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Abstract: The slip effect in wetting films is theoretically studied, and a nonlinear dependence of the 

hydrodynamic velocity on the slip length is discovered. It is demonstrated that the hydrodynamic 

flow is essentially affected by the presence of a nonuniform slip length distribution, leading also to 

enhancement of the energy dissipation in the films. This effect could dramatically slow the usually 

quick hydrodynamic flows over superhydrophobic surfaces, for instance. 
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1. Introduction 

The interest in thin liquid films has gradually increased from the middle of the previous century 

due to the importance of disperse systems—such as foams, emulsions and suspensions—to 

technology. The film studies split naturally into thermodynamic forces and hydrodynamic stability 

or rupture [1–3]. By the onset of nanotechnology in the present century, the flow in wetting films has 

attracted enormous attention as an essential process in the modern micro- and nano-fluidics [4–6]. 

An important aspect here is the violation of the classical no-slip boundary condition of 

hydrodynamics near solid surfaces [7]. This, and other effects, are especially significant on 

hydrophobic surfaces [8,9], repelling the water molecules. Nowadays, the engineering interest turns 

toward superhydrophobic surfaces, where the slip effect is even more pronounced [10,11]. Because 

such surfaces are intrinsically nonuniform, it is a challenge to develop a theory for the slip effect oven 

nonuniform surfaces. The existing models [12–14] are linearized for small slip length due to 

mathematical complications. The present study aims to explore the nonlinear effect of a nonuniform 

slip on a structured surface to the flow in thin wetting films. The complexity of the latter causes an 

increase in the energy dissipation, which is an important parameter to control during wetting, 

spreading, coating, etc. This could essentially affect some modern systems such as ionic liquids [15] 

and industrial polymers [16,17]. 

2. Wetting Film Hydrodynamics 

Let us consider a thin wetting film placed on a slippery solid surface at z = 0. The upper film 

surface at z = h is tangentially moving in the x-direction with a constant velocity u. In the frames of 

the relevant Reynolds lubrication approximation, the Stokes equations of hydrodynamics of 

incompressible fluids reduce to [2] 

0 +  =x x z zv v  

2

x z xp v =   

0z p =  

(1) 

where p is the local hydrodynamic pressure in the film of a liquid with dynamic viscosity η. 

Integrating the dynamic equations above—by employing the tangential boundary condition vx = u on 

the upper film surface—leads to an expression for the tangential hydrodynamic velocity in the film 
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2 2( ) / ( ) / 2x xv u z h u a z h p= + − + −    (2) 

where the nonuniform length a(x) is not specified, yet. Substituting Equation (2) in the Navier 

boundary condition vx = b∂𝑧vx, on the bottom solid surface [6], yields the pressure gradient: 

22 ( ) /x p u h b a ah = −  + − . (3) 

Here, b(x) is the slip length, which is nonuniform in general. If the latter is constant, there is no 

pressure gradient. In this case, a = h + b follows from ∂𝑥p = 0, and the velocity field (2) reduces to the 

Couette flow: 

( ) / ( )xv u z b h b= + +  (4) 

In the general case, substituting Equation (3) in Equation (2) results in 

2 2[ ( )( ) / ] /xv u z z h hz bz bh a h= − − + + . (5) 

To determine the length a, one should employ the normal boundary condition vz = 0 on both 

surfaces of the non-thinning film. Thus, integrating of the continuity Equation (1) yields 

0

0

h

x xv dz =  (6) 

Introducing here Equation (5) and performing the integration provides the functional a[b(x)]  

( )( 4 ) / ( 4 )a h b h b h b= + + +  (7) 

which is expressed by the surface-averaged slip length 𝑏̅ in such a way that the Couette expression 

(4) is recovered in the case of a uniform slip length b = 𝑏̅. Note that always 𝑎̅ = h + 𝑏̅. Thus, the 

pressure gradient ∂𝑥p = 6ηu(b − 𝑏̅)/h(h + 𝑏̅)(h + 4b) from Equation (3) depends nonlinearly on the slip 

length. Introducing Equation (7) back into Equation (5) yields the tangential hydrodynamic velocity: 

2 2[ ( )( )( 4 ) / ( )( 4 )] /xv u z z h hz bz bh h b h b h b h= − − + + + + +  (8) 

As expected, Equation (8) reduces to Equation (4) if b = 𝑏̅ everywhere. To visualize the tangential 

velocity, its relative vx/u is plotted in Figure 1 for a particular slip length model with 𝑏̅ = h. 

 

Figure 1. The relative tangential velocity vx/u at different height z/h for b/h = 1 + sin(kx). 
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As is seen, the tangential velocity is no more a linear function on the vertical position z as in the 

Couette flow. Due to the nonlinear dependence of the velocity on the slip length, the average velocity 

𝑣̅𝑥 will not depend merely on the average slip length 𝑏̅. The velocity on the bottom solid surface at z 

= 0, where the slip effect is most pronounced, is given by 

( 4 ) / ( 4 )( )xv ub h b h b h b= + + +  (9) 

It becomes uniform vx = u/(1 + h/𝑏̅) at the large slip length b > h/4. One can estimate the effect of 

the ratio h/𝑏̅ from the plot on Figure 2. 

 

Figure 2. The relative tangential velocity vx/u at z = 0 for b/𝑏̅ = 1 + sin(kx) at different h/𝑏̅. 

3. Hydrodynamics of Thicker Wetting Films 

The nonlinearity of Equation (8) is important for thinner films because it reduces to the Couette 

flow vx = u(z + b)/h at h > 4b. This is misleading, however, since the Reynolds approximation is no 

more valid for thick films, the Stokes Equation (1) should be rewritten as 

0x x z zv v +  =  

2 2( )x x x z xp v v =   +   

2 2( )z x z z zp v v =   +   

(10) 

Because the mathematical problem is much more complicated now, we are looking for an 

approximate linearized solution in the form: 

/x zv uz h b w= +   

z xv b w= −   
(11) 

which is valid for the relatively small slip length b. Substituting these expressions in Equation (10) 

leads to the following differential equation for the unknown velocity potential w: 
4 2 2 42 0x x z zw w w +   +  =  

4 2 2 42 0z q z q qw q w q w −  + =  
(12) 
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where the second equation is the Fourier transform of the first one. The relevant boundary conditions 

are wq = 0 and ∂𝑧wq = 0 on the upper surface at z = h, wq = 0 and 𝑏̅ ∂𝑧wq = ubq/h on the bottom surface 

at z = 0, where bq is the Fourier image of b(x) [14]. Note that due to the small slip length b the 

contribution of w on the right-hand side of the Navier condition vanishes. Thus, the exact solution of 

Equation (12) reads 
2

2 2

cosh( )sinh ( ) [( ) sinh( )cosh( )]sinh( )

sinh ( ) ( )

q

q

ub z qz qh z h qh z qh qh qz
w

hb qh qh

+ − −
=

−
 (13) 

Because h is larger now, the period of the slip length variations can be considered smaller than 

the thickness of the liquid film. Hence, one can simplify Equation (13) at qh > 1 to obtain 

exp( ) /q qw ub z qz hb= −  

2

2 2

( )

( )

uz b y
w dy

hb x y z



−

=
 − + . 

(14) 

The corresponding hydrodynamic velocity components from Equation (11) acquire the integral 

forms: 
2

2 2 2

2 ( ) ( )
{1 }

[( ) ]
x

uz x y b y
v dy

h x y z



−

−
= +

 − +  

2 2 2

2 ( ) ( )

[( ) ]
z

uz z x y b y
v dy

h x y z



−

−
=

 − +  

(15) 

As expected, vx = u(z + 𝑏̅)/h and vz = 0 in the case of a uniform slip length b = 𝑏̅. To estimate the 

effect of the slip nonuniformity, let us consider again the periodic model b/𝑏̅ = 1 + sin(kx), where the 

hydrodynamic velocities (15) acquire the periodic expressions: 

( ) / sin( )(1 )exp( ) /xv u z b h ub kx kz kz h= + + − −  

cos( ) exp( ) /zv ub kx kz kz h= −  
(16) 

The corresponding mean velocities 𝑣̅x = u(z + 𝑏̅)/h and 𝑣̅z = 0 describe an averaged Couette flow. 

This is also the case at z = 0, where vx = ub/h depends linearly on the slip length due to the used 

linearization of Equation (9). Substituting Equation (16) in Equation (10) yields the pressure 

distribution in the film in a periodic form as well, with a zero-mean value: 

2 cos( )exp( ) / 2 /zp ubk kx kz h v z=  − =   (17) 

Using it, one can calculate the additional energy dissipation in the wetting film due to the 

nonuniform distribution of the slip length 

2( / ) exp( 2 )x x z zv p v p ubk h kz−  −  =  −  (18) 

As is seen, it is negligible near the upper film surface, while at the bottom slippery surface it 

depends strongly on the slip nonuniformity via the wave vector k. Note that for a uniform slip with 

k = 0 the energy dissipation vanishes, which is typical for the Couette flow due to the lack of pressure 

gradient. 

4. Conclusions 

Due to complexity of the thin liquid film hydrodynamics, the flow in wetting films depends 

nonlinearly on the slip length on the film surfaces. This effect becomes very important in the case of 

a nonuniform slip length distribution, which dramatically changes the flow profile in the film. As a 

result, the energy dissipation increase could prevail over the uniform friction in the case of very 

structured surfaces, such as the superhydrophobic ones. Traditionally, the latter are considered as 

almost frictionless due to the entrapped air, but according to our analysis the distribution of the slip 

length could change the energy dissipation significantly. 
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