

Supplementary Materials

Preparation and Photochromic Performance of Homogeneous Phase Nitrocellulose Membrane Grafting Spirooxazine Moieties

Bin-Bin Sun 1,2, Bing-Hua Yao 1,*, Yang-Qing He 1 and Bo Yang 2

- ¹ College of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
- ² Department of Chemical Engineering, Shaanxi Vocational and Technical College of Defense Industry, Xi'an 710300, China; sunbinbin770713@163.com
- * Correspondence: bhyao@xaut.edu.cn; Tel.: +86-029-8206-6361

Received: 23 May 2020; Accepted: 15 June 2020; Published: date

1. ¹HNMR spectrum of AISO and Peak assignments

Figure S1. ¹HNMR spectrum of AISO (400 MHZ, CDCl₃).

	Table	S1.	Peak	assignm	ents in	the	1HNMR	spectrum	of AISC).
--	-------	-----	------	---------	---------	-----	-------	----------	---------	----

δ/ppm	Assignment
8.28 (d, <i>J</i> _{10′, 8′} = 2.0 Hz, 1 H)	10'-H
7.76 (d, J7', 8' = 8.8 Hz, 1 H)	7'-H
7.70 (s, 1 H)	2'-H
7.64 (d, $J_{6', 5'}$ = 9.2 Hz, 1 H)	6'-H
7.21 (dd, <i>J</i> ⁸ , 7′ = 8.8 Hz, <i>J</i> ⁸ , 10′ = 2.0 Hz, 1 H)	8'-H
7.16 (t, J _{6,7} = 7.6 Hz, J _{6,5} = 8.0 Hz, 1 H)	6-H
7.07 (d, J _{4,5} =7.6 Hz, 1 H)	4-H

6.98 (d, <i>J</i> 5′, 6′ = 9.2 Hz, 1 H)	5'-H
6.89 (t, J _{5,6} = 8.0 Hz, J _{5,4} = 7.6 Hz, 1 H)	5-H
6.64 (d, J _a , c = 17.2 Hz, 1 H)	Ha
6.56 (d, J _{7,6} =7.6 Hz, 1 H)	7-H
$6.37 (dd, J_{c, a} = 17.2 Hz, J_{c, b} = 10.4 Hz, 1 H)$	Hc
6.03 (d, J _{b, c} = 10.4 Hz, 1 H)	Hb
2.74 (s, 3 H)	N-CH ₃
1.33 (s, 6 H)	C-(CH3)2

Note: s is single peak; d, double peak; t, triple peak.

2. ¹³CNMR spectrum of AISO and Peak assignments

Figure S2. ¹³CNMR spectrum of AISO (400 MHZ, Acetone-*d6*).

Measured Value	in This Experiment	Reference Values of Similar Compounds		
δ/ppm	δ/ppm Assignment		$\Delta = \delta - \delta_{reference}$	
164.73	1"-C (C=O)	—	—	
151.76	9′-C	158.5	-6.74	
150.34	2'-C (C=N)	150.9	-0.56	
148.16	4′α-C	147.6	0.56	
145.27	10′β-C	144.9	0.37	
136.29	7α-C	135.8	0.49	
133.23	3"-C (CH2=)	—	—	
132.83	6′α-C	131.9	0.93	
130.59	7′-C	130.1	0.49	
129.97	6'-C	129.5	0.47	
128.49	2"-C (-CH=)	—	—	
128.38	6-C	128.1	0.28	
127.82	3α-C	126.9	0.92	
122.74	10′α-C	123.0	-0.26	
121.90	4-C	121.5	0.4	
120.28	5-C	120.0	0.28	
119.92	10'-C	107.2	12.72	
116.99	8'-C	116.8	0.19	
113.16	5'-C	113.1	0.06	
107.64	7-C	107.2	0.44	
99.38	2-C	98.8	0.58	
52.16	3-C	51.9	0.29	
29.63	N-CH ₃	29.7	-0.07	
25.29; 20.52	$C - (CH_3)_2$	25.4; 20.8	-0.11; -0.28	

Table S2. Peak assignments in the ¹³CNMR spectrum of AISO.

Note: The $\delta_{\text{reference}}$ is quoted from the literature [1], and the spectra were recorded on a Varian VXR-300 spectrometer, using TMS as internal standard, using CDCl₃ as solvent. The symbols "—" means there is no corresponding data in the references or there is no corresponding carbon atom in the corresponding compound.

3. The UV light source and the test scenarios

Figure S3. The UV light source and the test scenarios. (A) a ZF7c UV analysis apparatus, (B) the optical filter, (C) the test scenarios.

References

1. Kakishita, T.; Matsumoto, K.; Kiyotsukuri, T.; Matsumura, K.; Hosoda, M. Synthesis and NMR study of 9'-substituted spiroindolinonaphthoxazine derivatives. *J. Heterocyclic Chem.* **1992**, *29*, 1709–1715, doi:10.1002/jhet.5570290706.