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Abstract: The Fe-Cr-C coatings with different levels of Nb addition were prepared on carbon steel
by a plasma transferred arc (PTA) weld-surfacing process and their microstructure and properties
were investigated. As the Nb content increases from 8.96% to 12.55%, the coating gradually changes
from a hypereutectic structure (martensite, austenite matrix, primary NbC and eutectic γ+M7C3)
to a near eutectic structure (γ+M7C3 and NbC) and finally a hypoeutectic structure (primary γ,
γ+M7C3 and NbC). As the Nb content increases, the hardness and wear resistance of the coating first
increase and then decrease, which is closely related to the NbC volume fraction first increasing and
then the NbC size coarsening. The Fe-Cr-C coating with 11.65% Nb balances the NbC content and
size, and has the highest hardness and best wear resistance. As the Nb content increases further,
the formation and aggregation of coarse NbC carbides in the coating results in high brittleness of
the coating, which may cause the carbide particles to peel off the coating during the wear process,
thereby reducing wear resistance.
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1. Introduction

There are four main types of engineering component failures, namely fracture, corrosion, wear and
deformation. Wear accounts for 55% of the total failures, and abrasion accounts for 20% of wear
failures [1]. This highlights the importance of studying abrasive wear solutions. Generally, surface
modification technology is applied to improve the surface properties of engineering components [2–6].
In surface treatments, usually a suitable powder and a thin surface layer of Fe-based melt are
simultaneously and rapidly solidified to produce a compact coating with good metallurgical bonding
to overcome surface degradation mechanisms [7].

In order to further improve the wear resistance of Fe-based alloys under severe working conditions,
researchers have explored the properties of Fe-Cr-C hardfacing alloys reinforced by the precipitation
of MC type carbides [8–13]. Compared to other MC type carbide-forming elements, niobium (Nb)
is the strongest carbide-forming element and can combine with carbon in the hardfacing alloy to
form granular carbides with high hardness. On the other hand, formation of these carbides reduces
the carbon concentration in the matrix of the hardfacing alloy, which is favorable for improving
the toughness. Some meaningful and interesting results have been reported in this area [14–19].
For example, Zhang et al. [20] investigated the effect of Nb content on the microstructure of Fe-Cr-C
coatings, and discovered that Nb can not only promote the formation of equiaxed grains, but also
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make the microstructure become finer. Correa et al. [21] indicated that the excellent properties of
hypereutectic Fe-Cr-C-Nb hardfacing alloy deposited by the open arc welding process can be attributed
to the presence of fine primary NbC carbide, which randomly disperses in an eutectic matrix γ/M7C3.
Chung et al. [22] investigated the influence of Nb addition on a hypereutectic alloy system, and they
concluded that the final microstructure evolves from hypereutectic to eutectic and hypoeutectic with
increasing of Nb contents. Moreover, fine NbC carbides result in superior hardness and wear resistance
of the eutectic microstructure.

It is found that increasing Nb content (above 0.71 wt.%) promotes the formation of MC carbides,
increasing the wear resistance [23]. Although some progress in the study of the influence of Nb
on coatings has occurred, the effect of different niobium contents on the microstructure and wear
properties of Fe-Cr-C hardfacing alloys still lacks in-depth research. The focus of the present work is to
understand the effects of Nb contents in the coatings on the formation mechanism and distribution
characteristics of the microstructure and the wear resistance of coatings with the different Nb contents.

2. Materials and Methods

2.1. Materials and Equipment

Commercial low-carbon steel (ASTM A283 [24]) sheets with a chemical composition of
Fe-0.18C-0.35Mn-0.3Si- < 0.04S- < 0.04P (in wt.%) were chosen as the substrate material. Specimens with
a size of 100 mm× 80 mm× 12 mm were cut using a wire-electrode cutting machine. Plasma transferred
arc (PTA) welding was employed to deposit coatings on the sheet specimens. The composition of the
mixed powder used for the PTA treatment was as follows: Fe-66.7%Cr powder, Fe-60%Nb powder,
Fe powder (99.0% purity) and graphite (99.5% purity). All the powders were commercially available gas
atomized powders and had a spherical shape with a diameter of 75–180 µm. The mixed powders were
spread evenly on the sheet specimens. By adjusting the mixed powder ratio (changing the proportion
of the Fe-50%Nb content), five kinds of Fe-12Cr-xNb-4C coatings were obtained. The thickness of the
coatings was designed to be about 3 mm. The actual chemical composition of the coatings was tested
and the results listed in Table 1.

Table 1. Chemical composition (in wt.%) of various hardfacing coatings.

Sample Cr Nb C Fe

Alloy A 12.34 8.96 3.40 Bal.
Alloy B 12.01 9.86 3.71 Bal.
Alloy C 12.06 10.75 4.01 Bal.
Alloy D 12.11 11.65 4.32 Bal.
Alloy E 12.29 12.55 4.63 Bal.

A plasma powder surface hardening device (DML-V02BD, Shanghai Duomo Industry Co., Ltd.,
Shanghai, China) was used for the PTA treatment. The PTA processing parameters were as follows:
welding current 160 A, voltage 30 V, arc longitudinal movement speed 0.05–0.25 cm/s, arc lateral
oscillation frequency 0.35 s−1, arc lateral oscillation width 2.0 cm, arc-workpiece distance 3 mm,
flow rate of Ar gas 15 liter/min. Additionally, prior to PTA treatment, the samples were ground using
silicon carbide papers from 120# to 800#, and then cleaned with acetone. Meanwhile, in order to
increase the adhesion between the mixed powders and the steel, so that the powders are not easily
peeled from the steel surface, a small amount of sodium silicate was added to the mixed powders to
increase the viscosity of the powder.

2.2. Characterization

A field emission gun scanning electron microscope (FEG-SEM, Nova400, FEI, Hillsboro, OR,
USA) equipped with an energy dispersive spectroscopy detector (EDS, Aztec, Oxford Instruments,
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High Wycombe, UK) was employed to characterized the microstructure and element distribution of the
PTA coatings. The phase components of the coatings were determined by X-ray diffraction experiments
(XRD, CuKα, Bruker D8, Bruker AXS GmbH, Karlsruhe, Germany) with the Cu-K radiation at 40 kV
and a measuring step of 4◦/min. Prior to the characterization, the samples were ground using SiC
papers from 800# to 2000#, and then mechanically polished with 3 µm of water-based diamond
suspensions on napless clothes.

Hardness tests were performed on a Rockwell hardness tester (HRD-150, Henwall Tech Co., Ltd.,
Laizhou, China), and five points were tested for each sample. Abrasive wear properties were measured
by a rubber wheel abrasion machine (MLS-23, Yihua Tribology Testing Technology Co., Ltd., Jinan,
China). The total weight of the quartz sand was 1.5 kg, and the particle size was about 300–500 µm.
The testing parameters were as follows: roller diameter 150 mm, rolling speed is 4 r/s, surface pressure
of the roller 1.5 MPa, duration time 10 min. Each sample was tested for three times, and the average
weight loss value was calculated as the final result.

3. Results

3.1. Phase Composition of the Coatings

Figure 1 shows the XRD spectra of PTA coatings with different Nb contents. It can be seen that
although the alloy composition of the five coatings is different, the coating phases are mainly composed
of austenite (γ), martensite (M) and alloyed cementite of (Fe,Cr)7C3 and NbC carbides. However,
as the Nb content increases, the relative content of the various phases varies significantly. When the Nb
content is relatively low (≤10.75%, see Alloys A, B, and C in Figure 1), the strongest diffraction peaks
are located at 44.484◦, close to the 110 peak of the M phase and the 211 peak of the (Fe,Cr)7C3. As the
Nb content exceeds 10.75%, the strongest diffraction peak changes to the 111 peak of the NbC located
at 34.605◦ (see Alloys D and E in Figure 1), indicating that the volume fraction of the NbC increases
with increasing Nb content. Meanwhile, as the Nb content increases, the intensity of the 200 and 211
diffraction peaks of the M phase decreases, while the intensity of the 200 diffraction peak of the γ phase
increases, meaning that the relative contents of M and γ are reduced and increased, respectively.
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Figure 1. XRD spectra of various coatings with different levels of Nb addition.

3.2. Microstructure of the Coatings

Figure 2 shows optical micrographs observed from the cross-sectional view of Alloy A and Alloy
B samples. Crack-free coating, interface and steel substrate can be clearly identified, as shown in
Figure 2a,b. The high-magfication images (see Figure 2(a1,b1)) show that the interface is actually a
transition-layer/bonding band formed between the coating and the steel substrate, owing to planar
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growth at the bottom of the molten pool of the coating. It is the presence of this transition-layer/bonding
band that ensures an excellent metallurgical bond between the coating and the substrate. It is considered
that the transition-layer/bonding band is favorable to alleviate the stress between the reinforced coating
and the steel substate, which is expected to improve the fracture toughness of the coating and the
substrate as a whole [25]. In the coating of alloy A, as shown in Figure 2(a2), white bright carbide
particles randomly distributed can be clearly seen, which have a flower-like or polygonal shape.
Acording to the XRD results (see Figure 1), such paricles are considered to be NbC. With Nb increases
from 8.96% to 12.55%, in addition to the white bright carbide particles, a typical eutectic structure is
also observed, as shown in Figure 2(b2). This eutectic structure with alternating plates/rods is likely to
be γ and alloyed M7C3 acording to the XRD results.
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Figure 2. Optical micrographs observed from cross-sectional view of Alloy A (a) and Alloy E (b).
(a1, a2, b1, b2) are the corresponding high-magnification images of the local areas within a and b, respectively.

Figure 3 shows the microstructure of various coatings with different Nb contents. When the
Nb content is low (8.96%), as shown in Figure 3a, two types of carbides with different morphology
can be easily distinguished: bright white carbides with flower-like or polygonal shapes and cellular
carbides. Point analysis was performed using the EDS technique to determine the composition and
phase of carbides. The analysis results are collected in Table 2. They show that the white bright
carbides are rich in Nb (approximately 76.41%), indicating that these particles are the Nb-rich MC
type carbides (see point a1 in Figure 3a and Table 2), while the cellular particles are the (Fe,Cr)7C3

type carbide (see point a2 in Figure 3a and Table 2) surrounded by the γ phase. Combined with the
XRD results, it can be inferred that the coating has a typical hypereutectic structure composed of a
primary NbC, eutectic product of γ+(Fe,Cr)7C3. Comparing Figure 3b,c to Figure 3a, it can be seen
that even when the Nb content is increased to 10.75%, there is no significant change in the morphology
and microstructure of the coating. When the Nb content increases to 12.11%, the microstructure
of Alloy D exhibits a near-eutectic characteristic (see Figure 3d), which is mainly composed of the
network eutectic constituents and NbC carbides. EDS analysis indicates that the network eutectic
structure is composed of eutectic γ+M7C3 (see point d2 in Figure 3d and Table 2). However, as the
concentration of Nb increases, the near-eutectic structure is replaced by a hypoeutectic structure
(Figure 3e). The EDS analysis and XRD results comprehensively indicate that the microstructure of
Alloy E mainly consists of the primary γ, the eutectic structures of γ+M7C3 (see point e2 in Figure 3e
and Table 2) and a large amount of coarse dendritic white NbC carbides (see point e1 in Figure 3e
and Table 2). Adjacent eutectic structures are interwoven to form the networked structures. During
the solidification process, the primary NbC precipitates firstly from the liquid at high-temperature.
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With further cooling, the primary NbC carbides grow continuously, meanwhile the eutectic structures
of γ+M7C3 precipitate from the remaining liquid phase.
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Figure 3. SEM images showing microstructure observed from the surface of various coatings with
different Nb additions: (a) Alloy A; (b) Alloy B; (c) Alloy C; (d) Alloy D; (e) Alloy E.

Table 2. EDS results of the points within Figure 2.

Sample Position
Content of Components (wt.%)

Nb Fe Cr C

Alloy A a1 76.41 12.65 3.13 7.82
a2 0.00 76.82 16.94 6.23

Alloy D d1 79.82 4.12 2.23 13.83
d2 0.00 65.8 27.5 6.7

Alloy E e1 81.23 3.44 1.02 14.31
e2 0.00 57.82 20.67 21.51

Nb is a very strong carbide-forming element, its melting temperature is very high (3500 ◦C) and
has a large negative enthalpy of reaction [26]. Therefore, the formation of niobium carbides is expected
to occur in the liquid phase during cooling, which reduces the carbon content in the liquid, thus shifting
the structure of the base alloy from a hypereutectic state, through eutectic one, to hypoeutectic one with
NbC embedded carbides. Filipovic et al. [27] have demonstrated that by increasing the Nb content
in Fe-Cr-C-Nb systems, NbC carbides begin to precipitate first during solidification. The formation
of NbC carbides reduces the carbon content of the remaining liquid phase, thereby promoting the
formation of the hypoeutectic structure. Additionally, it has been reported that the early precipitation
of NbC carbides may promote heterogeneous nucleation and pin austenite grain boundary migration
to refine the austenite structure, which is a typical approach used to obtain structure refinement in
microalloyed steels [22]. It can also be seen from Figure 3 that the amount of NbC carbides increases
with increasing Nb content. This is because as Nb content increases, the nucleation rate of primary
carbides increases, resulting in a larger volume fraction of NbC. In some local areas, carbides are closely
packed together to form the coarse NbC clusters, which may adversely affect the performance of the
coating, e.g., reducing toughness.

Figure 4 presents the higher magnification images of the typical hypereutectic microstructure
of Alloy A, near-eutectic of Alloy D, and hypoeutectic of Alloy E. The NbC shape is polygonal and
flower-like in the microstructure of Alloy A, NbC has two forms in the microstructure of Alloys D



Coatings 2020, 10, 585 6 of 11

and E: long strip and cross dendrite. It is considered that the morphology of NbC is related to the
relative content of Nb and C of the coating. When the contents of Nb and C are low, the primary NbC
is relatively small, and the shape of NbC is mainly polygonal having the feature of planar growth.
The radius of curvature at the corner of the polygon NbC is small, which makes the concentration of
Nb and C higher and has a faster growth rate, thereby rowing into the flower-like shape. When the
content of Nb and C increases, due to the anisotropy of the surface tension and the anisotropy of
growth dynamics of carbides [28], NbC tends to grow into the cross-dendritic or long strip shape.
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Figure 4. SEM images of the surface of the coatings with (a) 10.75% Nb-hypereutectic, (b) 11.65%
Nb-near eutectic (c) 12.55%Nb-hypoeutectic.

From Figure 4, it also can be found that the volume fraction of the eutectic regions increases
gradually with increasing Nb content. Cr and Nb can reduce the austenite phase region. That is,
the eutectic line moves to the lower C content side, resulting in an increase in the volume fraction
of the eutectic colonies. Therefore, the simultaneous addition of Cr and Nb leads to increase in the
eutectic content of the coatings [18]. Moreover, the presence of MC type carbides have been reported
to be more effective in increasing abrasive wear resistance than either raising the eutectic M7C3 content
or increasing the width of the M7C3 eutectic carbide particles [29]. It is believed that the increase in
NbC is beneficial to improve the wear resistance of the coatings.

Figure 5 shows the element distribution in the microstructure of Alloy E. Clearly, the maximum
Nb concentrations can be seen at the NbC sites. Moreover, the NbC sites are essentially free of Fe
and Cr. Kesri and Murand-Charre [30] have reported that the NbC carbide does not contain any
substitutional elements, and only a very small amount of Nb can be dissolved into M7C3 carbides.
Additionally, the maximum Cr concentrations can be seen in the eutectic network around the primary
austenite dendrites, owing to low solubility of Cr element in the austenite phase [18]. Fe is mainly
concentrated on the primary austenite dendrites.
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3.3. Hardness and Wear Resistance

Rockwell hardness and mass loss (during wear testing) plotted as a function of the Nb content of
the coating are shown in Figure 6. It can be seen that the hardness of the coatings increases firstly and
then decreases, while the mass loss decreases firstly and then increases with increasing Nb content. It is
well known that the wear resistance is affected by several factors, such as hardness, volume percentage
of carbides, and size and distribution of carbides. For Alloy A with only 8.96% Nb content, the coating
exhibits a low hardness and a big weight loss due to the small amount of NbC carbides, indicating
poor wear resistance. The difference in hardness and mass loss between the coatings of Alloy B and
Alloy C is not obvious, but it can still be seen that as the Nb content increases from 8.96% to 10.75%,
the hardness increases and the mass loss decreases, corresponding to an improvement in the wear
resistance. The coating has the maximum hardness (about 64.6 HRC) and the minimum mass loss when
the Nb content is 11.65%. This is due to the transformation of the microstructure from hypereutectic to
eutectic. A large quantity of eutectic microstructure forms a strong skeleton structure, resulting in a
large number of barriers and limiting the path for dislocation movement, thereby resisting the abrasive
wear. However, when the Nb content further increases from 11.65% to 12.55%, the hardness decreases
obviously from 64.5 to 56.9 HRC, and the weight loss of Alloy E is nearly four times less than that
of Alloy D, corresponding to deterioration of the wear resistance. This may be due to the increase in
coarse NbC carbide content leading to increased brittleness of the coating.
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Figure 7 shows the wear morphologies of Alloy D and Alloy E after wear testing. The wear
morphology of Alloy D shows a small quantity of shallow grooves and voids (see Figure 7a,b),
indicating that the wear mechanism is dominated by micro-cutting. In general, the hard phase and the
soft matrix constituents of wear-resistant materials play different roles: the hard carbides can prevent
wear by grooving or indenting mineral particles [31], while the soft matrix with good toughness can
effectively protect the carbides [32]. It is considered that the novel microstructure with massive hard
and wear-resistant primary NbC carbides distributing uniformly in the fine and strong γ+M7C3 eutectic
matrix has excellent wear resistance and good toughness. The NbC carbides with high hardness can
blunt the quartz sands and enhance the wear resistance. The wear-resistant primary NbC carbides
can also retard the γ+M7C3 eutectic matrix from severe selective wear. A large number of γ+M7C3

eutectic microstructure makes the coating strong, which can effectively resist the abrasive wear, thereby
avoiding the deep penetration of abrasive from the coating to the steel substrate. Also, the reduction
of the carbon content in coating improves the toughness of coating, which can effectively protect the
carbides from cracking during wear. Therefore, it is found that the coating of Alloy D has a much
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higher resistance to plastic deformation and scoring, which increases the resistance to plastic erasing
or removal of the edges of grooves.
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The wear morphology of Alloy E is shown in Figure 7c,d. As can be seen, there are numerous deep
and long grooves parallel to each other in localized regions, and there are some peeling pits, indicating
that the wear mechanism is a combination of abrasion and spallation. Compared with other coatings,
although its hardness (about 57.5 HRC) is not the lowest, the wear resistance of Alloy E coating is
the worst. The wear morphologies and mechanism are closely related to the microstructures [33].
Therefore, the difference in wear morphology could be attributed to the relatively coarse NbC carbides,
resulting in a high brittleness of the coating. It is considered that the coarse NbC carbides can cause
stress concentration at the carbide/matrix interface, thereby causing carbide particles to peel off the
coating surface. The peeled carbide particles become new abrasive particles, leading to more serious
wear on the coating surface, and a lot of deep and long grooves and traces of peeled carbides can
be observed on the worn surface [34]. Rafiei et al. have investigated the microstructure and wear
behavior of Fe-Ti-V-C cladding alloys and reported similar results [7]. Patrich et al. have reported that
the coarse carbide particles are more easily separated by wear particles. The coarser particles have a
higher discontinuity at the interface between the particles and matrix in the coatings [35]. The high
magnification image (Figure 7e) shows that cracks have formed on the coating surface. Due to the high
hardness of the carbide particles, the shearing of these particles is difficult and the microcracks nucleate
in the carbides. Some cracks nucleate at the carbide/matrix interface and grow into the carbide body,
thus forming large cracks, which causes the carbides to crack and spall off [33]. In addition, due to the
low hardness of the γ phase, plastic deformation occurs during the wear process [18]. The existence of
the primary γ phase in the hypoeutectic microstructure is the main reason for the plastic deformation
to form continuous grooves on the worn surface of Alloy E. In short, the wear resistance of alloyed
coating depends not only on the volume fraction and dispersion of the hard phase carbides, but also
on the compatibility of the hardness and toughness of the matrix phase of the coating.
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4. Conclusions

In this study, Fe-12Cr-xNb-4C coatings with different Nb content were fabricated on commercial
low-carbon steel by PTA process. The structure, hardness and wear resistance of the coatings were
studied. The main conclusions are as follows:

• The Fe-12Cr-xNb-4C coatings with the Nb contents ranging from 8.96% to 10.75% have a
hypereutectic structure composed by martensite, austenite matrix, primary NbC carbides and
γ+M7C3 eutecic. As the Nb content increases to 11.65%, it changes to the near-eutectic structure
consisting of γ+M7C3 eutectic and NbC carbides. When the Nb content is increased to 12.55%, the
coating shows a hypoeutectic structure containing primary γ, γ+M7C3 eutectic and NbC carbides.

• The amount of NbC carbides increases with increasing Nb content. The microstructure of coatings
confirms the presence of flower-like, polygonal NbC carbides as the Nb content increases from
8.96% and 10.75% and long strip, cross dendrite NbC carbides in the matrix when the Nb content
is 11.65% and 12.55%.

• The hardness and wear resistance of coatings increase firstly and then decrease with increasing
Nb content.

• Wear resistance of coating with the 11.65% Nb content is better than that of the other four coatings.
The formation of γ+M7C3 eutectic is the most important reason for obtaining good wear resistance.

• The coating with 12.55% Nb content has the worst wear resistance, owing to high brittleness of
the coarse NbC carbides accelerating abrasion damage of the coating.
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