the choice of U = 1, λ = 1.3 and with different values of γ, the values of constants are

calculated as shown in the Table 4.
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Table 4. Values of γ, C1 and C2.

U = 1, λ = 1.3

γ C1 C2

2 −0.5231969223195738 0.36317986919894657
3 −0.32775265538407 0.5012121806766487
4 −0.21519795933137797 0.5807038184075737
5 −0.1492838624605476 0.6272555811822184

Corresponding to these values of constants as in Table 4, the values of dP
dx are calculated as shown

in the Equations (40)–(43).

dP
dx (γ=2) =

(
171053.x2 − 102632

)[
1.x18 + 18.x16 + 142.086x14

+645.201x12 + 2034.58x10 + 5289.77x8 + 11479.x6 + 17671.7x4

+15796.5x2 + 6006.99
]−1

(40)

dP
dx (γ=3) =

(
38266.7x2 − 22960.

)[
1.x18 + 18.x16 + 142.086x14

+645.201x12 + 2034.58x10 + 5289.77x8 + 11479.x6 + 17671.7x4

+15796.5x2 + 6006.99
]−1

(41)

dP
dx (γ=4) =

(
15798.1x2 − 9478.86

)[
1.x18 + 18.x16 + 154.477x14

+818.681x12 + 3027.74x10 + 8282.14x8 + 16509.3x6 + 22180.8x4

+17529.9x2 + 6065.92
]−1

(42)

dP
dx (γ=5) =

(
8605.89x2 − 5163.53

)[
1.x18 + 18.x16 + 168.873x14

+1020.22x12 + 4217.39x10 + 12117.x8 + 23787.1x6 + 30287.1x4

+22411.6x2 + 7281.53
]−1

(43)

This segment represents how the couple pressure-parameter affects various quantities including
transport pressure gradient, load-carrying force, and power input.

To this end, Figures 2–8 are shown as plots. The outcomes of results are created by means of the
instrumental values involved in the thin layer formation phenomenon given in Table 1. Figures 2 and 3
gives us insight about the applied pressure gradient against the axial coordinate for diverse coupled
stress values. Three different regions may be recognized from the results, namely, upper stream,
middle nip section and downwards stream sections. In the upper stream and downwards sections of
graphs, velocity and transport is affected and obstacled whereas in the middle nip section the drag
flow is supported due to the poignant roller and sheet. The support or disagreement enhances as
coupled stress rises [23–27].

Figures 4 and 5 demonstrate that how the velocity is affected due the drag because of motion of
roll and substrate. So the speed of coating at this position exceeds one over the whole cross-section.
As the input values change, slopes of graphs change, showing how the factors have been affecting the
behavior. The slope shows that pressure is upbeat and as a consequence the speed at this position is
utmost at the joining section of roller and leaf. It is important and motivating to say that axial position
is less affected due to applied stresses and speed of roller [26–30].
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Figure 2. Values of u at different values of γ as shown in Equations (27)–(30).
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Figure 3. Values of u in varying domain values of y at different values of γ: (a) = 0, (b) = 1, (c) = 2,
(d) = 3, (e) = 4, and (f) = 5.
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Figure 4. Values of u at different values of γ as shown in Equations (31)–(34).
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Figure 5. Values of u in varying domain values of y at different values of γ: (a) = 0, (b) = 1, (c) = 2,
(d) = 3, (e) = 4, and (f) = 5.
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Figures 6 and 7 demonstrate values of u at different values of γ in varying domain values of y.
Figures 8 and 9 demonstrate the behaviour of dP

dx at different values of γ in varying domain values
of y . The slopes of pressure-curves in the mid region are going up because of sturdy applied stress.
In the upper stream and downwards sections of graphs, velocity and transport is influenced whereas
in the middle nip section the drag is supported due to the poignant roller and sheet. The support or
disagreement enhances as coupled stress rises. So the speed of coating at this position exceeds one
over the whole cross-section. Pressure slope is on a higher node and as a consequence the speed at this
position is utmost at the joining section of roller and leaf. It is motivating to say that axial position is
less affected due to applied stresses and speed of roller. From the Figures 8 and 9, it is clear that how
change in pressure is influenced by variations in values of γ. It is concluded that this combined stress
model provides better details in higher stress in the nip-section.
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Figure 6. Values of u at different values of γ as shown in Equations (35)–(38).
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Figure 7. Cont.
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Figure 7. Values of u in varying domain values of y at different values of γ: (a) = 0, (b) = 1, (c) = 2,
(d) = 3, (e) = 4, and (f) = 5.
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Figure 8. Values of dP
dx at different values of γ as shown in Equations (40)–(43).
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Figure 9. Values of dP
dx in varying domain values of y at different values of γ: (a) = 0, (b) = 1, (c) = 2,

(d) = 3, (e) = 4, and (f) = 5.

4. Conclusions

A theoretical investigation for thin layer formation of an applied stress liquid particles is carried
out is this study. In this study, the profiles of velocity and applied stress slope have been calculated.
This investigation represents how the coupled pressure effects on various quantities including transport
characteristics, pressure gradient, load-carrying force, and power input. The result demonstrate
responses due to applied stresses and their effects. Main findings of this study may be summarized as:

1. The transport properties are affected due to coupled-stress and velocity decreases because of
increase in applied couple stress.

2. The gradients of pressures in the mid region are going up because of sturdy applied stress.
3. In the upper stream and downwards sections of graphs, velocity and transport properties have

been influenced and affected largely in the middle nip section the drag flow is supported due to
the poignant roller and sheet.

4. The support or disagreement enhances as coupled stress rises. So the speed of coating at this
position exceeds one over the whole cross-section.

5. Pressure slope is upbeat and as a consequence the speed at this position is utmost at the joining
section of roller and leaf. It is interesting to say that axial position is less affected due to applied
stresses and speed of roller.
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