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Abstract: In this article, a combined approach for studying the optical anisotropy of porous thin
films obtained by the glancing angle deposition is presented. This approach combines modeling on
the atomistic and continuum levels. First, thin films clusters are obtained using the full-atomistic
molecular dynamics simulation of the deposition process. Then, these clusters are represented as a
medium with anisotropic pores, the shapes parameters of which are determined using the Monte
Carlo based method. The difference in the main components of the refractive index is calculated in
the framework of the anisotropic Bruggeman effective medium theory. The presented approach is
tested and validated by comparing the analytical and simulation results for the model problems, and
then is applied to silicon dioxide thin films. It is found that the maximum difference between the
main components of the refractive index is 0.035 in a film deposited at an angle of 80◦. The simulation
results agree with the experimental data reported in the literature.
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1. Introduction

The deposition in a vacuum is the most widely used technique for thin film production [1].
The structural and optical properties of the deposited films depend on the deposition condition, in
particular, on the angle between the direction of atoms flow and normal to the substrate surface [2].
Deposition at large angles, when atoms move almost parallel to the substrate, leads to the formation of
glancing angle deposited (GLAD) films consisting of the separate nanostructures with different shapes
and dimensions [3]. Due to the low reflectance and anisotropy of the refractive index, GLAD films are
widely used in optical instruments [4–8].

To describe the anisotropic properties of the deposited films, the anisotropic Bruggeman effective
medium approach is usually used [6,9–14]. The Bruggeman formalism was initially developed for
the calculation of the effective dielectric constant of a medium with randomly distributed spherical
inclusions [15]. The values of the dielectric constant of medium and inclusions are different. In
Reference [16], the approach was generalized for the case of the ellipsoidal inclusions. The anisotropy
of a medium with inclusions was taken into account through depolarization factors depending on the
ellipsoids shape parameters.

The voids between separated nanostructures in GLAD films can be considered as inclusions
of different shapes and dimensions in the films’ matter. Within the framework of the Bruggeman’s
formalism, these inclusions are represented by a set of identical ellipsoids oriented in the same direction.
Since the experimental determination of the shape parameters of ellipsoids is still a challenge, these
parameters are used to fit experimental results within effective medium models [6,10–14]. On the other
hand, shape parameters can be calculated through the Cartezian coordinates of atoms in the clusters
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obtained by the simulation of the thin film deposition process. Currently, the different methods of
the atomistic level, including the ballistic approach [17,18], molecular dynamics (MD) [19,20], and
kinetic Monte Carlo (kMC) [14] method were applied to study the deposition process, structural and
mechanical properties of GLAD films. In Reference [14], shape parameters were defined for the titanium
dioxide GLAD films using the structure tensor, calculated by the integral of density gradient [21]. The
main components of this tensor correspond to the averaged inverse shape parameters. The planar
birefringence, important in GLAD films applications for polarization optic [22,23], was calculated
using the shape parameters and was compared with the experimental data from Reference [14].

In the present work, a combined approach for modeling of the optical anisotropy of porous thin
films is presented. First, the MD-based procedure developed earlier in References [24–26] is used to
simulate the high-energy deposition of silicon dioxide thin films. Further, the averaged pore shape
parameters determining the anisotropy properties of porous thin films are calculated using the Monte
Carlo based method. The method is quite general and is characterized by high computational efficiency.
It can be applied to any porous atomistic clusters, obtained using MD, kMC or ballistic approach and
consisting of up to 107–108 atoms. Finally, the values of the difference between the main components of
the refractive index ∆n are calculated in the framework of the anisotropic Bruggeman effective medium
approach. The approach is validated by comparing the analytical and simulation results for model
problems. The obtained results agree with experimental data for silicon dioxide thin films.

2. Simulation Method

This section presents a combined approach to calculating ∆n. We start from the description of
the MD procedure that is used in the simulation of thin film growth. Then a brief overview of the
anisotropic Bruggeman effective medium theory as applied to the porous atomistic clusters is given. In
the final subsection, an original Monte Carlo based approach to the calculation of the averaged shape
parameters is described.

2.1. Molecular Dynamics Simulation of Thin Film Deposition Process

The simulation of thin film growth is the most time-consuming step in the ∆n calculation.
Nevertheless, the use of parallel computations allows one to increase the dimensions of clusters in the
full-atomistic MD simulation up to several tens of nanometers. An increase in cluster dimensions is
especially significant in the case of GLAD films consisting of separate nanoscale structures.

The geometry of the deposition process is shown in Figure 1. The simulation area includes parts
of the substrate, film and gas phase above growing film. An increase in the deposition angle α leads to
an increase in the porosity of the film and anisotropy of the structure. In particular, deposition at α =

80◦ leads to the formation of an anisotropic structure with separated slanted columns (Figure 1). For
this reason, the dependence of ∆n on α is investigated in a wide range of α from 0◦ to 80◦. In this work,
we use clusters that were simulated in our previous works [25,26], except for the cluster deposited at
an angle α = 50◦.
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All silicon dioxide film clusters were obtained using the MD-based step by step method, as
described in Reference [27]. The energy of interatomic interactions was calculated in the frame of the
DESIL force field [27]:

U = qiqj/rij + Aij/rij
12
− Bij/rij

6 (1)

where qi(j) charge of i(j)-th atom, qO = −0.5qSi = −0.65e, Aij and Bij, parameters of Lennard-Jones
potential for the van der Waals interaction, rij − interatomic distance, ASiO = 4.6 × 10−8 kJ·nm12/mol,
ASiSi = AOO = 1.5 × 10−6 kJ·nm12/mol, BSiO = 4.2 × 10−3 kJ·nm6/mol, BSiSi = BOO = 5 × 10−5 kJ·nm6/mol.
MD simulation is performed using the GROMACS package [28]. The leap-frog algorithm is used for
the integration of particles motion equations [29].

Horizontal dimensions of the substrate are 20 nm and 60 nm, the vertical thickness of the substrate
is taken equal to 6 nm (Figure 1). At each injection step, silicon and oxygen atoms with the stoichiometric
proportion of 1:2 are inserted randomly at the top of the simulation box. Then injected atoms move
toward the substrate and form new sub-layers on the surface of the growing film. The maximum
value of the deposited film thicknesses is about 45 nm, which corresponds to about 4000 injection
steps. The initial values of the silicon and oxygen atoms kinetic energies are E(Si) = 10 eV and E(O) =

0.1 eV, which corresponds to the high-energy deposition processes like ion beam sputtering (IBS) [3].
At each injection step, the NVT (constant number of particles, volume and temperature) ensemble is
used. The vertical dimension of the simulation box is increased by 0.01 nm after each injection step in
order to compensate for the growth of film thickness. The horizontal dimensions of the box remain
unchanged. The Berendsen thermostat [30] is applied to keep the simulation cluster temperature, T =

300 K, constant. The duration of one injection step is 6 ps, and the time step of MD modeling is 0.5 fs.
The simulation was carried out using the equipment of the shared research facilities of HPC

computing resources at Lomonosov Moscow State University [31].

2.2. Bruggeman Effective Medium Theory for the Porous Structures

In the framework of the anisotropic Bruggeman effective medium approach, the pores in the
structure are approximated by a set of ellipsoids [9]. These ellipsoids are randomly distributed over
the film volume and have the same shape parameters ax, ay, az and the same orientations (Figure 2).
The original method for the calculation of shape parameters is described in Section 2.3.
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After determining the values of ax, ay and az, the depolarization factors Lx(y,z) are calculated as
follows [9,16]:

Lx(y,z) =
axayaz
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where x′ is the integration parameter. These factors depend only on the ratios of ax, ay and az. Indeed,
using the substitution x′ = ax

2t, we obtain for Lx:

Lx =
1
2

∞∫
0

dt

(1 + t)
√
(1 + t)

(
1 + ta2

x/a2
y

)(
1 + ta2

x/a2
z

) (3)

where t is the dimensionless variable. Similar equations can be obtained for others depolarization factors.
The main components of the dielectric constant tensor εx(y,z) of the medium consisting of k

materials are calculated as follows [9,16]:

k∑
i=1

fi
εi − εx(y,z)

εx(y,z) + Lx(y,z)

(
εi − εx(y,z)

) = 0 (4)

where fi = Vi/V and εi are the volume fraction and dielectric constant of the i-th material. The
components of the refractive index nx(y,z) are calculated using the Maxwell relation between refractive
index and dielectric constant n2 = ε.

For the case of porous films Equation (4) is simplified as follows:

f1
1− εx(y,z)

εx(y,z) + Lx(y,z)

(
1− εx(y,z)

) + (1− f1)
εd f − εx(y,z)

εx(y,z) + Lx(y,z)

(
εd f − εx(y,z)

) = 0 (5)

where εdf = 2.22 [32] is the dielectric constant of dense silicon dioxide film, f 1 is the free volume fraction
of film. Value of f 1 is calculated using the film density dependence on the deposition angle ρ(α):

f 1(α) = 1 − ρ(α)/ρ(0) (6)

In Equation (6), it is assumed that a normally deposited film (α = 0) has no voids and the density
of the dense fraction in films, deposited under different α, is equal to ρ(0).

2.3. Calculation of the Averaged Shape Parameters of Pores in Deposited Film

A sample of the growing film structure is shown in the right part of Figure 3. The elongated pores
are formed between columns and are highlighted in dark blue. It is seen that the pores are slanted
approximately in the same direction.

In the framework of the anisotropic Bruggeman effective medium approach, it is necessary
to calculate the averaged pores dimensions ax, ay and az along the axes of the coordinate system.
Furthermore, these parameters are considered as ellipsoids shape parameters in calculating the
depolarization factors, see Equations (2) and (3). The coordinate system can be defined by the plane
of incidence (x,z) and the plane (x,y) slanted to the substrate plane at an angle β [9]. The Y axis is
directed parallel to the substrate plane and perpendicular to the incidence plane, due to the symmetry
of the deposition process geometry (Figure 3). The Z axis should be oriented along the direction in
which the pores are elongated. This direction is given by the angle βm at which the ratio az/ax reaches
its maximum.

• The procedure for calculating the ax(y,z) and nx(y,z) values consists of the following steps:
• The initial value of β angle is chosen.
• Set of N points with random coordinates (xi, yi, zi) inside the cluster is generated. For each of the

Nin points located inside the pores, the pore dimensions axi, ayi, and azi are calculated, as shown in
Figure 3. The periodic boundary conditions in the horizontal plane are used (see dotted rectangles
in the top right part of Figure 3). In the vertical direction, the dimensions of the open pores are
limited by the upper boundary of the film.
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• The averaged pores dimensions ax(y,z), are calculated as follows:

ax(y,z)(Nin) =

∑Nin
i=1 ax(y,z)i

Nin
(7)

When calculating Equation (7), there is no need to determine the volume of every individual pore,
which ensures high computational efficiency of the algorithm.

• Step 2 and 3 are repeated with growing Nin values. The procedure is finished when ax(y,z)(Nin) are
varying insignificantly with a further increase in Nin. The ratio az/ax is calculated.

• The values of Lx(y,z) and nx(y,z) are calculated using Equations (3) and (4). The difference of the
main components of the refractive index ∆n is calculated.

• The value of β is changed, and steps 2–5 are repeated.
• The ax(y,z)(Nin) values calculated using β, corresponding to the maximum of az/ax ratio, are the

shape parameters.
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Figure 3. The flowchart for calculating the shape parameters ax, ay and az by Monte Carlo averaging of
pore dimensions axi, ayi and azi by volume. The β angle is chosen so as to maximize the az/ax ratio.

Let us prove that Equation (7) gives the ax(y,z) values averaged over the pores volume. Indeed, the
volume element dV(az), including all of the points giving the same value of az, is defined in Figure 3:

dV(az) = az(x,y)dxdy (8)

In the frame of the Monte Carlo method [33] and in the Nin →∞ limit, the next condition is
satisfied:

N(az)

Nin
=

dV(az)

Vp
(9)

where N(az) is the number of points, giving az value. Thus, the summation in (7) can be replaced by
integration:

az = limNin→∞

∑Nin
i=1 azi

Nin
=

s
az(x, y)dV(az)

Vp
=

s
a2

z(x, y)dxdy
Vp

(10)
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The values of ay(z) are calculated in a similar way. For the case of ellipsoidal pores of different
dimensions, oriented in the same direction, Equation (10) gives values of ax(y,z) which are one and a
half times higher than the averaged values of the ellipsoids semi-axes (Appendix A). However, this
difference does not matter, since only ratios of ax, ay and az are required in Equation (3).

The pore boundary search algorithm takes into account that every atom in the clusters is considered
as a hard sphere with a certain radius R. The values of the atomic radii are discussed in the text above
Table 1, in Section 3. Thus, the pore surface consists of fragments of spherical surfaces centered on the
atoms. To calculate the ax(y,z)I values that are required in Equation (7), the next algorithm is used:

• The coordinate system is centered in the probe point, which is randomly chosen.

• The distance from each atom to the X axis is equal to rA =
√

z2
A + y2

A.

• If rA is less than atomic radius R, the distance from the probe point to the point of intersection of
the X axis with the sphere of radius R, centered on the atom, is calculated as follows (Figure 4):

x2A = xA −

√
R2 − r2

A (11)

• The minimum value of x2A is equal to x2i.
• The x1i value is calculated similarly. Then the axi value is calculated as axi = x2i – x1i.
• The y1(2)i and z1(2)i values are calculated in a similar way. The values of ax, ay and az are calculated

according to Equation (7).
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Figure 4. Calculation of the pore dimension axi along X axis in the atomistic cluster. Spheres are
centered on the atoms. The sphere radius depends on the chemical element to which the atom belongs.

3. Results and Discussion

To validate the method for calculating shape parameters, two model geometries of the pores
are considered: A spherical pore and a set of ellipsoidal pores of various dimensions (right side of
Figure 5). Pores are created in the atomistic cluster of silicon dioxide film obtained by high-energy
deposition. Horizontal dimensions of the cluster are 20 nm and 60 nm, the vertical dimension is 30 nm,
and the directions of the coordinate axes can be seen in Figure 3. Atoms whose centers are inside the
pores are removed.
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The diameter of the spherical pore D is taken equal to 6 nm. For a continuous medium, the
integral on the right-hand side of Equation (10) can be calculated analytically. This gives ax = ay =

az = 3D/4 = 4.5 nm. The results of numerical simulation are shown in the plots in the upper part of
Figure 5. Values of ax(y,z) converge to approximately 4 nm with an increase in the number of probe
points. The small difference between the results of analytical and numerical solutions is due to the
difference between the pore surface and the spherical surface. Indeed, the pore surface is formed by the
fragments of spheres centered on the atoms closest to the center of the pore (Figure 5, right part). Since
these fragments are partially located inside a sphere of diameter D, the calculated shape parameters
are smaller than the analytical parameters for a continuous medium.

The shape parameters are also calculated for the three ellipsoidal pores. The principal axes of
all ellipsoids are directed along the coordinate system axes (Figure 3), the value of β is equal to 30◦.
Ellipsoids are placed inside a cluster so as to avoid their overlapping. To diverse the shape of the
ellipsoids, values of their semi-axes are taken equal to ax1;2;3 = 8; 7; 4 nm, ay1;2;3 = 4; 5; 5 nm, az1;2;3 = 2;
3; 6 nm.

The dependences of shape parameters ratios on the number of probe points are shown in the
lower part of Figure 5. These ratios converge fast to the theoretical values with an increase in the
number of probe points. Some differences between the numerical and analytical results are explained
in the same way as for the spherical pore.

To apply the developed approach to the silicon dioxide films, the values of the atomic radii of
silicon and oxygen atoms should be determined. As follows from Equation (5), the components of the
dielectric constant and refractive index tensors depend on the free volume fraction of the film. The free
volume is defined as volume outside spheres centered on the atoms of the cluster. Therefore, the free
volume is fully determined by the Cartesian coordinates of the atoms and values of the atomic radii.
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On the other hand, the dependence of free volume fraction on the deposition angle is determined by
Equation (6). Thus, the value of the atomic radii should be chosen so as to reproduce this dependence.

Earlier in the porosity calculation [34] the van der Waals radii of oxygen and silicon atoms were
taken equal to RvdW(O) = 0.152 nm [35] and RvdW(Si) = 0.21 nm [36]. However, these radii leads to
f 1(α) values significantly higher than those obtained using Equation (6), see the bottom row in Table 1.
This is due to the large number of small pores appearing between adjacent atoms if atomic spheres do
not cover the entire volume of the film. Thus, the values of the atomic radii should be increased in
comparison with the values of van der Waals radii. It was found that radii equal to 0.21 nm for oxygen
and 0.27 nm silicon allow one to reproduce f 1(α) dependence obtained using Equation (6) (third and
fourth rows, Table 1).

Table 1. Dependencies of the film density ρ (g/cm3) and free volume fraction f 1 on the deposition
angle α.

A 0◦ 40◦ 50◦ 60◦ 70◦ 80◦

ρ(α) 2.40 2.35 2.24 1.92 1.75 1.36
f 1(α) Equation (6) 0 0.020 0.067 0.200 0.271 0.433

f 1(α) 1 0.023 0.032 0.080 0.195 0.269 0.436
f 1(α) 2 0.205 0.208 0.261 0.366 0.429 0.640

1 Atomic radii, R(O) = 0.21 nm, R(Si) = 0.27 nm, 2 Van der Waals radii, RvdW(O) = 0.152 nm [35], RvdW(Si) =
0.21 nm [36].

The convergence of the pore shapes parameters in the thin film clusters with an increase in the
number of probe points N is shown in Figure 6. A value of N is approximately ten thousand, which is
enough to calculate the values of ax(y,z). This calculation takes about ten minutes for clusters consisting
of 106 atoms. Since the algorithm has linear scaling with the number of atoms, it takes about one hour
for clusters with 107 atoms. As can be seen in Figure 6, an approximate estimation of ratios of ax(y,z)
values can be done much faster. In any case the calculation of the of ax(y,z) values requires much less
time than the atomistic simulation of the deposition process using MD or kMC methods. Besides,
the algorithm can be easily parallelized since the probe points in different parts of the clusters can be
chosen independently.
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Dependencies of the shape parameters and depolarization factors on the orientation of the
coordinate system axes are shown in Figure 7. Due to the symmetry of the deposited structure, the
differences in these values achieve maximum when the Z axis is directed almost parallel to the slanted
columns (see the right part of Figure 7). This orientation of axes ensures the maximum value of az

close to 4 nm (see the left part of Figure 7). On the contrary, with this axes’ orientation, the value of ax

reaches its minimum, since the X axis is directed almost perpendicular to the elongated pores. Value of
ay changes insignificantly with an increase of rotation angle β.
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The dependencies of the depolarization factors on the angle β are explained in the same way. In
accordance with the theoretical results [9,16], the sum of all factors is constant and equal to 1. At a
rotation angle βm, the factor Lx is maximum, since the ratio of ax/az is minimal, see Equation (3). The
column tilt angle γ can be approximately calculated as 90◦ − βm (see the right part of Figure 7), which
gives about 50◦ for γ. The tangential rule [17] predicts γ = 53◦ for the deposition angle α = 70◦, which
is close to our value of 50◦.

The results of the refractive index calculation are shown in Figure 8 and in Table 2 and are
compared with experimental data known from the literature. For α = 50◦ the ∆n value is less than
0.003, i.e., is at the level of anisotropy of the normally deposited SiO2 films [32]. The dependences
of the refractive index on the rotation angle β for the deposition angles α = 60◦, 70◦, 80◦ are similar.
The difference ∆n = nz − nx reaches its maximum at a certain value of the rotation angle β = βm. The
value of βm increases with increasing of α. This is explained by an increase of the tilt angle of the
separated columns in GLAD films with the increase in the deposition angle [3]. Since the pores are
elongated along these columns, the angle between the substrate plane and Z semi-axis of the ellipsoids
also increases.

As expected, the ∆n value monotonically increases with increasing the deposition angle, due to
the increase in the film porosity. The difference between the nz and nx values reaches a maximum value
of 0.035 when α is equal to 80◦, and βm is approximately 55◦.

The calculated values of ∆n are less than experimental ones for all of the deposition angles (Table 2).
This can be explained as follows. As it is mentioned in Section 2.2, dimensions of the open pores in the
vertical direction are limited by the upper boundary of the film. This leads to the underestimation of
the az/ax ratio calculated for the coordinate system orientation corresponding to the rotation angle βm

(Figure 7). To take into account, the contribution of the large elongated pores to the az/ax ratio and ∆n,
the simulation with clusters of larger dimensions should be performed.

The calculated values of the refractive index n = (nx + ny + nz)/3 are slightly higher than the
experimental ones (Table 2). A possible reason for this is an underestimation of the porosity of the
clusters deposited in our MD simulation runs. This also leads to the underestimation of the calculated
∆n values compared to the experimental data, see the paragraph above.

The error in the refractive index in the experiments cited in Table 2 is about 0.005 [6]. When
modeling, various sets of random numbers were used in the Monte Carlo method. This led to a
difference in the refractive index values less than 0.002. The convergence of the calculated values with
an increase in the number of probe points was ensured in our simulation experiments, see plots in
Figure 6.
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To summarize, the reached level of the simulation accuracy is close to that reported in Reference [14].
To increase the accuracy of the developed approach, it is necessary to increase the dimensions of
simulation clusters. This requires the use of more high-performance computational recourses. It
should be emphasized that the model does not have any adjustable parameters used to reproduce the
experimental results.
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Table 2. Dependencies of the difference between the components of the refractive index ∆n and
refractive index n on the deposition angle α. The substrate matter, deposition method, wavelength
at which the refractive index is determined, and substrate temperature are given in the notes below
the table.

A 60◦ 70◦ 80◦

∆n (calc.) 0.015 0.025 0.035
∆n (exp.) 0.025 1 0.04 1 0.05 1

n (calc). 1.391 1.353 1.270

n (exp).
1.42 1

1.31 3

1.33 4

1.34 1

1.325 2

1.21 3

1.22 1

1.20 2

1.16 3

1.25 4

1 [6]; indium tin oxide (ITO) coated glass substrate; electron beam evaporation; 532 nm; 330 K. 2 [37] fused silica
substrate; 532 nm. 3 [38] fused silica substrate; electron beam evaporation; room temperature, 532 nm. 4 [39]
p-AlGaN substrate; electron beam evaporation; room temperature, 365 nm.
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4. Conclusions

In this study, the combined modeling of the optical anisotropy of porous silicon dioxide thin
films was carried out. Atomistic clusters representing the structure of the films are obtained using the
full-atomistic MD simulation of the deposition process. The pores in films structure are approximated
by a set of ellipsoids having the same shape parameters and the same orientation. These parameters are
calculated in the framework of the Monte Carlo based method, and are further used in the anisotropic
Bruggeman effective medium theory to determine the difference of the main components of the
refractive index ∆n.

The ∆n values are calculated for the high-energy deposited clusters. Deposition angles vary from
0◦ to 80◦, which correspond to the normal and glancing angle deposition, respectively. Normally
deposited film is considered as a homogeneous structure without void volume. The increase in the
deposition angle leads to the decrease of the film density, due to pore formation. The maximum value of
the difference of the refractive index main components is equal to 0.035. While the reached level of the
simulation accuracy is close to that reported earlier [14], the calculated values of ∆n are still somewhat
lower than the experimental ones. Possible reasons for this are discussed, and it is pointed out that
even larger atomistic clusters should be considered to increase the accuracy of simulation experiments.

The developed method of combined modeling of the anisotropic properties of atomistic clusters
can be applied to other oxide films. For the calculation of ∆n values, information is required about the
deposition conditions—including the energy of the incoming atoms, the value of the deposition angle,
and the substrate temperature.
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Appendix A

Consider a medium with N ellipsoidal pores that have different shape parameters and are oriented
in the same direction. For this case, the semi-axis value averaged over the pores volume is calculated
as follows:

〈a〉 =
∑N

i=1 Viai∑N
i=1 Vi

(A1)

where Vi = (4π/3)aibici is the volume of the i-th ellipsoid, ai, bi ci are the semi-axes of i-th ellipsoid.
On the other hand, the averaged pore dimensions parameter ax is calculated as follows (see

Equation (10):

ax = limNin→∞

∑Nin
i=1 axi

Nin
=

∑N
i=1

s
a2

xi(y, z)dydz∑N
i=1 Vi

(A2)

where integration in each term is performed over the volume of the i-th pore. The boundary of the i-th
ellipsoid is defined by the equation: (

x
ai

)2

+

(
y
bi

)2

+

(
z
ci

)2

= 1 (A3)

The axi value is determined using Equation (A3):

axi(y, z) = 2ai

√
1−

(
y
bi

)2

−

(
z
ci

)2

(A4)
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So:
x

a2
xi(y, z)dydz =

ci∫
−ci


yi∫
−yi

a2
xi(y, z)dy

dz =
3ai
2

Vi (A5)

where yi = bi(1 − (z/ci)2)1/2. Substituting Equation (A5) into Equation (A2), we obtain:

ax =
3
∑N

i=1 Viai

2
∑N

i=1 Vi
=

3
2
〈a〉 (A6)

The ay(z) values can be calculated in the same way. Thus, the ratios of the shape parameters are
equal to the ratios of the averaged principal semi-axes:

ax

ay
=
〈a〉
〈b〉

;
ax

az
=
〈a〉
〈c〉

(A7)
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