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Abstract: The multistage stimulation technology of horizontal wells has brought huge benefits to the
development of oil and gas fields. However, the completion string with packers often encounters
stuck due to the large drag in the horizontal section, causing huge economic losses. The local drag
of the completion string with packers in the horizontal section is very complicated, and it has not
been fully understood by theoretical calculations. A local drag experiment is designed to simulate
the influence of microsteps and cuttings on the local drag of the completion string with packers in
the inclined and horizontal sections. An obvious increase of the local drag of the packer is found
at microsteps of the horizontal section, and the local drag is greatly affected by the amount of sand.
In addition, the string with packers will vibrate during the tripping process in the deviated section,
and the local drag is different when different amounts of sand are in the hole, but the change law
is similar. The experimental results show that the friction coefficients of the packers with different
materials in the horizontal section vary greatly, resulting in different local drags. It indicates that
the local drag of the completion string not only depends on the microsteps and sand quantity in
the wellbore, but also on the material difference of the packers. Only if microsteps and cuttings are
removed can the completion string be tripped into horizontal wells smoothly.
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1. Introduction

The horizontal well technology has been maturely applied in the development of oil and gas fields,
and the extension record of horizontal wells has been continuously updated with the development
requirement and technological advancement [1–3]. With the development of the directional drilling
technology and measurement tools, many kinds of complex-structure wells have been drilled on
the basis of horizontal wells [4,5], such as U-shaped wells [6–8], multilateral wells [9–12], and steam
assisted gravity drainage (SAGD) wells [13].

With the advancement of the completion technology, more and more horizontal sections of
horizontal wells are not cemented and stimulated to increase production [14]. The stimulation
technique is commonly used in low permeability reservoirs [15,16], such as dolomite reservoirs [17] and
tight gas reservoirs [18]. There are many kinds of fracturing technology, and the acidizing fracturing is
the most effective one to bring the best stimulation results in many oil and gas fields [19–21]. However,
the completion string with packers (as shown in Figure 1) frequently gets stuck in the horizontal
section and fails to run into the bottom of the horizontal wells due to high drags, and the sticking
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accident is more likely to occur in these horizontal wells with long horizontal sections, resulting in
well abandonment and huge economic losses [22–24].
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Figure 1. Schematic of the completion string with packers in the horizontal well.

From the aspect of tubular mechanics, a great deal of theoretical research has been done about
the tripping ability of the completion string. According to the well trajectory, Wang [25] established
the frictional prediction models of the completion string according to the “rigid rod model” and “soft
rod model”, respectively, and created the mathematical solution method of the model to predict the
maximum running depth of the completion string. Based on the “rigid rod” model, the completion
tools, and wellbore size curvature, Cai [26] believed that the completion string sticking due to the large
overall friction can be controlled by optimizing the spacing of centralizers in the completion string.
Liu [27] established a friction model considering the completion string stiffness and packers, and
results of the case study showed that the borehole curvature and string combination structure are two
main factors affecting the tripping ability of the fracturing strings in horizontal wells. These researches
mainly focused on the overall stress analysis of the completion string under the assumption that the
borehole is smooth, and did not consider the local drag of packers and centralizers of the completion
string with a larger size in irregular horizontal intervals. Therefore, in many cases, completion strings
actually still got stuck even though the theoretical calculation is going well, and cannot be run into the
bottom of the horizontal well. However, the geometry of the actual wellbore is irregular and with
microsteps or keyslots in it due to the enlargement or shrinkage of the local open hole section [28],
which can be easily found from the log caliper, or the presence of downhole cuttings which have been
confirmed by lots of experimental and theoretical research [29–32]. These microsteps, cuttings beds,
and different types of packers with different materials, making the local drag of the completion string
with packers is very complicated. The local drag is very hard to be well studied through theory alone,
as a result, the actual drag of the whole completion string is quite different from the theoretically
calculated one.

To find the change characteristic of the local drag with relevant factors, and provide support for
the establishment of local drag models and determination of friction coefficients, simulation experiment
programs were designed. The local drag of the packer was tested under four kinds of horizontal open
hole states: Clean and regular wellbore, hole with microsteps, with cuttings, and with both microsteps
and cuttings. For the local drag of the completion string with packers in the cased deviated section,
experiments were conducted under three kinds of wellbore states: Wellbore without cuttings, with a
small amount of cuttings, and a large amount of cuttings. In addition, the local drag of the cement
column combined with the packer rubber cylinder and the hard plastic cylinder were tested.
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2. Materials and Methods

2.1. The Packer in the Horizontal Open Hole

In this experiment, a straight plexiglass tube (OD 240 mm, ID 220 mm, length 2 m) was used to
simulate the horizontal hole section, a packer rubber (OD 200 mm, length 0.56 m, weight 97 N) was
used to simulate a packer, and some river sand particles were used to simulate the downhole cuttings.
The packer rubber was placed in the horizontally placed plexiglass tube, and the local drag tests were
conducted by recording the axial force during pulling of the packer rubber in a horizontal open hole,
as shown in Figure 2a.

The shape, height, and position of actual microsteps in a horizontal section cannot be known
accurately, and they cannot be simulated and analyzed quantitatively by an experiment either, but the
drag change characteristics when the packer passes through the microsteps can be studied. The drag
tests in a horizontal open hole with microsteps can be conducted by fixing a piece of rubber in the
lower side of the plexiglass tube, as shown in Figure 2b.

In many cases, cuttings are left in the horizontal section and it will seriously affect the drag
of the completion string with packers, but it is impossible to predict and calculate the quantity of
the downhole cuttings accurately. In order to find the influence of downhole cuttings on the local
drag of the packer in the horizontal section, the experiments were conducted by putting some river
sand (OD 1.0–4.0 mm, bulk density 1.6 g/cm3) in the plexiglass tube with proper water under two
kinds of conditions: The borehole has little (about 500 g) and lots of sand (about 1600 g), as shown in
Figure 2c,d, respectively.
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microsteps are not needed to be considered in this cased section. Therefore, this simulation 
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Figure 2. Schemes of the packer in the horizontal open hole: (a) In a clean and smooth hole; (b) in a
hole with microsteps; (c) in a hole with little cuttings; and (d) in a hole with lots of cuttings.

2.2. The Completion String with Packers in the Deviated Cased Hole

When the completion string with packers passes through the deviated section, the local drag of
the packer will be influenced by the dogleg severity of the well trajectory and downhole cuttings, but
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microsteps are not needed to be considered in this cased section. Therefore, this simulation experiment
was specially designed to study the variation characteristics of the local drag. A metal pillar wrapped
by a packer rubber (OD 70 mm, length 0.1 m, weight 7.5 N) was used to simulate a packer, as shown in
Figure 3a, a deviated plexiglass tube (OD 100 mm, ID 90 mm, length 4 m, curvature radius 2 m) was
used to simulate the deviated wellbore, a PVC tube (OD 20 mm, ID 15 mm, length 4.5 m) to simulate
the completion string, and little and lots of river sand were used to simulate the downhole cuttings.
The packer rubber is placed in the bent plexiglass tube, and the drag test in the clean wellbore can be
conducted by recording the axial force during pulling of the packer rubber, as shown in Figure 3b.
Put some river sand (OD 1.0–4.0 mm, bulk density 1.6 g/cm3) into the simulated wellbore, and the
influence of little (about 600 g) and lots of (about 2000 g) sand on the local drag can be tested, as shown
in Figure 3c,d, respectively.
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packer; (b) the completion string with a packer in the deviated hole; (c) the deviated hole with little
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2.3. Packers with Different Materials in the Horizontal Section

The experiment programs were designed to study the local drag of packers with different materials,
and provide support to establish local drag models and to determine friction coefficients. A rubber
cylinder (OD 240 mm, ID 220 mm, length 0.56 m) was used to simulate the wellbore, a cement column
(OD 100 mm, length 0.16 m, weight 35 N) in Figure 4a was used to simulate a packer as shown, and
river sand (OD 1.0–4.0 mm, bulk density 1.6 g/cm3) was used to simulate downhole cuttings.

The cement column was put in the horizontally placed rubber cylinder, and the drag test in
the clean wellbore can be conducted by pulling the cement column and recording the friction force,
as shown in Figure 4b. The influence of cuttings on the local drag of the packer can be tested by putting
little (about 200 g) and lots of (about 500 g) river sand into the rubber cylinder, as shown in Figure 4c,d.

Finally, the cement column was placed in a hard plastic cylinder (OD 170 mm, ID 160 mm, length
0.56 m) to find the variation of experimental results of different material combinations.
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3. Results and Discussion

3.1. The Local Drag of the Packer in the Horizontal Open Hole

According to the experiment shown in Figure 2, many groups of the local drag test have been
done for the packer in the smooth horizontal open hole, and typical experimental results are shown in
Figure 5a, in the same way, the typical local drag results in the horizontal hole with microsteps are
shown in Figure 5b.
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The average value of each group of the experimental result is 54.51, 37.18, 42.93, and 42.66 N,
and the average value of these four groups is 44.32 N. Therefore, the average friction coefficient between
the packer rubber and the plexiglass is 0.4569 (44.32/97 N). It can be seen from Figure 5a that the drag
is strongly influenced by the packer’s moving speed. Since the loading method is not displacement
controlled with a uniform speed, the experimental value varies greatly from one group to another.
In an actual operation, the tripping speed of the completion string in the horizontal open hole section
also cannot be accurately controlled due to many factors, which is manifested by the obvious vibration
of the local drag of downhole packers. By comparing these three curves in Figure 5b, it can be found
that the drag increases significantly and forms a peak value, when the packer passes through the
microsteps in the horizontal section. The peak value will be more than 20% larger than the average
value of the stable stage, then the drag curve will be stable and smaller than that in the horizontal
section without microsteps. It can be found that the drag curve is relatively stable in the horizontal
section without microsteps.

The local drag of the packer in the horizontal hole has been studied under different sand contents,
namely, the hole with little and lots of cuttings separately. Test results are shown in Figure 6.
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Figure 6. Local drag results of the packer in the horizontal hole: (a) The hole with little cuttings; and
(b) the hole with lots of cuttings.

When there is a small amount of sand in the horizontal section, the drag curve has a downward
trend and it would be less than that in a clean wellbore without sand. The reason for the drag reduction
is the rolling effect of sand particles. The presence of a large amount of sand particles will cause an
increase tendency in the drag curve, drag results are greater than that in the clean wellbore without
sand, because of the accumulation effect of sand particles. Despite the fact that the large amount of
sand particles was added, the sticking phenomenon was not encountered in these experiments.

In order to find the influence of both cuttings and microsteps on the local drag of the packer when
it passes through the horizontal section, experiments were conducted by putting different amounts of
sand in the simulated wellbore with microsteps. Three groups of test results when a small amount of
sand in the wellbore and two typical groups when the wellbore has a large amount of sand are shown
in Figure 7.
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hole with little cuttings; and (b) the hole with lots of cuttings.

During the time that the packer passes through the horizontal section with microsteps and sand,
the drag increases significantly and forms a peak value when the packer contacts the microsteps,
but the formed peak is not closely related to the sand quantity. The drag peak of the packer in the
hole with sand is larger than that in the clean hole. The drag increases significantly after the peak
point if the wellbore has a large amount of sand, which is mainly due to the increased drag caused by
sand accumulation.

3.2. The Drag of the Completion String with Packers in the Deviated Cased Hole

According to the experiment program shown in Figure 3, the drag tests were performed for the
completion string with packers in the deviated cased hole. A typical drag curve of the whole process of
the completion string with a packer moves in the clean deviated section, as shown in Figure 8a. Stable
sections of six groups of typical drag curves are shown in Figure 8b.
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Figure 8. Drag results of the completion string with a packer in the clean deviated section: (a) A typical
drag curve of the whole moving process; and (b) stable sections of six groups of typical drag curves.

There are two consecutive “up-stable-down” processes in the drag curve of the completion string
with the packer when it passes through the clean deviated section, indicating that the tripping process
is unstable due to the vibrations of contact force and friction coefficient. It can be seen that the local
drag varies obviously in each curve, but their maximum values are relatively close to each other.
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The drag is the total friction force in each curve, and the average value of six groups is 13.63 N, but the
friction coefficient can only be obtained after calculating the total contact force.

Many groups of drag tests have been done in the deviated section with little sand particles. Due to
the different quantity and distribution of those sand particles, the drag curve of completion string with
the packer is various in different test groups, and a typical one is shown in Figure 9a. Since the drag
curve is not stable, only a small section near the maximum value in each test is taken and shown in
Figure 9b.
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Figure 9. Drag results of the completion string with a packer in the deviated section with a small
amount of sand: (a) A typical drag curve of the whole moving process; and (b) six groups of drag
section near the maximum value of the drag curve.

From Figure 9a, it can be found that the drag curve will reach its maximum value after a long
ascending section, and then without ascending and stable periods. It indicates that sand rolling can
reduce the friction force in the early stage of the moving process, and then this effect disappears.
The maximum drag value in each experiment group in Figure 9b is larger than that in the deviated
section without sand (13 N).

Many groups of drag tests of the completion string with the packer have been done in the deviated
section with a large amount of sand particles, and the drag curves depend on the quantity and
distribution of sand particles. A typical drag test curve is shown in Figure 10a. Since the drag curve is
unstable, and the drag sections around the maximum value are shown in Figure 10b.
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Figure 10. Drag results of the completion string with a packer in the deviated section with lots of sand:
(a) A typical drag curve of the whole moving process; and (b) six groups of drag section near the
maximum value of the drag curve.
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When there is a large amount of sand particles in the deviated section, the drag curve is similar
to that in the wellbore that has little sand, but the drag variation trend is obviously affected by sand
accumulation rather than sand rolling. The maximum drag value in each experiment group is greater
than that in the deviated section that has no or little sand. It can be seen that the drag curve varies
with sand quantity, and the maximum drag increases with the sand quantity, but the sticking was
not encountered.

3.3. The Drag of Packers with Different Materials in the Horizontal Section

Multiple groups of the local drag experiments have been conducted with the combination of the
rubber cylinder and the cement column, as shown in Figure 4. Two groups of typical drag results at
their early stages of test processes are shown in Figure 11a, and three groups of typical drag results at
their stable stage are shown in Figure 11b.
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Figure 11. Local drag test results of the cement column in the rubber cylinder: (a) A typical drag curve
at the early test stage; and (b) typical drag curves at the stable stage.

Due to the rough surface of the cement column, it can be found in Figure 11a that the drag
increases at the beginning of the moving process and then reaches a peak value, and then decreases to
a relatively stable level. Although the drag curve is different in each group, the peak value is nearly
the same and it is obviously larger than that at the stable stage in Figure 11b. The average value of
these three curves is 14.52 N, so the friction coefficient between the rubber cylinder and the cement
column is 0.415 (14.52/35 N). This large friction coefficient is caused by the rough surface of the cement
column and the relatively soft material of the rubber cylinder.

Four groups of typical drag results in the wellbore with a small amount of sand particles are
shown in Figure 12a. Drag curves change with the increase of the sand quantity in the wellbore, and
three drag curves are shown in Figure 12b. Drag curves when a large amount of sand is in the wellbore
are shown in Figure 12c. Finally, the drag curve when huge amounts of sand particles are in the hole is
shown in Figure 12d.
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Figure 12. Local drag test results of the cement column in the rubber cylinder with sand: (a) Little sand;
(b) more sand; (c) a large amount of sand; and (d) huge amounts of sand.

It can be seen from Figure 12b that the drag increases to reach a peak value and then keeps it,
which is mainly affected by the increasing sand accumulation in the wellbore. Figure 12c shows that
the drag further increases to form a peak value and then decreases, which is mainly affected by a lot of
sand particles accumulated in the wellbore. The main reason for the stable curve after the peak value
in Figure 12d is that huge amounts of sand particles are piled in the wellbore.

Figure 13a shows stable sections of three groups of typical drag curves of the cement column
in the hard plastic cylinder. When a small amount of sand particles are in the hard plastic cylinder,
local drag results in the early stage of the test process in each test group are shown in Figure 13b. If the
hard plastic cylinder has lots of sand particles, then local drag results of the cement column are shown
in Figure 13c.

It was found in Figure 13a that the drag curve decreases to a relatively stable level after its peak
value in each group, which is similar to the drag result of the cement column in the rubber cylinder.
The average value of these three groups is 9.23 N. Therefore, the friction coefficient is 0.2637 (9.23/35),
which is significantly smaller than that between the rubber cylinder and the cement column, which is
mainly due to the fact that the hard plastic cylinder is harder and with a smaller elastic deformation
than the rubber cylinder.

It can be found from Figure 13b that the peak value of these three curves are larger than that in
the clean wellbore, which shows the opposite experimental phenomenon when the cement column is
in the rubber cylinder. The possible reason for that is the sand particles’ various influence performance
in different combinations, resulting in a large friction coefficient of the cement column in the rubber
cylinder (the average experimental value is 0.415) and a smaller one in the hard plastic cylinder (the
average experimental value is 0.2637).

The results in Figure 13 demonstrate that the local drag curves of the cement column are different
in the hard plastic cylinder with a different sand quantity: Each drag curve with local fluctuation but
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overall stable tendency when the hard plastic cylinder has no sand particles; the overall trend of the
drag curve declines with the great fluctuation when the hard plastic cylinder has little sand particles,
but the peak value increases. The peak drag increases further when the hard plastic cylinder has lots of
sand particles, and the drag curve declines gently with little fluctuation after the peak.
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Figure 13. Local typical drag curves of the cement column in the hard plastic cylinder: (a) The hard
plastic cylinder has no sand particles; (b) the hard plastic cylinder has little sand particles; and (c) the
hard plastic cylinder has lots of sand particles.

4. Decisions

The above experimental results confirm that the microsteps and cuttings in the wellbore can have
a significant impact on the local drag of the completion string with packers. Therefore, it is necessary to
fully condition the borehole before the completion string trips in the horizontal well [33–35]. In severe
cases, special tools such as the watermelon milling cone and reamer are even used to completely
remove the microsteps in the wellbore and to create a smooth wellbore. In addition, RSS should be
recommended as the directional drilling tool in horizontal wells with long horizontal sections [36,37].

Although experiments have shown that the rolling effect of a small amount of sand can reduce
the friction between packers and boreholes, it is very easy to bring an additional local drag due to the
accumulation of downhole sand. Therefore, before the completion string enters the horizontal well,
the drilling fluid performance needs to be adjusted to meet the requirement of carrying cuttings [38–40],
and the drilling fluid lubricity should be improved to reduce the friction coefficient between the
completion string and the wellbore. In addition, it is necessary to use enhanced operation parameters
when pumping on and circulating the drilling fluid at the bottom of the well, such as high flow rate
of the drilling fluid and the rotation speed of the drill string [41,42]. Some special tools such as the
cuttings bed destructor are highly recommend with sufficient circulating time that can eliminate
cuttings effectively, so as to ensure the borehole is clean.
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5. Conclusions

A local drag experiment is designed to simulate the influence of microsteps and cuttings on the
local drag of the completion string with packers in the inclined and horizontal sections. An obvious
increase of the local drag of the packer is found at microsteps of the horizontal section.

Comparing without sand in the hole, if a small amount of sand particles is in the hole, then the
local drag of the rubber cylinder in the plexiglass and the cement column in the rubber cylinder will
be reduced, but the local drag of the cement column in the hard plastic cylinder will be increased.
The peak value in the local drag curve increases with the sand quantity, and the local drag will be
stable after the peak value.

If there is sand in the horizontal section, then the local drag of the packer increases significantly
and reaches its peak value when it passes through the microsteps of the horizontal section, and the
peak value is not related to the sand quantity.

The local drag of the completion string with packers is unstable in the deviated section without
sand. If there is some sand in the hole, then the local drag will reach its maximum value after a long
increasing process, and the maximum value increases with the amount of sand.

The experimental results show that the friction coefficients of the packers with different materials
in the horizontal section are quite different, resulting in different local drags. It indicates that the local
drag of the completion string not only depends on the microsteps and sand quantity in the wellbore,
but also on the material difference of the packers. Only if microsteps and cuttings are removed can the
completion string be tripped into horizontal wells smoothly.
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