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Abstract: Inkjet-printed top-gate metal oxide (MO) thin-film transistors (TFTs) with InGaSnO
semiconductor layer and carbon-free aqueous gate dielectric ink are demonstrated. It is found that
the InGaO semiconductor layer without Sn doping is seriously damaged after printing aqueous gate
dielectric ink onto it. By doping Sn into InGaO, the acid resistance is enhanced. As a result, the printed
InGaSnO semiconductor layer is almost not affected during printing the following gate dielectric
layer. The TFTs based on the InGaSnO semiconductor layer exhibit higher mobility, less hysteresis,
and better stability compared to those based on InGaO semiconductor layer. To the best of our
knowledge, it is for the first time to investigate the interface chemical corrosivity of inkjet-printed
MO-TFTs. It paves a way to overcome the solvent etching problems for the printed TFTs.
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1. Introduction

Over the past decade, great progress has been made in the development of the metal oxide
(MO) thin-film transistors (TFTs). MO-TFTs based on vacuum processes have been applied to the
commercialized display products such as liquid-crystal displays (LCDs) and active-matrix organic
light-emitting displays (AMOLEDs), but their cost is relatively high due to the expensive vacuum
systems and the complicated photolithography processes. In contrary, MO-TFTs fabricated by
solution-based techniques are more attractive for their low fabrication costs and high throughput [1–4].
Among all of the solution-based techniques, inkjet printing, as the state-of-the-art drop-on-demand
technique, is widely used in a variety of materials such as organic compounds, graphene, carbon
nanotubes and oxides [5–8] and is particularly attracted in MO-TFT fabrication for its low material
waste and high efficiency [9–11].

For inkjet-printed MO-TFTs, top-gate structure is more attractive compared to bottom-gate
structure, because the gate dielectric layer can protect the channel from being affected by the air
molecules or other defects introduced by the following processes [12]. Nevertheless, it is difficult
to realize high-performance top-gate MO-TFTs via solution-processing method, because most of the
amorphous MO semiconductors are sensitive to acidic environments [13]. That means amorphous
MO semiconductors are easily affected by the process of the gate dielectric layer, leading to poor
controllability and reproducibility [14]. It has been reported that indium tungsten oxide (IWO) has
certain acid resistance prepared by vacuum process and spin-coating [15–18]. Obviously, inkjet-printing
has the advantage of lower cost and greater potential of large-scale production.
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In this paper, inkjet-printed top-gate MO-TFTs with a Sn-doped InGaO (InGaSnO) semiconductor
layer were demonstrated. By doping Sn into InGaO, the chemical corrosivity is reduced. As a result,
the printed InGaSnO semiconductor layer is almost not affected during printing the following gate
dielectric layer. Although vacuum-processed InGaSnO films with the advantage of excellent electrical
and optical properties has been reported before [19–26], it is for the first time to investigate the chemical
corrosivity of inkjet-printed InGaSnO semiconductor films, to the best of our knowledge.

2. Experiment

2.1. Precursor Solutions

CYTOP solution was prepared by mixing solute (Asahi Glass, CTL-107MK) and solvent
(Asahi Glass, CT-SOLV180) with volume ratio of 1:5 at room temperature with magnetic stirring at
700 rpm for 12 h. The InGaSnO precursor ink was prepared by dissolving In(NO3)3·xH2O (Aldrich,
99.99%, 0.14 M), Ga(NO3)3·xH2O (Aldrich, 99.99%, 0.02 M) and SnCl2·xH2O (Aldrich, ≥99.995%, 0.04 M)
in the mixture solvent of 2-methoxyethanol (Shanghai Aladdin Bio-Chem. Technology Co., Shanghai,
China, 99.8%) and ethylene glycol (Shanghai Aladdin Bio-Chem. Technology Co., ≥99%) with a volume
ratio of 1/1. For comparison, InGaO precursor solution was made by dissolving In(NO3)3·xH2O
(0.18 M) and Ga(NO3)3·xH2O (0.02 M) in the mixture solvent. For AlOx precursor ink Al(NO3)3·xH2O
(Aldrich, 99.99%, 0.4 M) was dissolved in deionized water. Both InGaSnO precursor ink and AlOx

precursor ink were magnetically stirred at 700 rpm at room temperature for 12 h. Indium tin oxide (ITO)
precursor solution was prepared by dissolving In(NO3)3·xH2O (0.475 M) and SnCl2·xH2O (0.025 M)
in the mixture solvent of 2-methoxyethanol and ethylene glycol with a volume ratio of 1/1. The ITO
precursor ink was placed on a hot table at 50 ◦C and magnetically stirred at 700 rpm for 12 h. The AlOx

precursor ink and CYTOP pure solvent were filtered by 0.22 µm syringe filter, and the other solutions
were filtered by 0.45 µm syringe filter.

2.2. Device Fabrication

The surface-energy pattern and oxide film were fabricated with Dimatix (DMP-2850) inkjet printer
(FUJIFILM Dimatix, Inc., Santa Clara, CA, USA) with a 10-pL ink cartridge. The glass substrate
(Eagle XG, Corning, New York, NY, USA, 3 cm × 3 cm) is prepared by ultrasonic cleaning with water
and isopropanol for 10 min respectively before deposition. The surface-energy pattern-assisted inkjet
printing method was employed to prepare the aforementioned inkjet printing films [27], where the
details of processing parameters are summarized in Table 1. The first step was to spin CYTOP solution
onto the substrate at a speed of 3000 rpm for 40 s to generate a CYTOP layer with a thickness of
6 nm. The second step was to etch the CYTOP layer by printing pure CYTOP solvent (CT-SOLV180)
(Asahi Glass, Tokyo, Japan) to form the desired surface-energy pattern. Then the patterned films were
treated with oxygen plasma and ultraviolet radiation to remove unwanted residues and improve the
wettability. So the oxide precursor ink could be printed into the surface-energy pattern. The schematic
structure of the top-gate MO-TFTs is shown in Figure 1a. Firstly, a layer of 45 nm ITO (90:10 mol. % of
In2O3:SnO2) film was deposited on the glass substrate by DC magnetron sputtering (Beijing Technol
Science Co., Ltd., Beijing, China, JCP-350) in a 100% Ar atmosphere. The base pressure was ~8 × 10–4 Pa,
and the Ar gas flow was set to 9 sccm with the working pressure of 0.50 Pa. And then the pattern
was visualized by photolithography to form pixel electrode, source/drain (S/D) electrodes, data lines,
and Vdd lines (Figure 1b). The InGaSnO layer was prepared by inkjet printing (Figure 1c). The channel
and S/D region were then covered by AlOx films deposited by inkjet printing (Figure 1d). Then, the ITO
film was inkjet printed to form the gate electrodes (Figure 1e). The gate electrode of driving TFTs is
electrically connected to the source electrode of switching TFTs to form a driving circuit. Each of the
printed oxide precursor film was then lightly baked for 5 min at 100 ◦C and hard baked for 1 h at
350 ◦C in the air, three times in total. The step profiles of different layers are shown in Figure S1.
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Table 1. Processing Parameters of TFT Fabrication.

Function Layer Cytop Drop
Spacing (µm)

Precursor ink Drop
Spacing (µm)

Annealing
Temperature (◦C) Annealing Time (h)

InGaSnO 50 20 350 1
AlOx 10 5 350 1

ITO gate 40 25 350 1
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Figure 1. (a) Structural diagram of the printed top-gate MO TFTs. The fabrication flow for inkjet-printed
MO TFTs: (b) preparing ITO electrodes by sputtering and photolithography. (c) Inkjet-printing MO
semiconductor layers of the switching and driving TFTs. (d) Inkjet-printing AlOx dielectric films.
(e) Inkjet-printing ITO gate electrodes.

2.3. Characterizations of Oxide Films and Devices

Nikon Eclipse E600 POL (Nikon Instruments, Inc., New York, NY, USA) was used for
polarizing microscope image acquisition. The semiconductor films were characterized by X-ray
diffraction (XRD, Bruker D8 ADVANCE, Karlsruhe, Germany). The chemical composition of the
semiconductor film was characterized by X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi
and Thermo Scientific). The electrical characteristics of TFTs were studied by using a semiconductor
parameter analyzer (Keysight B1500A, Keysight Technologies, Inc., Santa Rosa, CA, USA). The film
thickness was determined by a Daktak step profiler (Veeco Instruments, Inc., New York, NY, USA).

3. Results and Discussion

To improve the film quality of the AlOx dielectric layer, aqueous Al(NO3)3·xH2O solution is
chosen for the inks of the gate dielectric layer, because there are no carbon residues in the printed
films based on the aqueous inks. Meanwhile, the water molecules are smaller compared with the
molecules of organic solvents, so water molecules are easy to penetrate the oxide films without leaving
nanopores or pinholes in the film during annealing. In contrary, the organic solvent will be evaporated
or decomposed during annealing, leading to formation of nanopores, pinholes, and carbon residue
impurities in the film [28]. However, the acidic environment of the aqueous AlOx precursor ink will
corrode the MO semiconductor layer underneath (see Figure 2a, the InGaO semiconductor layer is
obscure after AlOx gate dielectric film was printed on it).
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Figure 2. Polarizing microscope images of TFTs with (a) InGaO and (b) InGaSnO semiconductor layers.

To enhance the acid resistance of the MO semiconductors, Sn is doped into the InGaO
semiconductors. To investigate the acid resistance of InGaO film and InGaSnO film to the same
aqueous alumina precursor solution, InGaO and InGaSnO films with the same thickness were printed
onto glass substrates under the same condition. When the two kinds of films are immersed in the
same aqueous alumina precursor solution, the etching rate of the printed InGaSnO films at room
temperature is ~0.05 nm/min, which is half of that of the printed InGaO (~0.1 nm/min). It proves our
assumption that doping Sn into InGaO would increase acid resistance. Although the etching rates of
both of InGaO and InGaSnO at room temperature are low, they increase greatly when the temperature
increases to 100 ◦C (see Table 2). As mentioned in the experiment section, the printed aqueous AlOx

precursor film experiences 100 ◦C soft drying for 5 min to evaporate the solvents. Therefore, testing
the etching rates at 100 ◦C is close to the actual printing process of the MO TFTs. After doping Sn into
InGaO, the etching rate at 100 ◦C reduces from 10 nm/min to 3 nm/min. The results show that InGaSnO
are more compatible with the following printing process of the AlOx gate dielectric layer than InGaO.

Table 2. Etching Rate of the InGaO and InGaSnO Films in Aqueous Al(NO3)3·xH2O Solution.

Temperature Active Layer Etching Rate

Room temperature InGaO 0.1 nm/min
InGaSnO 0.05 nm/min

100 ◦C
InGaO 10 nm/min

InGaSnO 3 nm/min

Figure 2a,b shows the microscope images of the devices with the AlOx dielectric layer printing
onto InGaO and InGaSnO, respectively. It shows that the InGaO film is corroded seriously by the
following printing process of the AlOx gate dielectric layer (the InGaO film is blurred). By contrast,
the InGaSnO film are seen clearly, indicating that the InGaSnO film has good etching resistance to the
following printing process of the AlOx gate dielectric layer. In printed TFTs, solvent etching problem
will lead to increase of interface defects and decrease of the electrical performance.

Figure 3 shows the X-ray diffraction (XRD) patterns of the InGaO and InGaSnO films. There is a
weak peak (corresponding to nanocrystalline structure) appeared at approximately 32.0◦ for InGaO
film, which is quite close to the (222) peaks in the In2O3 bixbyite structure crystals (about 30.6◦) [29–31].
But the peak almost disappears for the InGaSnO film, indicating that doping Sn into InGaO leads to
amorphous state. It is because that SnO2 is generally in tetragonal rutile structure, which is different
from that of the In2O3 and Ga2O3 (bixbyite structure). The fact that Sn4+ ions substitute for In3+ ones
in crystal lattice reduce crystallinity. The decrease in crystalline quality is also probably caused by an
aggregation of excess Sn element [32]. The increase in the acid resistance after doping Sn into InGaO
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is attributed to the higher acid resistance of SnO2. The presence of tin oxide improves the corrosion
resistance of the entire InGaSnO semiconductor layer [33,34].
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Figure 3. XRD spectra of the InGaO and InGaSnO films annealed at 350 ◦C for 1 h.

The chemical states of the printed InGaO and InGaSnO films were characterized by the XPS
experiments. Figure 4a,b shows the XPS O 1s spectra for the InGaO and InGaSnO, respectively.
Generally, the O 1s peaks can be fitted by three Gaussian distributions with binding energies of 529.8 eV,
530.9 eV and 531.6 eV, which are related to the oxygen in oxide lattices (M–O), oxygen vacancies
(VO) and metal hydroxide species (M–OH), respectively [35]. But the fitted peak near 531.6 eV is also
related to the Sn–O, which is the reason for the apparent increase in the intensity of the fitted peak near
531.6 eV. Although the intensity of the fitted peak for VO (530.9 eV) decreases after doping Sn into
InGaO, the intensity of the fitted peak for M–O (529.8 eV) also decreases. Therefore, it can be deduced
that some of the Sn elements are not incorporated into InGaO lattice, leaving some SnO2 segregated in
the film (corresponding to 495.0 eV in Sn 3d3/2 spectrum, see the inset of Figure 4) [36]. Figures S2 and
S3 shows the scanning electron microscope (SEM, Zeiss Merlin) images and the corresponding element
distribution maps obtained from energy-dispersion x-ray spectroscopy (EDS) for InGaO and InGaSnO,
respectively. It can be seen that element distributions are not uniform, which may be resulted from the
defects formed by the chemical decomposition during annealing.
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Figure 5 shows the output and transfer characteristics of the printed top-gate InGaO and InGaSnO
TFTs. In the output curves, there are no current crowding effects in the linear regime, implying Ohmic
contact between the MO semiconductor layer and the S/D electrodes (despite the bottom-contact
structure). It is also observed that the output current of the InGaO TFT is much lower and the turn-on
voltage (Von) is much higher than that of the InGaSnO TFT, which is attributed to the serious damage
of the InGaO film by the corrosive aqueous AlOx precursor ink. The mobility in the saturation region
(µsat) is calculated using the following

IDS =
WµsatCi

2L
(VG −VT)

2 , (1)

where, Ci is the areal capacitance of the dielectric (54.1 nF/cm2 for the AlOx dielectric), Vth is the
threshold voltage, L is the channel length (10 µm) and W is the channel width (200 µm). The mobility
of the InGaSnO TFT is ~3.0 cm2V−1s−1, which is relatively high in printed MO TFTs, while the mobility
of the InGaO TFT is only ~1.0 cm2V−1s−1. Generally, the mobility of the printed MO TFTs is lower
than that of the spin-coated ones, because the morphology and density of the printed MO films
are worse than those of the spin-coated ones. The on/off current ratio, the threshold voltage and
the subthreshold swing of the InGaSnO TFT are 1.59 × 107, −0.51 V, and 0.21 V /dec, respectively.
For comparison, the corresponding data of InGaO TFT are 1.46× 109, 5.46 V and 0.11 V /dec, respectively.
The reason for the increase of threshold voltage may be that the InGaO film is etched, resulting in
the film thickness reduction. Theoretically, doping Sn into InGaO would provide one electron carrier.
However, the highly positive threshold voltage of InGaO TFT should be mainly attributed to the
serious thickness reduction, because the InGaO TFT with bottom gate structure (without thickness
reduction) is normally on (negative threshold voltage) [27].Coatings 2020, 10, x FOR PEER REVIEW 7 of 10 

 

 

Figure 5. (a) Output and (b) transfer characteristics for the printed InGaO TFT; (c) output and (b) 

transfer characteristics for the printed InGaSnO TFT. 

 

Figure 6. The variations of the time-dependent transfer curves of the InGaSnO TFTs under (a) PBS 

and (b) NBS. 

4. Conclusions 

In conclusion, inkjet-printed top-gate MO TFTs with a Sn-doped InGaO (InGaSnO) 

semiconductor layer were demonstrated. To improve the film quality of the AlOx dielectric layer, the 

aqueous Al(NO3)3·xH2O solution is chosen for the inks of the gate dielectric layer, because there are 

no carbon residues in the printed films based on the aqueous inks. It is found that the etching 

resistance to the aqueous Al(NO3)3·xH2O solution is enhanced by doping Sn into InGaO. As a result, 

the printed InGaSnO semiconductor layer is almost not affected during printing the following gate 

dielectric layer with an aqueous AlOx precursor ink. The TFTs based on the InGaSnO semiconductor 

layer exhibit higher mobility, and less hysteresis compared to those based on InGaO semiconductor 

Figure 5. (a) Output and (b) transfer characteristics for the printed InGaO TFT; (c) output and (b) transfer
characteristics for the printed InGaSnO TFT.



Coatings 2020, 10, 425 7 of 9

The electrical stability is important for the practical application of the MO-TFTs. It can be seen from
Figure 5d that the hysteresis between forward and reverse sweeps of the transfer curves is negligible
for the InGaSnO TFT, reflecting few fast electron traps in the InGaSnO film or at the InGaSnO/AlOx

interface. To further study stability of the InGaSnO TFTs, the Von shift (∆Von) under bias stress was
measured at room temperature. VG was kept at 10 V for positive-bias stress (PBS) and −10 V for
negative-bias stress (NBS) for 3600 s, and the transfer curves were recorded when VD = 10.1 V was
applied to InGaSnO TFT every 600 s. Figure 6a,b show the transfer curves of printed InGaSnO TFTs
under PBS and NBS, respectively. ∆Von for the device under PBS and NBS is 0.9 V and 0.1 V, respectively.
In MO TFTs, NBS (at room temperature) stability is usually good, because holes can be hardly formed
in the MO semiconductors when biased negatively. The relatively large ∆Von for the InGaSnO TFT
under PBS may be ascribed to some slow electron traps generated during printing the AlOx film onto
the InGaSnO film. Although the PBS stability of the InGaSnO TFT is not good compared to those of
vacuum-based MO-TFTs, it has been improved greatly compared to other vacuum-based InGaSnO
TFT [37].
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Figure 6. The variations of the time-dependent transfer curves of the InGaSnO TFTs under (a) PBS and
(b) NBS.

4. Conclusions

In conclusion, inkjet-printed top-gate MO TFTs with a Sn-doped InGaO (InGaSnO) semiconductor
layer were demonstrated. To improve the film quality of the AlOx dielectric layer, the aqueous
Al(NO3)3·xH2O solution is chosen for the inks of the gate dielectric layer, because there are no carbon
residues in the printed films based on the aqueous inks. It is found that the etching resistance to
the aqueous Al(NO3)3·xH2O solution is enhanced by doping Sn into InGaO. As a result, the printed
InGaSnO semiconductor layer is almost not affected during printing the following gate dielectric layer
with an aqueous AlOx precursor ink. The TFTs based on the InGaSnO semiconductor layer exhibit
higher mobility, and less hysteresis compared to those based on InGaO semiconductor layer and show
excellent electrical stability. The study paves a way to overcome the solvent etching problems for the
printed TFTs.
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the InGaO film, Figure S3: SEM image and the EDS element distribution maps of the InGaSnO film.
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