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Abstract: In this paper, a two-dimensional semi-analytical method is developed for the mechanical
behavior analysis of multilayered solids subjected to surface contact loading, which is indispensable
for realizing an optimized tribological performance from the mechanical behavior point of view.
Firstly, the explicit analytical frequency response functions of the multilayered solid are derived in
a recursive form by analytically solving a system of linear equations established according to the
boundary conditions and the interface continuous conditions. Then, the two-dimensional elastic
field solution in the subsurface of multilayered solids in the space domain is converted from its
corresponding frequency response functions by employing a numerical conversion method based
on the inverse fast Fourier transformation. The present method is validated by comparing with
the solution given by other methods. Lastly, the stress analysis of multilayered coatings with
various structure layouts and various layer number of the multilayers were performed with the
present method.

Keywords: multilayer coatings; two-dimensional elastic field solution; analytical frequency response
functions; numerical conversion method; mechanical behavior analysis

1. Introduction

With the progress of surface engineering in the past several decades, multilayer coatings are
often used in the surface modification of tribo-parts to enhance their tribological performance and
service life under extreme service conditions, such as high vacuum, high radiation, high load, and high
temperature [1–4]. Meanwhile, from the mechanical behavior point of view, a deformation and stress
analysis of multilayered solids is indispensable to their optimal design and engineering application [5].

Many researches have been carried out theoretically and numerically to understand the mechanical
behavior of coated solids by using different methods. Besides the finite element method [6–9], boundary
element method [10,11], and image point method [12–14], the integral transform techniques [15] were
most popular in producing the elastic filed solution of layered mediums. If the fundamental solutions
that satisfy the governing equations are obtained with integral transform techniques or other methods,
then a semi-analytical method or model, which always has a higher rate of convergence and consumes
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less solving time than the other numerical methods, can be developed to analyze the engineering
problems [16–18]. Therefore, the fundamental solutions that satisfy the governing equations are the
key to developing the semi-analytical method or model. In the early research work, the substrate of
the coating-substrate system was treated as a rigid body [19,20]. Based on the Airy stress function,
a two-dimensional elastic field solution in terms of Fourier integral transform (FT) for solids coated
with a monolayer was given and the substrate was treated as an elastic body [21]. However, the
tangential traction applied on the surface was not considered. Based on the formulas in Ref. [21], King
and O’Sullivan [22] further gave the two-dimensional (2D) frequency response functions (FRF) of
monolayer coatings with both the normal pressure and the tangential traction considered, which is the
2D elastic field solution in the frequency domain of the monolayer coating. Based on the 2D FRF of
monolayer coatings, Wang et al. built a 2D contact model between a solid coated with a single layer
and a rigid cylinder to analyze the influence of the coating thickness on its mechanical behavior under
various friction coefficients [23]. Elsharkawy and Hamrock described the basic steps of solving the
2D FRF of the multilayer coating-substrate system by introducing the FT [24]. However, the solving
process becomes increasingly complicated with the increase of the layer number, and only the elastic
field solution of a bilayer coating-substrate system was presented. Elsharkawy and Hamrock [25]
further investigated the effect of the frictional force on the stress field based on their research in
Ref. [24]. In order to model the contact problem of a graded layer, Ke et al. [26–28] also adopted the
FT technique to obtain the 2D FRF of multilayered solids by assuming that the elasticity modulus of
each layer meets the exponential variation law along its depth, the elasticity modulus is continuous on
the interface and the Poisson ratio is the same to each layer. In the past several decades, considerable
efforts have been devoted to the 2D mechanical behavior analysis of solids coated with monolayer
or bilayer coatings. However, only a few efforts have been devoted to the 2D mechanical behavior
analysis involved solids coated with multilayer coatings. In the research involving multilayer coatings,
the 2D FRF was deduced by forcing the elasticity moduli and Possion ratios of two adjacent layers to
be continue on their interface. To my best knowledge, too few attentions have been paid to the 2D
elastic filed solution multilayer coating-substrate systems without any mandatory requirement on
the interface continuity of the elasticity modulus and Possion ratios. Furthermore, the mechanical
behavior of multilayered solids with various layouts and layer numbers of the multilayers subjected to
the surface contact loading, which may potentially play an important role in the optimal design and
performance improvement of multilayered solids, still receives too little attention.

Therefore, efforts are devoted to developing a 2D semi-analytical method for the mechanical
behavior analysis of multilayered solids subjected to surface contact loading in this paper. First, based
on the 2D general FRF of layered material, a system of linear equations involved the unknown constants
in the 2D general FRF of layered materials is established according to the boundary conditions and the
interface continuous conditions. Next, the 2D FRF of multilayered solids is obtained by determining
the unknown constants in the 2D general FRF of the layered materials through solving a system of
linear equations analytically. Then, the 2D elastic field solution of multilayered solids is converted from
its 2D FRF by employing a numerical conversion method based on the inverse fast Fourier transform
(IFFT). The present method of multilayered solids is validated by comparisons with the finite element
method as well as the exact analytical solution given by McEwen. Lastly, several specific conclusions
are drawn based on the numerical investigation on the mechanical behavior of multilayered solid with
various layouts and various layer number of the multilayered system by utilizing the present method.

2. Theoretical Formulation

2.1. Statement of the Mechanical Problem

Figure 1 illustrates a 2D plain strain problem, in which an elastic solid coated with multilayers is
subjected to surface contact loading p(x) and q(x). In the figure, N is the layer number of the multilayer
coatings, while hk, Ek and νk are the thickness, elasticity modulus and Poisson ratio of the kth layer,
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respectively. EN+1 and νN+1 are the elasticity modulus and Poisson ratio of the substrate material,
respectively. p(x) and q(x) are the surface normal pressure and the tangential traction applied on the
surface of the multilayer coatings, respectively. The normal pressure and the tangential traction applied
on the surface are given by Hertz line contact theory as follows [29]:

p(x) =

pH

√
bH

2
− x2 |x| ≤ bH

0 else
(1)

q(x) =

µ f pH

√
bH

2
− x2 |x| ≤ bH

0 else
(2)

where pH and bH represent the maximum contact pressure and the contact half-width of the substrate
material in the Hertz line contact, and µf represents the friction coefficient.
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2.2. Two-Dimensional Analytical Frequency Response Functions of Multilayered Solids

For a 2D plane strain problem, the stress and displacement components of layered materials in
frequency domain are given as Equations (3)–(7) [22,23] based on the Airy stress function by using the
FT technique.

σ̃
(k)
zz = −ωx

2A(k)
1 e−|ωx |zk −ωx

2A(k)
2 zke−|ωx |zk −ωx

2A(k)
3 e|ωx |zk −ωx

2A(k)
4 zke|ωx |zk (3)

σ̃
(k)
xx = |ωx|

2A(k)
1 e−|ωx |zk − (2− |ωx|zk)|ωx|A

(k)
2 e−|ωx |zk + |ωx|

2A(k)
3 e|ωx |zk + (2 + |ωx|zk)|ωx|A

(k)
4 e|ωx |zk (4)

σ̃
(k)
xz = iωx

(
|ωx|A

(k)
1 e−|ωx |zk − (1− |ωx|zk)A

(k)
2 e−|ωx |zk − |ωx|A

(k)
3 e|ωx |zk − (1 + |ωx|zk)A

(k)
4 e|ωx |zk

)
(5)

ũ(k)
z =

1 + νk
Ek

 |ωx|A
(k)
1 e−|ωx |zk + (1− 2νk + |ωx|zk)A

(k)
2 e−|ωx |zk

−|ωx|A
(k)
3 e|ωx |zk + (1− 2νk − |ωx|zk)A

(k)
4 e|ωx |zk

 (6)

ũ(k)
x = −i

1 + νk
Ek

 ωxA(k)
1 e−|ωx |zk + (ωxzk − 2(1− νk)|ωx|/ωx)A

(k)
2 e−|ωx |zk

+ωxA(k)
3 e|ωx |zk + (ωxzk + 2(1− νk)|ωx|/ωx)A

(k)
4 e|ωx |zk

 (7)

where the symbol ‘i’ represents the imaginary unit, the symbol ‘~’ represents the one-dimensional
Fourier integral transform. A1

(k), A2
(k), A3

(k) are A4
(k) are the unknown constants in the 2D FRF of the

kth layered material.
There are 4(N + 1) − 2 unknown constants that need to be determined in total to obtain the 2D

FRF of a multilayered solid with N layers, since the unknown constants A3
(k) and A4

(k) are zero because
all the stress and displacement components of the substrate become zero when zN+1 tends to infinity.
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The 4(N + 1) − 2 unknown constants can be determined with the boundary conditions and the interface
continuous conditions of the multilayered solids, which are:

σ̃
(1)
zz

∣∣∣∣
z1=0

= −p̃ (8)

σ̃
(1)
zx

∣∣∣∣
z1=0

= −q̃ (9)

σ̃
(k)
zz

∣∣∣∣
zk=hk

= σ̃
(k+1)
zz

∣∣∣∣
zk+1=0

(10)

σ̃
(k)
zx

∣∣∣∣
zk=hk

= σ̃
(k+1)
zx

∣∣∣∣
zk+1=0

(11)

ũ(k)
z

∣∣∣∣
zk=hk

= ũ(k+1)
z

∣∣∣∣
zk+1=0

(12)

ũ(k)
x

∣∣∣∣
zk=hk

= ũ(k+1)
x

∣∣∣∣
zk+1=0

(13)

where 1 ≤ k ≤ N, p̃ and q̃ are the one-dimensional FT of the normal pressure p(x) and the tangential
traction q(x). Using the results given in Ref. [30,31], the one-dimensional FT of the normal pressure p(x)
and the tangential traction q(x) can be given as Equations (14) and (15), respectively.

p̃ = πpH J1(bHωx)/ωx (14)

q̃ = πµ f pH J1(bHωx)/ωx (15)

where J1 is the Bessel function of the first kind.
Substituting Equations (3)–(7) into Equations (8) and (9), two linear equations are obtained:

A(1)
1 + A(1)

3 = −p̃/ωx
2 (16)

|ωx|A
(1)
1 −A(1)

2 − |ωx|A
(1)
3 −A(1)

4 = ĩq/ωx (17)

When 1 ≤ k ≤ N − 1, 4(N − 1) linear equations can be obtained by substituting Equations (3)–(7)
into Equations (10)–(13).

e−|ωx |hk A(k)
1 + hke−|ωx |hk A(k)

2 + e|ωx |hk A(k)
3 + A(k)

4 hke|ωx |hk −A(k+1)
1 −A(k+1)

3 = 0 (18)

−|ωx|e−|ωx |hk A(k)
1 + (1− |ωx|hk)e−|ωx |hk A(k)

2 + |ωx|e|ωx |hk A(k)
3 + (1 + |ωx|hk)e|ωx |hk A(k)

4
+|ωx|A

(k+1)
1 −A(k+1)

2 − |ωx|A
(k+1)
3 −A(k+1)

4 = 0
(19)

|ωx|A
(k)
1 e−|ωx |hk + (1− 2νk + |ωx|hk)A

(k)
2 e−|ωx |hk − |ωx|A

(k)
3 e|ωx |hk + (1− 2νk − |ωx|hk)A

(k)
4 e|ωx |hk

−ξk+1|ωx|A
(k+1)
1 − ξk+1(1− 2νk+1)A

(k+1)
2 − ξk+1|ωx|A

(k+1)
3 − ξk+1(1− 2νk+1)A

(k+1)
4 = 0

(20)

ωxA(k)
1 e−|ωx |hk + (ωxhk − 2(1− νk)|ωx|/ωx)A

(k)
2 e−|ωx |hk

+ωxA(k)
3 e|ωx |hk + (ωxhk + 2(1− νk)|ωx|/ωx)A

(k)
4 e|ωx |hk − ξk+1ωxA(k+1)

1
+(2ξk+1(1− νk+1)|ωx|/ωx)A

(k+1)
2 − ξk+1ωxA(k+1)

3 − (2ξk+1(1− νk+1)|ωx|/ωx)A
(k+1)
4 = 0

(21)

When k = N, 4 linear equations can be obtained by substituting Equations (3)–(7) into
Equations (10)–(13).

e−|ωx |hN A(N)
1 + hNe−|ωx |hN A(N)

2 + e|ωx |hN A(N)
3 + A(N)

4 hNe|ωx |hN −A(N+1)
1 = 0 (22)

−|ωx|e−|ωx |hN A(N)
1 + (1− |ωx|hN)e−|ωx |hN A(N)

2 + |ωx|e|ωx |hN A(N)
3 + (1 + |ωx|hN)e|ωx |hN A(N)

4
+|ωx|A

(N+1)
1 −A(N+1)

2 = 0
(23)
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|ωx|A
(N)
1 e−|ωx |hN + (1− 2νN + |ωx|hN)A

(N)
2 e−|ωx |hN − |ωx|A

(N)
3 e|ωx |hN

+(1− 2νN − |ωx|hN)A
(N)
4 e|ωx |hN − ξN+1|ωx|A

(N+1)
1 − ξN+1(1− 2νN+1)A

(N+1)
2 = 0

(24)

ωxA(N)
1 e−|ωx |hN + (ωxhN − 2(1− νN)|ωx|/ωx)A

(N)
2 e−|ωx |hN +ωxA(N)

3 e|ωx |hN

+(ωxhN + 2(1− νN)|ωx|/ωx)A
(N)
4 e|ωx |hN − ξN+1ωxA(N+1)

1 + (2ξN+1(1− νN+1)|ωx|/ωx)A
(N+1)
2 = 0

(25)

where ξk+1 = Ek(1 + νk+1)/[Ek+1(1 + νk+1)].
The system of linear equations composed of Equations (16)–(25) can be solved simultaneously with

a numerical method according to Ref. [32]. However, the numerical method will consume a lot solving
time especially when the layer number is large, since an equation group with 4(N + 1) − 2 equations
should be solved for λNx times. The meaning of the symols λ and Nx can be seen in Section 2.3.
Therefore, analogous to the method proposed in Ref. [33], an analytical solution of the unknown
constants in Equations (3)–(7) is derived and given in a recursive form in this paper. Equations (22)–(25)
based on the continuous conditions of the last interface are used to solved the unknown constants
A1

(N+1) and A2
(N+1) of the substrate as functions of the unknown constants A1

(k), A2
(k), A3

(k), and A4
(k)

of the kth layer.

A(N+1)
1 = e−|ωx |hN A(N)

1 + hNe−|ωx |hN A(N)
2 + e|ωx |hN A(N)

3 + hNe|ωx |hN A(N)
4 (26)

A(N+1)
2 = e−|ωx |hN A(N)

2 + 2|ωx|e|ωx |hN A(N)
3 + (1 + 2|ωx|hN)e|ωx |hN A(N)

4 (27)

Two more relationships of the unknown constants A1
(N), A2

(N), A3
(N) and A4

(N) are given as:

S(N)
1 A(N)

1 + S(N)
2 S(N)

2 + S(N)
3 e2|ωx |hN A(N)

3 + S(N)
4 e2|ωx |hN A(N)

4 = 0 (28)

S(N)
5 A(N)

1 + S(N)
6 S(N)

2 + S(N)
7 e2|ωx |hN A(N)

3 + S(N)
8 e2|ωx |hN A(N)

4 = 0 (29)

where the S terms in Equations (28) and (29) are the intermediate constants which are listed in the
Appendix A.

The unknown constants A1
(k+1), A2

(k+1), A3
(k+1), and A4

(k+1) of the (k + 1)th layer can be solved
from Equations (18)–(21) as functions of the unknown constants A1

(k), A2
(k), A3

(k), and A4
(k) of the kth

layer as follows:

A(k+1)
1 = t(k)11 e−|ωx |hk A(k)

1 + t(k)12 e−|ωx |hk A(k)
2 + t(k)13 e|ωx |hk A(k)

3 + t(k)14 e|ωx |hk A(k)
4 (30)

A(k+1)
2 = t(k)21 e−|ωx |hk A(k)

1 + t(k)22 e−|ωx |hk A(k)
2 + t(k)23 e|ωx |hk A(k)

3 + t(k)24 e|ωx |hk A(k)
4 (31)

A(k+1)
3 = t(k)31 e−|ωx |hk A(k)

1 + t(k)32 e−|ωx |hk A(k)
2 + t(k)33 e|ωx |hk A(k)

3 + t(k)34 e|ωx |hk A(k)
4 (32)

A(k+1)
4 = t(k)41 e−|ωx |hk A(k)

1 + t(k)42 e−|ωx |hk A(k)
2 + t(k)43 e|ωx |hk A(k)

3 + t(k)44 e|ωx |hk A(k)
4 (33)

where the t terms in Equations (30)–(33) are the intermediate constants which are also listed in the
Appendix A.

Assume that two relationships of the unknown constants A1
(k+1), A2

(k+1), A3
(k+1), and A4

(k+1) of
the (k + 1)th layer have been developed as follows:

S(k+1)
1 A(k+1)

1 + S(k+1)
2 A(k+1)

2 + S(k+1)
3 e2|ωx |hk+1A(k+1)

3 + S(k+1)
4 e2|ωx |hk+1A(k+1)

4 = 0 (34)

S(k+1)
5 A(k+1)

1 + S(k+1)
6 A(k+1)

2 + S(k+1)
7 e2|ωx |hk+1A(k+1)

3 + S(k+1)
8 e2|ωx |hk+1A(k+1)

4 = 0 (35)
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By appropriate algebra operations among the equations shown in Equations (30)–(35), two
relationships of the unknown constants A1

(k), A2
(k), A3

(k), and A4
(k) of the kth layer can be deduced

as follows:
S(k)

1 A(k)
1 + S(k)

2 A(k)
2 + S(k)

3 e2|ωx |hk A(k)
3 + S(k)

4 e2|ωx |hk A(k)
4 = 0 (36)

S(k)
5 A(k)

1 + S(k)
6 A(k)

2 + S(k)
7 e2|ωx |hk A(k)

3 + S(k)
8 e2|ωx |hk A(k)

4 = 0 (37)

where the S terms in Equations (36) and (37) are the intermediate constants and listed in the Appendix A.
It can be found that the S terms of the kth layer contain those of the (k + 1)th layer and their algebraic
expressions are true for every layer of the multilayer system. Therefore, the two relationships of the
unknown constants A1

1, A2
1, A3

1, and A4
1 of the 1st layer are:

S(1)
1 A(1)

1 + S(k)
2 A(k)

2 + S(1)
3 e2|ωx |h1A(1)

3 + S(1)
4 e2|ωx |h1A(1)

4 = 0 (38)

S(1)
5 A(1)

1 + S(1)
6 A(1)

2 + S(1)
7 e2|ωx |h1A(1)

3 + S(1)
8 e2|ωx |h1A(1)

4 = 0 (39)

The S terms of the 1st layer in Equations (36) and (37) are calculated with their recursive formulas
shown in Equations (A1)–(A8) and Equations (A24)–(A32) layer by layer in a down to top fashion.
The solution of the unknown constants A1

1, A2
1, A3

1, and A4
1 of the 1st layer can be solved from

Equations (16), (17), (38), and (39), and given as follows:

A(1)
1 =

(
S(0)

4 R(0)
a − S(0)

2 R(0)
b

)
/
(
S(0)

1 S(0)
4 − S(0)

2 S(0)
3

)
(40)

A(1)
2 =

(
S(0)

3 R(0)
a − S(0)

1 R(0)
b

)
/
(
S(0)

2 S(0)
3 − S(0)

1 S(0)
4

)
(41)

A(1)
3 = −p̃/ωx

2
−A(1)

1 (42)

A(1)
4 = |ωx|A

(1)
1 −A(1)

2 − |ωx|A
(1)
3 − ĩq/ωx (43)

where S1
(0), S2

(0), S3
(0), S4

(0), Ra
(0), and Rb

(0) are the intermediate constants and listed in the Appendix A.
Then the unknown constants in the 2D general FRF of the other layers and the substrate can be

obtained with their recursive formulas shown in Equations (28) and (29) and Equations (22)–(25) layer
by layer in a top-down fashion.

2.3. Numerical Conversion Method

Having obtained the 2D explicit analytical FRF of multilayered solids, the elastic field solution in
the space domain can be converted from its corresponding FRF by using an IFFT based numerical
conversion method. The conversion method originally is used to produce the influence coefficients
of the stress and displacement components for developing a semi-analytical contact model [34,35].
The detailed steps of using the IFFT based numerical conversion method to produce the stress
component σrs at z depth are as follows:

• Select a computing domain {x|xb ≤ x ≤ xe} at z depth and divide it uniformly into Nx line elements.
The number Nx is required to be a positive integral power of 2. xb and xe are usually chosen to be
−2bH and 2bH, respectively.

• Refine the grid into Nωx uniform elements in the frequency domain {ωx|−π < ωx ≤ π}, where
Nωx = λNx and λ should be a nonnegative integral power of 2.

• Construct a discrete series
^
σrs by using the FRF of the stress component σrs:

σ̂rs[i] =
∆ωxNωx

2π

κ∑
ζ=−κ

σ̃rs(i∆ωx − ∆ωxNωxζ) −Nωx /2 < i ≤ Nωx /2 (44)
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• Reconstruct a new discrete series
_
σrs by applying a wrap-order operation to

_
σrs:

_
σrs[i] = σ̂rs[i + Nωx /2− 1] Nωx /2 < i ≤ 1
_
σrs[i] = σ̂rs[i−Nωx /2− 1] 2 < i ≤ Nωx /2

(45)

• Apply the IFFT operation to the discrete series
_
σrs:

¯
σrs= IFFT

(_
σrs

)
(46)

• The stress at each line element in the discrete space domain can be obtained as follows:

σrs[i] = σrs[Nωx −Nx/2 + i + 1] 1 ≤ i ≤ Nx/2− 1
σrs[i] = σrs[i−Nx/2 + 1] Nx/2 ≤ i ≤ Nx − 1

(47)

A very high conversion accuracy can be achieved by selecting an enough large λ and κ to eliminate
the periodic error and the error caused by aliasing effect. However, the increase of λ and κwill lead
to a heavier calculation burden. In this paper, λ and κ are fixed as 4 and 5, respectively because the
elastic field solution of the present method agrees well with the exact analytical solution given by
McEwen [36] and the solution of the finite element method, when λ = 4 and κ = 5. It can be found in
Section 3 of this paper.

3. Validation of the Present Method

In order to validate the present method, the maximum shear stress in the subsurface of a half plane
of the substrate material subjected to surface mechanical loading obtained by the present method is
compared with the exact analytical solution given by McEwen seen in Ref. [36]. The input parameters
of the present method are listed in Table 1. The elasticity parameters of the layer are the same to those
of the substrate when the present method is adopted to simulate the problem of the half plane of the
substrate material subjected to surface contact loading.

Table 1. Input parameters of the present method for simulating a half plane of the substrate material
subjected to subjected to surface contact loading.

pH
(Mpa)

bH
(mm)

N
(–)

νi (1 ≤ i ≤ N + 1)
(–)

Ei (1 ≤ i ≤ N + 1)
(GPa)

hi (1 ≤ i ≤ N)
(m)

µf
(–)

836.41 0.761 3 0.3 200 bH/N 0

Figure 2 is the contour plots of the maximum shear stress of the half plane of the substrate material
subjected to surface contact loading. When the friction coefficient is 0. As indicated in the figure, the
contour plot of the maximum shear stress τ of the present method shown in Figure 2b agrees well with
the exact analytical solution given by McEwen shown in Figure 2a. The relative error of the peak value
of the maximum shear stress is not more than 0.01%.Coatings 2020, 10, x FOR PEER REVIEW 8 of 17 

 

 

Figure 2. Comparison of the maximum shear stress of a half plane of the substrate material subjected 

to subjected to surface contact loading, (a) the exact analytical solution given by McEwen, (b) the 

solution of the present method. 

Table 2. Input parameters of the present method for simulating the multilayered solid with 40 layers 

subjected to surface contact loading.  

pH 

(Mpa) 
bH 

(mm) 
N 

(–) 
νi (1 ≤ i ≤ N + 1) 

(–) 

E41 

(GPa) 
E1 

(GPa) 
Ei (2 ≤ i ≤ N) 

(GPa) 

hi (1 ≤ i ≤ N) 

(m) 

μf  

(–)
 

836.41 0.761 40 0.3 200 100 Ei = Ei−1 + ΔE bH/N 0, 0.2 

The finite element analysis of a multilayered solids subjected to surface mechanical loading with 

Hertzian distribution is performed with a commercial software ANSYS 15.0. The FEM model of the 

multilayered solid subjected to surface mechanical loading is shown in Figure 3. In order to make the 

FEM model better approximate to the half-plane assumption of the semi-analytical method 

developed in this paper, the geometric model, which is a rectangle with a size of 600bH in x direction 

and 300bH in z direction, is built and meshed with the finite element named Plane 182, since the two-

dimensional mechanical problem of a multilayered solid subjected to surface mechanical loading is 

a plain strain problem. The displacements of the nodes located at the bottom of the FEM model are 

set to be 0, and the surface mechanical loading with Hertzian distribution is applied on the surface 

loading region of the FEM model by using the finite element named Surf 153.  

 

Figure 3. The illustration of the FEM model of the multilayered solid subjected to surface mechanical 

loading. 

Figure 2. Comparison of the maximum shear stress of a half plane of the substrate material subjected to
subjected to surface contact loading, (a) the exact analytical solution given by McEwen, (b) the solution
of the present method.
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In order to further validate the present method, a comparison of the maximum shear stress in the
subsurface of a multilayered solid with 40 layers is also conducted between the solution of the present
method and that of the finite element method. The parameters of the multilayered solid and the other
concerning parameters are shown in Table 2.

Table 2. Input parameters of the present method for simulating the multilayered solid with 40 layers
subjected to surface contact loading.

pH
(Mpa)

bH
(mm)

N
(–)

νi (1 ≤ i ≤N + 1)
(–)

E41
(GPa)

E1
(GPa)

Ei (2 ≤ i ≤ N)
(GPa)

hi (1 ≤ i ≤ N)
(m)

µf
(–)

836.41 0.761 40 0.3 200 100 Ei = Ei−1 + ∆E bH/N 0, 0.2

The finite element analysis of a multilayered solids subjected to surface mechanical loading with
Hertzian distribution is performed with a commercial software ANSYS 15.0. The FEM model of the
multilayered solid subjected to surface mechanical loading is shown in Figure 3. In order to make the
FEM model better approximate to the half-plane assumption of the semi-analytical method developed
in this paper, the geometric model, which is a rectangle with a size of 600bH in x direction and 300bH in
z direction, is built and meshed with the finite element named Plane 182, since the two-dimensional
mechanical problem of a multilayered solid subjected to surface mechanical loading is a plain strain
problem. The displacements of the nodes located at the bottom of the FEM model are set to be 0, and
the surface mechanical loading with Hertzian distribution is applied on the surface loading region of
the FEM model by using the finite element named Surf 153.
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Figure 3. The illustration of the FEM model of the multilayered solid subjected to surface
mechanical loading.

Figure 4 is the contour plots of the maximum shear stress of the multilayered solid with 40 layers
subjected to surface contact loading under different friction coefficients. Obviously, the contour plots
of the maximum shear stress obtained with the present method shown in Figure 4b are in a good
agreement with those obtained with the finite element method shown in Figure 4a for both µf = 0 and
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µf = 0.2. The relative error of the peak value of the maximum shear stress is not more than 0.15% for
both µf = 0 and µf = 0.2.
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to surface contact loading, (a) the solution of FEM, (b) the solution of the present method.

The comparisons presented above not only validate the present method and the IFFT based
numerical conversion method adopted in this paper, but also show that the present method adapts to
multilayer coatings with various layer numbers and layer thicknesses.

4. Results and Discussions

In order to get a deep insight into the mechanical behavior of multilayered solids with various
structure layouts and various layer numbers of the multilayers subjected to the surface contact loading,
numerical simulations are conducted with the present method. In all numerical simulation cases, the
maximum contact pressure pH and the contact half-width bH are the same to those given in Table 1.
The Poisson ratios of the layers and the substrate are all fixed at 0.3. The elasticity modulus of the top
layer is fixed at 800 GPa, the elasticity modulus of the substrate materials is fixed at 200 GPa, and the
moduli of the other layers is due to the layout of the multilayers.

4.1. Influence of the Structure Layout of the Multilayers on the Mechanical Behavior

Figure 5 is the contour plots of the maximum shear stress in the subsurface of multilayered solids
with various structure layouts when the friction coefficient is 0 and 0.5, respectively. The elasticity
modulus along z axis of various structure layouts of the multilayers is shown in Figure 5a. The layer
number N is 10, and all layers from the top layer to the bottom layer have the same thickness of
bH/10. The first layout of the multilayer is a monolayer coating since the elasticity modulus remains
unchanged from the top layer to the bottom layer and changes abruptly on the interface between the
bottom layer and the substrate. The other four layouts of the multilayers afford four alternatives to
avoid the sudden change of elasticity modulus as that of the 1st layout through a gradient change
layer by layer. For the first layout, a significant discontinuity can be found on the interface between the
bottom layer and the substrate. The peak value of the maximum shear stress is 0.567pH for µf = 0 and
locates at the bottom of the bottom layer. This is a result of the sudden decrease of elasticity modulus
on from 800 GPa of the layers to 200 GPa of the substrate. The peak value of the maximum shear
stress increases rapidly to 0.816pH for µf = 0.5 and its location shifts to the surface due to the friction
traction applied on the surface. For the second layout, the significant discontinuity of the maximum
shear stress as that of the 1st layout does not exist anymore and a relatively small discontinuity is



Coatings 2020, 10, 429 10 of 17

observed on the interface of each two adjacent layers, and the discontinuity on the interface of the top
five layers is more visible than that on the interface of the bottom five layers. The maximum shear
stress decreases in the layers close to the substrate while increases dramatically in the surface region, so
its peak value locates on the surface and reaches 0.582pH for µf = 0 and 0.960pH for µf = 0.5 respectively.
For the third layout, the contour plots of the maximum shear stress are very similar to those of the
second layout. The peak value of the maximum shear stress is 0.548pH for µf = 0 and 0.886pH for µf
= 0.5 respectively and both locate on the surface of the multilayered solids. For the 4th layout, no
discontinuity of the maximum shear stress is observed from the first layer to the fifth layer due to the
same elasticity modulus of the top five layers. The maximum shear stress also reduces in the layers
close to the substrate and increases in the surface region. The peak value of the maximum shear stress
is 0.526pH for µf = 0 and 0.836pH for µf = 0.5 respectively and both locate on the surface too. For the
fifth layout, the decrease of the maximum shear stress in the layers close to the substrate is not as
significant as those of the second layout to fourth layout, and the increase of the maximum shear stress
in the surface region is also not as significant as those of the second layout to fourth layout. The peak
value of the maximum shear stress is 0.487pH for µf = 0 and 0.764pH for µf = 0.5 respectively, which are
the smallest among the five layouts of the multilayers investigated numerically in this research.
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Figure 5. Contour plots of the maximum shear stress in the subsurface of multilayered solids with
various structure layouts of multilayers, (a) the structure layouts of multilayers, (b) the contour plots of
the maximum shear stress when µf = 0, (c) the maximum shear stress when µf = 0.5.

Figure 6 shows the influence of the structure layouts of the multilayered solids on the peak value
of the maximum shear stress under various friction coefficients. With the increase of the friction
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coefficient, the peak value of the maximum shear stress increases slightly when µf ranges from 0 to 0.2
for various layouts of multilayered solids, while increases relatively significantly when µf ranges from
0.2 to 0.5. For the second layout to fifth layout, the peak value of the maximum shear stress decreases
in the order of the second layout, the third layout, the fourth layout and the fifth layout under various
friction coefficients. As indicated in the figure, the peak value of the maximum shear stress of the
second layout is larger than that of the first layout under various friction coefficients. The peak value
of the maximum shear stress of the third layout and the fourth layout is smaller than that of the first
layout when the friction coefficient is smaller than 0.1, and it is opposite when the friction coefficient is
larger than about 0.2. It can be further observed that only the peak value of the maximum shear stress
of the fifth layout is smaller than that of the first layout under various friction coefficients. Further,
the peak value of the maximum shear stress of the fifth layout is about 16.3% smaller than that of the
second layout when the friction coefficient is 0. Therefore, the peak value of the maximum shear stress,
which is closely related to the yield and fatigue damage of materials [37,38], can be reduced effectively
by optimizing the structure layout of multilayered solids and minimized by employing a structure
layout with elasticity modulus increasing first in the top layers and then decreasing in the bottom
layers just as the fifth layout shown in Figure 5a.
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shear stress in the subsurface under various friction coefficients.

4.2. Influence of the Layer Number of the Multilayers on the Mechanical Behavior

Figure 7 is the contour plots of the maximum shear stress in the subsurface of multilayered solids
with a similar structure layout of the multilayers but a different layer number. It can be seen from
Figure 7b,c that the discontinuity of the maximum shear stress on the interface of each two adjacent
layers becomes more invisible with the increase of the layer number for both µf = 0 and µf = 0.5, which
is a result of that the difference in the elasticity moduli of each two neighboring layers becomes smaller
with the increase of the layer number as shown in Figure 7a. The peak value of the maximum shear
stress of the solid coated with three layers locates at the bottom of the third layer. However, it moves to
the surface when the layer number increases to nine layers and 36 layers. A decrease of the peak value
of the maximum shear stress can be observed when the layer number increases from three to nine,
while almost no difference of the peak value of the maximum shear stress is observed when the layer
number increases from 9 to 36.
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Figure 7. Contour plots of the maximum shear stress in the subsurface of multilayered solids with a
similar structure layout but a different layer number, (a) the elasticity modulus along z axis, (b) the
maximum shear stress when µf is 0, (c) the maximum shear stress when µf is 0.5.

The stress σxx along z axis of multilayered solids with a similar layout of the multilayers but a
different layer number is shown in Figure 8 when the friction coefficient is 0. It can be observed that
the stress σxx is discontinuous on the interface of each two neighboring layers, and the discontinuity
of the stress σxx also becomes more invisible with the increase of the layer number. As indicated in
Figure 7, the stress σxx is tensile in the region close to the substrate, and the tensile stress σxx is so
large that its maximum value reaches up to 0.5pH when the layer number is three. It also can be
found that the maximum value of the tensile stress σxx in the region close to the substrate becomes
smaller with the increase of the layer number, although the tensile stress σxx could not be completely
eliminated by increasing the layer number. The maximum tensile stress σxx decreases to 0.28pH when
the layer number increases to 36. Obviously, the maximum tensile stress σxx, which is believed to be
responsible for the initiation and propagation of cracks at the base of hard coatings [39,40], can be
reduced effectively by increasing the layer number.
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5. Conclusions

A semi-analytical method for the 2D mechanical behavior analysis of multilayered solids has been
developed and validated in this paper. The influence of the structure layout and the layer number on
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the mechanical behavior of the multilayered solid has also been numerically investigated based on the
present method. Several conclusions are drawn as follows:

• A 2D analytical frequency response functions of multilayered solids subjected to surface contact
loading is derived and given in a recursive form.

• A 2D semi-analytical method for the mechanical behavior analysis of multilayered solids is
developed by converting from its frequency response functions with an IFFT based numerical
conversion method.

• Among various structure layouts numerically investigated in this paper, the layout with elasticity
modulus increasing first in the top layers and then decreasing in the bottom layers can minimize
the peak value of the maximum shear stress under various friction coefficients.

• The maximum tensile stress σxx in subsurface can be reduced effectively by increasing the layer
number of multilayered solids.
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Appendix A

S(N)
1 = (1− ξN+1)|ωx| (A1)

S(N)
2 = [(1− 2νN + |ωx|hN) − ξN+1|ωx|hN − (1− 2νN+1)ξN+1] (A2)

S(N)
3 = −(1 + 3ξN+1 − 4ξN+1νN+1)|ωx| (A3)

S(N)
4 = [1− 2νN − (1 + ξN+1)|ωx|hN − ξN+1(1− 2νN+1)(1 + 2|ωx|hN)] (A4)

S(N)
5 = (1− ξN+1)ωx (A5)

S(N)
6 = (1− ξN+1)ωxhN + 2(ξN+1 + νN − ξN+1νN+1 − 1)|ωx|/ωx (A6)

S(N)
7 = (3ξN+1 − 4ξN+1νN+1 + 1)ωx (A7)

S(N)
8 = (1 + 3ξN+1 − 4ξN+1νN+1)ωxhN + 2(1 + ξN+1 − νN − ξN+1νN+1)|ωx|/ωx (A8)

t(k)21 =

[
1− ξk+1

2ξk+1(1− 2νk+1)
−

1− ξk+1

4ξk+1(1− νk+1)

]
|ωx| (A9)

t(k)22 =
1− 2νk + (1− ξk+1)|ωx|hk

2ξk+1(1− 2νk+1)
−
(1− ξk+1)|ωx|hk − 2(1− νk)

4ξk+1(1− νk+1)
(A10)
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t(k)23 = −

[
1− ξk+1

4ξk+1(1− νk+1)
+

1 + ξk+1

2ξk+1(1− 2νk+1)

]
|ωx| (A11)

t(k)24 =
1− 2νk − (1 + ξk+1)|ωx|hk

2ξk+1(1− 2νk+1)
−
(1− ξk+1)|ωx|hk + 2(1− νk)

4ξk+1(1− νk+1)
(A12)

t(k)41 =

[
1− ξk+1

4ξk+1(1− νk+1)
+

1− ξk+1

2ξk+1(1− 2νk+1)

]
|ωx| (A13)

t(k)42 =
1− 2νk + (1− ξk+1)|ωx|hk

2ξk+1(1− 2νk+1)
+

(1− ξk+1)|ωx|hk − 2(1− νk)

4ξk+1(1− νk+1)
(A14)

t(k)43 =

[
1− ξk+1

4ξk+1(1− νk+1)
+

1 + ξk+1

2ξk+1(1− 2νk+1)

]
|ωx| (A15)

t(k)44 =
1− 2νk − (1 + ξk+1)|ωx|hk

2ξk+1(1− 2νk+1)
+

(1− ξk+1)|ωx|hk + 2(1− νk)

4ξk+1(1− νk+1)
(A16)

t(k)31 = −
t(k)21 + t(k)41

2|ωx|
(A17)

t(k)32 =
1− t(k)22 − t(k)42

2|ωx|
(A18)

t(k)33 =
2|ωx| − t(k)23 − t(k)43

2|ωx|
(A19)

t(k)34 =
1 + 2|ωx|hk − t(k)24 − t(k)44

2|ωx|
(A20)

t(k)11 = 1− t(k)31 (A21)

t(k)12 = hk − t(k)32 (A22)

t(k)13 = 1− t(k)33 (A23)

t(k)14 = hk − t(k)34 (A24)

S(k)
1 = S(k+1)

1 t(k)11 e−2|ωx |hk+1 + S(k+1)
2 t(k)21 e−2|ωx |hk+1 + S(k+1)

3 t(k)31 + S(k+1)
4 t(k)41 (A25)

S(k)
2 = S(k+1)

1 t(k)12 e−2|ωx |hk+1 + S(k+1)
2 t(k)22 e−2|ωx |hk+1 + S(k+1)

3 t(k)32 + S(k+1)
4 t(k)42 (A26)

S(k)
3 = S(k+1)

1 t(k)13 e−2|ωx |hk+1 + S(k+1)
2 t(k)23 e−2|ωx |hk+1 + S(k+1)

3 t(k)33 + S(k+1)
4 t(k)43 (A27)

S(k)
4 = S(k+1)

1 t(k)14 e−2|ωx |hk+1 + S(k+1)
2 t(k)24 e−2|ωx |hk+1 + S(k+1)

3 t(k)34 + S(k+1)
4 t(k)44 (A28)

S(k)
5 = S(k+1)

5 t(k)11 e−2|ωx |hk+1 + S(k+1)
6 t(k)21 e−2|ωx |hk+1 + S(k+1)

7 t(k)31 + S(k+1)
8 t(k)41 (A29)
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S(k)
6 = S(k+1)

5 t(k)12 e−2|ωx |hk+1 + S(k+1)
6 t(k)22 e−2|ωx |hk+1 + S(k+1)

7 t(k)32 + S(k+1)
8 t(k)42 (A30)

S(k)
7 = S(k+1)

5 t(k)13 e−2|ωx |hk+1 + S(k+1)
6 t(k)23 e−2|ωx |hk+1 + S(k+1)

7 t(k)33 + S(k+1)
8 t(k)43 (A31)

S(k)
8 = S(k+1)

5 t(k)14 e−2|ωx |hk+1 + S(k+1)
6 t(k)24 e−2|ωx |hk+1 + S(k+1)

7 t(k)34 + S(k+1)
8 t(k)44 (A32)

S(0)
1 = S(1)

1 e−2|ωx |h1 + 2S(1)
4 |ωx| − S(1)

3 (A33)

S(0)
2 = S(k)

2 e−2|ωx |h1 − S(1)
4 (A34)

S(0)
3 = S(1)

5 e−2|ωx |h1 + 2S(1)
8 |ωx|+ S(1)

7 (A35)

S(0)
4 = S(1)

6 e−2|ωx |h1 − S(1)
8 (A36)

R(0)
a =

(
S(1)

3 − S(1)
4 |ωx|

)
p̃/ωx

2 (A37)

R(0)
b = iS(1)

8 q̃/ωx +
(
S(1)

7 − S(1)
8 |ωx|

)
p̃/ωx

2 (A38)
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