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Abstract: Diamond-like carbon (DLC) films were deposited by means of pulsed cathodic arc deposition
on pretreated polyurethane (PU) rubber substrates. Tetrachloroethylene was chosen as a dissolution
method to remove the plasticizer added in the PU substrates. Scanning electron microscopy (SEM)
and Raman spectroscopy were applied to observe and characterize the surface morphologies and
compositions of the deposited films, respectively. The tribological behaviours of uncoated and
coated rubbers were investigated with ring-on-disc tribo experiments under dry sliding conditions.
The coefficients of friction (COFs) of the coated rubbers were 40% lower than those of uncoated rubber
and the COFs of different samples decreased first and then increased slightly with the increase in
temperature and the time of ultrasonic treatment under dry friction. Based on the above experiments,
ultrasonic treatment with tetrachloroethylene contributes to the increase in the wear resistance of
DLC films deposited on PU rubbers. The most suitable temperature and time of ultrasonic treatment
with tetrachloroethylene is 50 ◦C for 15 min.
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1. Introduction

As a metastable form of amorphous carbon film, diamond-like carbon (DLC) film has received
continuous interest and research regarding innovations and applications in the field of tribology, due to
the unique properties of the DLC films, including self-lubrication, high hardness, and excellent wear
resistance [1–5]. At first, DLC film is considered to be a surface protection coating deposited on metal
materials and ceramic surfaces exclusively. Extensive reviews of DLC films deposited on metals exist
in the literature [6–8]. However, a few studies have focused on rubber materials with problematic
friction resistance, which are used extensively in engineering applications [9]. Pioneering research
regarding the deposition of DLC onto rubber substrates was carried out in 2004 [10].

After that, significant efforts have been made to extend the applications of DLC films on rubber
materials. Typical deposition technologies of DLC films can be divided into two categories: physical
vapour deposition (PVD) and chemical vapour deposition (CVD) [11–15]. Furthermore, the research
objects are mostly concentrated on butyl rubber and nitrile rubber. Aoki and Ohtake [11] deposited
DLC films onto butyl rubber and aluminium substrates using RF-plasma CVD at a bias voltage of 2300 V
with CH4 gas as a precursor. The results showed that the film COFs were between 0.1 and 0.2 during
9000 cycles at loads of 0.98 to 1.96 N. At higher loads of 2.94 and 4.9 N, higher COFs (0.2–0.3) were
observed after 200 cycles. Bui et al. [12,13] deposited DLC films on both Hydrogenated acrylonitrile
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butadiene rubber (HNBR) and Si wafer substrates using closed-filed unbalanced magnetron sputtering
with C2H2 gas as a carbon source, and reported that the film COFs are between 0.18 and 0.2.

Commonly, the polyurethane rubber performs well as a dynamic seal, owing to its good strength,
elasticity, oil resistance, and thermal aging property [14]. Under dynamic friction conditions, the high
COF of the seal element leads to intense surface wear and significantly reduces its working life.
Ultimately, severe wear of the seal element causes oil leakage and even system failure [15,16]. Therefore,
the study of DLC films on polyurethane rubber to enhance its wear resistance is of great significance
for engineering applications, such as hydraulic seals, pneumatic seals, buffer rings, and piston seals.

Polyurethane rubber is prone to deformation after being heated. Therefore, the surface temperature
should be kept as low as possible during the deposition. The conventional cathodic arc deposition
technique involves an electric arc striking a cathode target and vaporizing the target material [17].
Then, the target material condenses onto a substrate forming a thin film. The pulsed cathodic arc
deposition uses pulsed arc discharge instead of stable arc discharge in order to allow the generated
heat to be transmitted in time by circulating cooling water at the target position within a time interval
of the pulse. In this way, a low deposition temperature can be achieved and the fluctuation of the
target temperature can be effectively controlled within 5 ◦C.

Another major difficulty in the preparation of the DLC film on polyurethane rubber is plasticizing
additives in the rubber. Due to friction heating, the plasticizer will melt and precipitate out gradually,
resulting in a sudden stress concentration between the film and the substrate. Then the high stress
causes the film to crack and peel off [18]. It is of significance for avoiding the precipitation of the
plasticizer, improving the binding ability between the DLC film and polyurethane rubber in the process
of friction. In order to achieve this, an additional pre-treatment and after-treatment can be applied,
which are common techniques in the coating industry [19,20].

In this paper, the pulsed cathodic arc method was used to deposit DLC films onto polyurethane
rubber substrates. The rubber samples were sunk in tetrachloroethylene with an ultrasonic cleaning
process to remove the plasticizer. The effects of the temperature and time of the ultrasonic pre-treatment
in tetrachloroethylene on the morphology and friction properties of DLC films were studied.

2. Experimental Methods

The polyurethane rubber sheets were used as substrates with a size of 124 mm × 90 mm × 2 mm.
The substrates were first ultrasonically cleaned with absolute ethanol and then rinsed in deionized
water. In order to remove the plasticizer from the samples, tetrachloroethylene was chosen as the
solvent in the ultrasonic treatment. The temperature and time of the ultrasonic treatment for different
substrates are listed in Table 1.

Table 1. Parameters of the specimen pre-treatment.

No. Solvents Temperature/◦C Time/min

1 absolute ethyl alcohol 25 15
2 tetrachloroethylene 25 15
3 tetrachloroethylene 25 30
4 tetrachloroethylene 50 15
5 tetrachloroethylene 50 30

After the cleaning process, the PU rubber substrates were dried in an oven at 150 ◦C for 1 h. Then,
the substrates were mounted onto sample holders and placed into a vacuum chamber. The DLC films
were deposited on the cleaned substrates via the pulsed cathodic arc method with a voltage of 280 V
and a pulse frequency of 3 Hz. The chamber pressure was kept at 0.05 Pa during the deposition time
(6000 pulses).
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As shown in Table 1, five substrates were chosen for different pre-treatments. The first sample was
cleaned in ethyl alchohol for 15 min at 25 ◦C. Samples 2 and 3 were cleaned in tetrachloroethylene for
15 and 30 min at 25 ◦C. Samples 4 and 5 were cleaned in tetrachloroethylene for 15 and 30 min at 50 ◦C.

The un-coated polyurethane rubber samples and as-deposited samples were examined using a
scanning electron microscope (INSPECT S50) to analyse the surface morphology of the DLC films.
Raman spectroscopy was employed to study the microstructure of the deposited films.

The tribological tests were carried out by a ring-on-disc tribometer (MTT-1M) under dry sliding
conditions at room temperature. The un-coated and coated samples were cut into a round shape
with a diameter of 50 mm to fit in the test equipment. An annular chrome steel disk was used as the
friction pair and a load of 50 N was applied to the specimen with a speed of 6.28 cm/s. The samples
before and after the friction test were weighed using a precision electronic balance with a measurement
accuracy of 0.0001 g. The wear track of the specimens after the tribological tests was analysed by
optical microscopy.

3. Results and Discussion

3.1. Surface Morphology

The morphology of the rubber samples after different ultrasound treatments is shown in Figure 1a,e,
corresponding to the samples after pre-treatments 1–5, respectively. Figure 1a shows the sample surface
cleaned in ethyl alchohol for 15 min at 25 ◦C. Figure 1b,c show the specimens’ surface morphology
after pre-treatment in tetrachloroethylene for 15 and 30 min at 25 ◦C. Figure 1d,e are SEM images of
sample surfaces cleaned in tetrachloroethylene for 15 and 30 min at 50 ◦C. Comparing with Figure 1a,
more small fibers can be observed on the sample surfaces that were cleaned in tetrachloroethylene.
This is a result of rubber plasticizer being washed out and bringing internal fiber reinforcements to the
sample surface [21,22].
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SEM images of films deposited on rubber substrates with different pre-treatments are shown
in Figure 2. All the films are characterized by crack networks, which are due to thermal mismatch
stress during film growing. This feature is consistent with other DLC films deposited on rubber in the
literature [23–25].
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(c) Specimen 3; (d) Specimen 4; (e) Specimen 5.

3.2. Raman Spectroscopy

Raman spectroscopy is a fast and non-destructive characterization method, which is commonly
used for studying the chemical bonding and structure of DLC films. In Raman spectroscopy, all carbon
materials show common features in the 800–2000 cm−1 region, namely G and D peaks (at approximately
1590 and 1340 cm−1). The Raman spectroscopies of all deposited films are shown in Figure 3, compared
to the standard spectrum. As can be seen from the figure, the Raman spectra of Specimen 1 only have
one broad peak near 1590 cm−1, corresponding to the G peak, which is a typical amorphous DLC
film structure [26]. While in Specimens 2 and 3, there is a sharp peak at 1590 cm−1. In Specimens 4
and 5, there are two distinct peaks in the spectra, located at 1340 cm−1 and 1590 cm−1, respectively.
The results prove that DLC film can be successfully deposited on the polyurethane rubber by the
cathodic discharge plasma method.
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3.3. Tribological Characteristics

The tribological behaviour of DLC films deposited on rubber substrates was investigated using
an MTT-1M tribometer under dry friction conditions. For comparative purposes, the result of the
tribological test conducted on bare rubber substrate is also presented. Figure 4 displays the evolution
of the coefficient of friction of the specimen as a function of the friction time. As shown in Figure 4,
the bare polyurethane rubber has the maximum coefficient of friction among all the test specimens,
which is approximately 0.52. The coefficient of friction for the uncoated substrate decreased to 0.48 after
600 s and then remained stable. Due to the frictional heating, the plasticizer would gradually melt and
precipitate to the surface, and lubricate the friction interface. Hence, the coefficient of friction decreases
after the initial friction stage. Compared with the rubber substrate, the coefficients of friction for the
DLC films varied in a range from 0.3 to 0.4, which is 0.2–0.3 less than that for bare substrate under a
dry sliding condition, indicating that deposited DLC film can effectively improve the wear resistance
of polyurethane. From Figure 4, the coefficient of friction curve of Specimen 1 fluctuates violently with
an increase in time. The coefficient of friction remains stable at the beginning and shows a sudden rise
to 1.0 after 500 s. The films deposited on the substrate with ultrasonic treatment by tetrachloroethylene
have much more flat curves of the coefficient of friction under the same condition. As shown in
Figure 4, the friction curves of Specimens 2 and 3 also show a gradual increase in coefficients of
friction after the initial friction stage, which is due to the peeling off of the films. It was found that
Specimens 2 and 3 kept a much longer stationary stage compared to Specimen 1, which implies that
samples with pre-treatments in tetrachloroethylene have better film adhesion and wear resistance.
Comparing the four curves (2–5), it is seen that Specimens 4 and 5 maintain more steady and lower
coefficients of friction during the whole experiment time, approximately 0.3. Due to the removal of
plasticizer, samples 4 and 5 have less stress induced by precipitation of plasticizer compared to other
samples. Previous studies have shown that high stress has a detrimental effect on film adhesion [27].
This can explain why the DLC films prepared on the rubber substrate with ultrasonic treatment in 50 ◦C
tetrachloroethylene have better tribological properties. The scattering of COF after 50 min in Specimen
5 could be caused by furrow-like wear tracks formed at the film surface, which can be confirmed in
Figure 5 (slightly higher mass loss than specimen 4) and Figure 6 (wear track morphology).
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Specimen 1 (Figure 6a), the worn surface of the DLC film is covered by a series of grooves caused by 
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Figure 5 compares the mass loss of each coated specimen after the dry friction test. It is observed
that Specimen 1 coated on substrate without pre-treatment has the maximum wear loss weight.
A reduction in mass loss of more than 30% was observed for the DLC films deposited on PU rubber
with pre-treatment compared to the rubber without pre-treatment. Meanwhile, with the increase
in temperature and time of ultrasonic treatment in tetrachloroethylene, the wear loss of different
deposited specimens first decreases and then increases slightly. Among the five coated specimens,
Specimen 4 has the smallest mass loss, which was consistent with the results of the tribological tests.
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The surface morphologies of the specimens after tribo-tests can not only be used to investigate the
tribological behaviour of materials, but also to analyse the wear mechanism particularly. The typical
surface morphologies of the deposited DLC films extracted from the dry friction test are shown in
Figure 6. It is shown that with the increasing temperature and time of substrate ultrasonic pre-treatment
in tetrachloroethylene, the deposited DLC films maintained higher integrity. For Specimen 1 (Figure 6a),
the worn surface of the DLC film is covered by a series of grooves caused by a ploughing action and
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micro-cutting of the hard asperities on counterpart chrome steel and the particles derived from the
piece of DLC film, which is in accordance with the greatest mass loss.
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2; (c) Specimen 3; (d) Specimen 4; (e) Specimen 5.

The phenomena confirm that the wear mechanism of Specimen 1 is largely dominated by abrasive
wear under a sliding condition. As for films 2–5, the features of the wear tracks appear to exhibit a
smooth morphology with a few furrows after the tribo-tests. It can be observed that the specimens
with less pre-treatment time and lower pre-treatment temperature are more prone to wear damage.
The above damage patterns suggest that ultrasonic pre-treatment with tetrachloroethylene can enhance
adhesion between the film and rubber substrate, and DLC films can effectively improve the friction
behaviour and wear resistance of polyurethane rubber.

As shown in Figure 7, the wear mechanism of the DLC films has been analysed through the
COFs and the wear tracks. For the DLC film deposited on polyurethane rubber without pre-treatment
(Figure 7a), the main wear mechanism is distinctly dominated by abrasive wear under dry sliding
friction. The micro-cracks initiate from the part of the DLC film having poor adhesion with the substrate.
Simultaneously, the friction heating leads to the melting and oozing of the plasticizer, resulting in a
pressure concentration at the interface between the DLC film and the rubber substrate. Due to the
combined effects of poor film adhesion and the pressure concentration, the cracks in the film rapidly
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expand and connect with each other, causing a large piece of fracture and peeling off. The stripped
pieces act as a hard abrasive debris, further accelerating the tribological performance deterioration.
Figure 7b shows the adhesion mechanism of DLC films coated on polyurethane rubber substrates with
ultrasonic treatment in tetrachloroethylene. With a smooth surface, DLC films have a higher bonding
force to the substrates, resulting in less sliding friction. Meanwhile, the plasticizer has been dissolved
and removed via ultrasonic pre-treatment in tetrachloroethylene, eliminating the stress concentration
by precipitation of the plasticizer, and further avoiding peeling off of the DLC film under the action
of shear stress. According to the Raman spectra, the main peak for these films is the G peak located
around 1590 cm−1, which is close to the graphite vibrational density of states [28]. The graphite-like
phase in the DLC films has a self-lubricating effect further improving sample friction performance and
film working life.
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Figure 7. Schematic diagrams of wear mechanisms for DLC films deposited on two different substrates:
(a) PU rubber without the pre-treatment, (b) PU rubber with the pre-treatment.

4. Conclusions

In this paper, DLC films were deposited on polyurethane rubber using the pulsed cathode arc
method. The effects of temperature and time of ultrasonic pre-treatment in tetrachloroethylene on
the morphology and friction properties of DLC films were studied. The following conclusions were
drawn:

1. The surface morphologies of PU rubber samples after ultrasound treatments show that the
fiber reinforcements precipitate from the substrate after ultrasonic pre-treatments in the
tetrachloroethylene. This indicates that plasticizer is washed out after the tetrachloroethylene
cleaning process. All deposited films showed cracked networks as a result of thermal mismatch
stress between the films and substrates. Raman spectroscopy was performed on the deposited
films, proving that the films deposited are typical DLC films.

2. Under a dry friction condition, the COFs of the DLC films are significantly lower than those of the
uncoated polyurethane rubber. By comparison, it is clear that with the increase in temperature
and time of ultrasonic pre-treatment, the COF and wear loss of the coated specimen decreased
dramatically. Among the deposited films, the COF of Specimen 4 is the smallest, approximately
0.3, and also has the smallest mass loss under friction. In order to obtain the DLC film with the
best anti-wear ability on polyurethane substrate, the appropriate ultrasonic treatment temperature
and time in tetrachloroethylene is 50 ◦C for 15 min.
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