Article

Supplementary

Control of Lateral Composition Distribution in Partitioned Dual-Beam Pulsed Laser Deposition

Joe Sakai 1,*, José Manuel Caicedo Roque ${ }^{1}$, Pablo Vales-Castro ${ }^{1}$, Jessica Padilla-Pantoja ${ }^{1}$, Guillaume Sauthier ${ }^{1}$, Gustau Catalan ${ }^{1,2}$ and José Santiso ${ }^{1}$
Institut Català de Nanociència i Nanotecnologia (ICN2), ICN2 Building, UAB Campus 08193 Bellaterra, Catalonia, Spain; jose.caicedo@icn2.cat (J.M.C.R.); pablo.vales@icn2.cat (P.V.-C.); jessica.padilla@icn2.cat (J.P.P.); guillaume.sauthier@icn2.cat (G.S.); gustau.catalan@icn2.cat (G.C.); jose.santiso@icn2.cat (J.S.)
2 Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Catalonia, Spain
* Correspondence: jo.sakai@icn2.cat

Received: 21 April 2020; Accepted: 29 May 2020; Published: date

Model for Simulation

Figure S1: Coordinate system used for the simulation of trajectories of ejected particles from a single target. The point of coordinate $(X, Y)=(0,0)$ represents the laser spot on the target surface. $(0,50)$ corresponds to the center of the substrate.

In order to figure out the thickness distribution obtained in the single target ablation experiment of CeO_{2} (Section 3.1), the trajectories of particles ablated from a single target to reach the substrate surface under various conditions (pressure $p_{\mathrm{O} 2}$ and gap G) were simulated by a Monte Carlo method. Figure S1 shows the coordinate system used for the calculation. Expecting qualitative results, we constructed a primitive model to represent the ablation process on the basis of assumptions described below.

1) In the two-dimensional (X, Y) space (Figure S1), the particles ejected from the point $(0,0)$ on the target surface repeatedly experience elastic collisions with the ambient gas molecules until reaching the substrate surface $(Y=X / 5+50)$.
2) The path length between collisions, L_{n}, and the change in the direction caused by the collision, θ_{n}, obey normal distributions [S1]. Here, the subscript n indicates the number of collision, except $n=0$ that denotes the ejection from the target.
3) The path length between the ejecting point $(0,0)$ to the first collision point, L, is 1.5 mm in average [S2]. The standard deviation for L_{n} is $L_{n} / 5$ for all n including 0 .
4) The distribution of the ejection angle θ_{0} is centered on the target normal, with a standard deviation $\sigma_{\theta 0}$ of 11.4° [S3].
5) After the first collision ($n \geq 1$), collisions with ambient gas molecules dominate the movement of the particles. Mean free path in air is adopted as the averaged path length between collisions, $L_{n}(n \geq 1) . L_{n}$ (in mm) is obtained from the pressure p_{02} (in Torr) using

$$
\begin{equation*}
\log L_{n}=a \log p_{\mathrm{O} 2}+b \tag{1}
\end{equation*}
$$

where a and b were taken as -1 and -1.3 [S4].
6) The distribution of $\theta_{n}(n \geq 1)$ is with the mean of 0° and the standard deviation $\sigma_{\theta n}$ of 6° [S5].
7) For the particle that falls behind the target surface or that collides with the partition, the calculation is stopped at that moment and is not counted into the results.
The X coordinate of each particle at the instant it arrived at the substrate's surface was recorded. For each combination of p_{02} and G, the calculation was done for 6×10^{6} ejected particles to obtain the thickness distribution.

References

1 A number of studies have reported that the thickness distribution of conventional PLD processes (without partition) is fitted with $\cos ^{N} \theta[\mathrm{~S} 6-\mathrm{S} 8]$. In the present simulation, however, $\cos ^{N} \theta$ is approximated by normal distribution in order to simplify the calculation.
2 Itina, T.E.; Marine, W.; Autric, M. Monte Carlo simulation of pulsed laser ablation from two-component target into diluted ambient gas. J. Appl. Phys. 1997, 82, 3536-3542.
3 A previous study on the film thickness distribution in ablation from an oxide $\mathrm{MO}_{x}(\mathrm{M}: \mathrm{Al}, \mathrm{Hf}, \mathrm{Y})$ target has revealed that N depends on the pressure p, the atomic weight m of the metallic element M , and the direction of distribution (whether it is in parallel or perpendicular to the longitudinal axis of the laser spot) [S8]. In the case of $\mathrm{Ce}(m=140 \mathrm{u})$, in parallel with the longitudinal axis of the laser spot, and p of zero, we estimate N to be 25 on the basis of the results in ref.[S8]. The normal distribution with $\sigma \theta 0$ of 11.4 gives the same full width at half maximum as $\cos ^{25} \theta$.

4 Bond, W.L. Notes on solution of problems in odd job vapor coating. J. Opt. Soc. Am. 1954, 44, 429-438.
5 The $\sigma \theta n$ of 6° is estimated from the maximum scattering angle of a Ce atom (140 u) that elastically collides with a stationary O_{2} molecule (32 u), which is calculated to be 13.2°.
6 Chrisey, D.B.; Hubler, G. K. Pulsed laser deposition of thin films. Hubler Wiley: New York, NY, USA, 1994; pp. 199-227.
7 Singh, R.K. Spatial thickness variations in laser-deposited thin films. Mater. Sci. Eng. B. 1997, 45, 180-185.
8 Bassim, N.D.; Schenck, P.K.; Otani, M.; Oguchi, H. Model, prediction, and experimental verification of compositionand thickness in continuous spread thin film combinatorial libraries grown by pulsed laser deposition. Rev. Sci. Instr. 2007, 78, 072203.

