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Abstract: The magnitude of shear stress at the ciliated wall is considered as the measure of efficiency
of cilia beatings as it describes the momentum transfer between the medium and the cilia. Under high
shear rate, some non-Newtonian fluids behave as visco-inelastic fluids. We consider here a ciliated
channel coated with Prandtl fluid, a visco-inelastic fluid, with Hartmann layer under momentum and
thermal slip effects. The flow in the channel is produced due to beatings of cilia that obey an elliptic
path of motion in the flow direction. An entropy analysis of the flow is also conducted in wave
frame. After introducing lubrication approximations in the governing equation, the perturbation
solutions are calculated. The data for pressure rise per metachronal wavelength and frictional force at
the ciliated wall are obtained by numerical integration. The analysis reveals that the higher values
of cilia length and velocity slip parameters support fluid flow near the channel wall surface. Fluid
temperature is an increasing function of thermal slip but a decreasing function of cilia length and slip
parameters. Entropy in the channel can be minimized with an increase in cilia length and slip effect
at the boundary. The magnitude of the heat transfer coefficient decreases by taking the substantial
slippage and tiny cilia in length at the microchannel wall.

Keywords: entropy analysis; ciliated channel; temperature jump; momentum slip; magnetic field;
Prandtl fluid

1. Introduction

Cilia-aided movements are considered as an important factor for the locomotion of the cell itself
or other substances past the cell surface. Cilia are very tiny hair-resembling structures that develop
from the outer surface of eukaryotic cells. They behave like oars, whipping back and forth in unison
to produce a rhythmic pattern of waves travelling along the surface. Motile cilia in the respiratory
system [1,2] are responsible for generating fluid flow on the cell surface to removes mucus and dust to
make airways clean. In the digestive tract [3], cilia carry food and its egestion. Cilia coating in female
fallopian tubes [4,5] carry the ova through oviducts, and in male efferent ductules [6] mix sperms to
prevent them from accumulating and obstructing the tube so they can reach their final destination. They
are also found in brain, kidneys, ears and eye retina. Due to its diverse applications in bioengineering
and physiological disciplines, it has become an appealing field of research [7–9]. An interesting study
dealing with the motion of microorganisms in non-Newtonian fluid induced by cilia and flagella
have presented by Qiu et al. [10]. Brennen [11] have examined the movement of cell through viscous
fluid stimulated by a harmonic wave travelling along the surface. Wu et al. [12] have studied the
hydrodynamic ciliary pumping transport of Carreau fluid under lubrication assumptions. Farooq
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and Siddiqui [13] have reported that the cilia-driven flow of couple stress fluid was generated due to
metachronal waves. Farooq et al. [14] have discussed the ciliary pumping transport of micropolar fluid
inside a tube by considering long wavelength and low Reynolds number assumptions.

The study of biorheological fluids in the presence of electric and magnetic environment has
tremendous applications in physiology, bioengineering and physics. For instance, magnetic field
characteristics are used in the formation of magnetic devices, controlling the fluid temperature, blood
reduction during surgeries, blood plasma, hyperthermia treatment, tumor cancer treatment and
thermal insulation, etc. Stud et al. [15] have attempted the hydromagnetic peristaltic transport of
physiological fluid in channel and reported that magnetic field resists the fluid flow. Mekheimer [16]
have stated the effects of transverse magnetic field in a non-uniform symmetric channel filled with
couple stress fluid. The flow of micropolar fluid under the effects of external magnetic field was
studied by Hatzikonstantinou and Vafeas [17]. Tripathi [18] has presented a mathematical model of
magnetohydrodynamic blood flow in a wavy channel under wavelength and small Reynolds. Some
recent studies incorporating the impact of magnetic field in biological fluid flows are reported [19–22].

Flows that generate significant variations in velocity over small distances under a high shear
rate induce a drop in fluid viscosity. When mucus, accepted as a non-Newtonian fluid, undergoes
a rapid shear rate, a slippage layer is developed to act as a lubricant between the moving surfaces.
Consequently, velocity slip plays a key role in the reduction in resistance to fluid flow. In microdevices
and thin films, no-slip conditions for motion and energy conservation are not applicable. The existence
of momentum and thermal slippage finds uses in mucociliary clearance, micro viscous pumps, drug
delivery systems, microelectronic cooling, polymer and fuel cell, etc. Some relevant studies revealing
the importance of slip condition are cited in [23–27].

Spontaneous chemical reactions that take place in biological systems are always accomplished
by a drop in free energy. For example, metabolism in living organisms involving a series of chemical
reactions generates free energy and is accompanied with substantial level entropy production. Usually
in biological systems, antientropic processes such as muscle contractions, the dynamic flow of
substances (urination, perspiration and blood flow, etc.) and biosynthesis are considered as entropy
compensates. Due to its significant role in biology and industry, the entropy analysis of biological
flows has become an appealing and mounting area of research [28–31] in recent years. The pioneer
work demonstrating the entropy production in four different heat convective processes and entropy
generation minimization was reported by Bejan [32,33]. Souidi et al. [34] presented the mathematical
analysis of entropy generation in biological fluid flow. Later on, Akbar [35] extended the work by
incorporating the effects of magnetic field in a wavy channel. Saleem [36] and Munawar et al. [37]
have conducted the entropy analysis in peristaltic flows of variable viscosity fluid in symmetric and
asymmetric channels. Recently, Saleem and Munawar [38] investigated the entropy generation in the
ciliary flow of biomagnetic fluid.

Inspired by the aforementioned bulk of the literature, the main purpose of this study is to
investigate the entropy generation in magnetohydrodynamic cilia-driven transport of Prandtl fluid by
imposing the momentum slip and temperature jump conditions at the ciliated wall of the channel.
The entire study is conducted in wave frame under realistic lubrication assumptions. The governing
equations are solved using the regular perturbation method. Numerical integration is performed
to calculate pressure rise per metachronal wavelength and frictional forces at the ciliated boundary.
A detailed graphical analysis is made for axial velocity and temperature profiles, pressure gradient,
stream function, total entropy generation number, the Bejan number and heat transfer coefficient in the
results and discussion section of the manuscript.

2. Mathematical Formulation

Consider the two-dimensional pumping transport of non-Newtonian Prandtl fluid in a symmetric
channel with artificial cilia spread uniformly along the channel wall. Heat convection in the fluid starts
due the heated wall of the channel at a fixed temperature T1. It is supposed that a constant magnetic
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field B0 is imposed in the normal direction of the fluid motion. Furthermore, it is also assumed that the
electric current in the channel is generated due to metachronal waves of cilia moving with constant
speed c along with the channel wall. In a rectangular coordinate system, we assume the X-axis along
the direction of metachronal wave propagation and Y-axis perpendicular to it. The schematic diagram
(Figure 1) shows the flow and heat transfer configuration of the problem. The structure of the ciliated
at the wall is described by the following function:

Y = f
(
X, t

)
= H =

[
a + aε cos

(2π
λ

(
X − ct

))]
. (1)

It is supposed that cilia tips whipped by accomplishing elliptic motion and are vertically situated at

X = g
(
X, t

)
= X0 + aεα sin

(2π
λ
(X − ct)

)
, (2)

where a, α, ε, H, t, λ and X0 are the mean width of the ciliated channel, measure of the eccentricity, cilia
length parameter, half channel width, time, wavelength of metachronal wave and specified position of
the fluid particle.

The cilia move with the following axial and transverse velocities in the fixed frame [39,40]:

U0 =

(
∂X
∂t

)
X0

=
−

(
2π
λ

)
acεα cos

(
2π
λ (X − ct)

)
1−

(
2π
λ

)
aεα cos

(
2π
λ

(
X − ct

)) , (3)

V0 =

(
∂Y
∂t

)
X0

=
−

(
2π
λ

)
acεα sin

(
2π
λ (X − ct)

)
1−

(
2π
λ

)
aεα sin

(
2π
λ (X − ct)

) . (4)

The basic laws of mass, momentum and energy are given by the following equations

∇·V = 0, (5)

ρ
dV
dt

= −∇P +∇·S + J× B, (6)

ρCP
dT
dt

= κ∇2T + S.∇V, (7)

where V =
(
U, V, 0

)
is the velocity vector, J = σ (E + V × B) is current density and B = B0 + B1 is the total

magnetic field that appears as the sum of constant (B0) and induced (B1) magnetic fields. We assume
that B0 is applied in the normal direction of flow. Therefore, under the assumption of small magnetic
Reynolds and in the absence of electric field effects, the Lorentz force reduces to J× B = −σB2

0 (U, 0, 0).
In the fixed frame of reference, the resulting governing equations for two-dimensional flow are

given by
∂U

∂X
+
∂V

∂Y
= 0 , (8)

ρ

(
∂
∂t

+ U
∂

∂X
+ V

∂

∂Y

)
U = −

∂P

∂X
+
∂SXX

∂X
+
∂SXY

∂Y
− σB2

0U, (9)

ρ

(
∂
∂t

+ U
∂

∂X
+ V

∂

∂Y

)
V = −

∂P

∂Y
+
∂SXY

∂X
+
∂SYY

∂Y
− σB2

0V, (10)

ρCP

(
∂T
∂t

+ U
∂T

∂X
+ V

∂T

∂Y

)
= κ

 ∂2T

∂X
2 +

∂2T

∂Y
2

+ SXX
∂U

∂X
+ SXY

(
∂U

∂Y
+
∂V

∂X

)
+ SYY

∂V

∂Y
, (11)
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where SXX, SXY and SYY are the components of the stress tensor for the Prandtl fluid, ρ is the fluid
density, σ the electrical conductivity, P the fluid pressure and

(
U, V

)
are the velocity components in

(X, Y) directions, Cp the specific heat, κ the thermal conductivity and T the fluid temperature.
To transform the laboratory frame into wave frame, the following relations are used:

x = X − ct, y = Y, u = U − c, v = V, p(x, y) = P
(
X, Y, t

)
. (12)

Introducing the following non-dimensional quantities

x = x
λ , y =

y
a , u = u

c , v = λv
ac , θ = T−T0

T1−T0
, H = H

a , t = ct
a , p =

a2p
µcλ , β = a

λ , η = µA
C ,

φ =
ηc2

C2a2 , s = aS
µc , Re = ac

ν , M2 =
σB2

0a2

µ , Pr = µCP
κ , Ec = c2

CP(T1−T0)
, Br = EcPr.

 (13)

Using Equations (7) and (8), Equations (3)–(6) take the following forms

β

(
∂u
∂x

+
∂v
∂y

)
= 0, (14)

Re β
(
u
∂u
∂x

+ v
∂u
∂y

)
= −

∂p
∂x
− β2 ∂sxx

∂x
−
∂sxy

∂y
−M2(u + 1), (15)

Re β3
(
u
∂v
∂x

+ v
∂v
∂y

)
= −

∂p
∂y
− β3 ∂sxy

∂x
− β

∂syy

∂y
, (16)

Re β
(
u
∂θ
∂x

+ v
∂θ
∂y

)
=

1
Pr

(
β2 ∂

2θ

∂x2 +
∂2θ

∂y2

)
+ Ecβ

[
sxx
∂u
∂x

+ sxy

(
∂v
∂x

+
1
β
∂u
∂y

)
+ syy

∂v
∂y

]
, (17)

where p is the fluid pressure, (u, v) are the dimensionless velocity components in (x, y) directions, Re the
Reynolds number, M the Hartmann number, β the wave number, η the fluid material parameter, φ the
time relaxation parameter, Pr the Prandtl number, Ec the Eckert number, Br the Brinkman number and
θ is the fluid temperature. The existing component of the stress tensor for the Prandtl fluid are defined
as [41,42]

SXY =


Aµsin−1

 1
C

{(
∂U
∂Y

)2(
∂V
∂X

)2
}1/2{(

∂U
∂Y

)2(
∂V
∂X

)2
}1/2


∂U

∂Y
, (18)

where the function sine inverse is expanded up to first two terms only, since the rest of the terms are
negligible. Using the lubrication approximation that the metachronal wavelength is very long (β� 1),
and insignificant inertia (Re→0), the resulting equations Equations (9)–(12) adopt the following form:

∂p
∂x

=
∂
∂y

η
(
∂u
∂y

)
+
φ

6

(
∂u
∂y

)3
−M2(u + 1), (19)

∂p
∂y

= 0, (20)

∂2θ

∂y2 = −Br

η(∂u
∂y

)2

+
φ

6

(
∂u
∂y

)4 (21)

The corresponding nondimensional boundary conditions imposed on flow problem are listed as

∂u
∂y

= 0,
∂θ
∂y

= 0 at y = 0, (22)
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u + ξ

[
η∂u
∂y +

φ
6

(
∂u
∂y

)3
]
= −1− 2παεβ cos(2πx)

1−2παεβ cos(2πx) ,

θ+ Ω ∂θ
∂y = 1,

at y = h = 1 + ε cos(2πx), (23)

where ξ, Ω and h are dimensionless forms of velocity slip parameter, thermal slip parameter and
ciliated wall. The pressure-rise per wavelength ∆P, the fluid frictional force (∆Fλ) and heat transfer
coefficient Z (at the ciliated channel wall) are expressed as [43–45]:

∆P =

∫ 1

0

(
dp
dx

)
dx, (24)

∆Fλ =

∫ 1

0
−h(x)

(
dp
dx

)
dx, (25)

Z =
∂h
∂x
∂θ
∂y

. (26)

The nondimensional mean flow rate in the laboratory frame (Q) and in the wave frame (F) are
described by

F =

∫ h

0
udy, Q = F + 1. (27)
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Figure 1. Physical geometry of the fluid flow in ciliated channel.

3. Perturbation Solution

In order to solve Equations (14)–(16) subject to the boundary conditions (17) and (18), we use
a regular perturbation method assuming φ (<<1) as the perturbation parameter. Expanding the
dependent variables by Taylor’s Series expansion, one gets

u = u0 + φu1 + O
(
φ2

)
, (28)

dp
dx

=
dp0

dx
+ φ

dp1

dx
+ O

(
φ2

)
, (29)

F = F0 + φF1 + O
(
φ2

)
, (30)

θ = θ0 + φθ1 + O
(
φ2

)
. (31)

Using the above series in Equations (14)–(18), we obtained the zeroth and first order system of
linear differential equations.
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3.1. Zeroth Order System

dp0

dx
= η

∂2u0

∂y2 −M2(u0 + 1), (32)

∂2θ0

∂y2 = −Brη
(
∂u0

∂y

)2

, (33)

F0 =

∫ h

0
u0dy. (34)

The corresponding boundary conditions are

∂u0

∂y
= 0,

∂θ0

∂y
= 0 at y = 0, (35)

u0 + ξη∂u0
∂y = −1− 2παεβ cos(2πx)

1−2παεβ cos(2πx) ,

θ0 + Ω ∂θ0
∂y = 1,

at y = h = 1 + ε cos(2πx). (36)

3.2. First Order System

dp1

dx
= η

∂2u1

∂y2 −M2u1 +
φ

6
∂
∂y

(
∂u0

∂y

)3

, (37)

∂2θ1

∂y2 = −Br

η(∂u0

∂y

)2

+
1
6

(
∂u0

∂y

)4

+ η

(
∂u1

∂y

)2

+ 2η
∂u0

∂y
∂u1

∂y

, (38)

F1 =

∫ h

0
u1dy. (39)

The corresponding boundary conditions are

∂u1

∂y
= 0,

∂θ1

∂y
= 0 at y = 0, (40)

u1 + ξ

η∂u1

∂y
+

1
6

(
∂u0

∂y

)3 = 0,θ1 + Ω
∂θ1

∂y
= 0 at y = h = 1 + ε cos(2πx). (41)

After solving zeroth and first order system of equations, the explicit form solutions for the axial
velocity, the pressure gradient and the temperature are obtained as

u(y) =
−hMcosh(yA8) +

√
ηA5 + MQA1(−cosh(yA8) + A11)

A1A17
+

A16M5φ(h + QA1)
3

32A11A1
3η5/2A17

3
, (42)

dp
dx

=
M7φ(h+QA1)

3[12Mh+9ηξM−12Mηξ cosh(2A2)+3Mηξ cosh(4A2)+
√
ηA10]

32η2A1
3A17

3A9A11

+
M2(−M(h−Q)A1A4+

√
η(M2(h−Q)ξ+2παβε(1+M2ξ(−h+Q))cos(2πx))A5)

A1A17
,

(43)

θ = A32
8A2

29
+ M6φBrA23A40(1800

√
ηA19A24A3

23 + A29(300
√
ηA23

3(16A4A25 +
√
ηA41)

−A31(−3600
√
ηA4(−3η+ 2M2A26) + 75

√
ηA6A27 + A36 + A37 + A38

+A39 + A42))),

(44)
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where
A1 = −1 + 2παβε cos(2πx), A2 = hM

√
η , A3 = −1 + hM2ξ,

A4 = cosh(A2), A5 = sinh(A2), A6 = cosh(3A2), A7 = sinh(3A2),

A8 = M
√
η , A9 = −hM +

√
η

Mξ
√
η+cot h(A2)

,

A10 = −8sinh(2A2) + sinh(4A2), A11 = A4 + Mξ
√
ηA5,

A12 = 4hM2ξ
√
η cosh(yA8) +

√
η cosh(3yA8) − 4Mysinh(yA8),

A13 = 12hM + 9Mξη− 12Mξη cosh(2A2) + 3Mξη cosh(4A2) − 8
√
η sinh(2A2) +

√
η sinh(4A2),

A14 = 4(h + ηξ)cosh(yA8) + ηξ cosh(3yA8) − 4My
√
ηξ sinh(yA8),

A15 = 32sinh3(yA8) − 9A7,

A16 = −3A6
√
η cosh(yA8) + 3A4A12 +

√
ηA13(cosh(yA8)+A11)

A17
+ M(3A5A14 + ηξA15cosh(yA8),

A17 = hMA4 +
√
ηA3A5, A18 = Br

(1−2παβε cos(2πx))2 , A19 = 3Mξη cos(4A2) +
√
ηA10,

A20 = 2h2
− BrQ2M2

(
h2
− y2 + 2hΩ

)
+ 4hηξ− 2M2h2ηξ2 + h2M2

(
y2
− h2
− 2hΩ

)
A18 −A44,

A21 = η
5
2 A4

1

(
A4 + Mξ

√
ηA5

)
(hMA4 +

√
ηA3A5)

5,

A22 = 4η+ M2(BrQ2η+ h(−8ηξ+ h(4 + 4M2ηξ2 + ηA18 +
2BrQη

A1
,

A23 = −h + Q− 2πQαβε cos(2πx),
A24 = −η cosh(2A2) + η cosh(2yA8) + 2M

(
M

(
h2
− y2 + 2hΩ

)
−
√
ηΩ sinh(2A2

)
),

A25 = η+ M2
(
3h2
− 3y2 + 6hΩ + 2ηξΩ

)
,

A26 = 6y2
− 6h3M2ηξΩ + 3h

(
2M2y2ξ+ ηξ+ 2Ω

)
+ h2

(
6− 12M2ξΩ

)
,

A27 = 81η− 4M2A30,

A28 = −2η+ M
√
η sinh(2A2)

(
BM2Q2Ω + h

(
−4 + 2M2BrηΩ

A1

)
+ h2M2(4ξ+ ΩA18)

)
+ M2A20,

A29 = hMA4 +
√
ηA3A5, A30 =

(
36h2

− 36y2 + 72hΩ − 301ηξΩ
)
, A31 = 1 + 4M2Ωξ,

A32 = −M2ηA2
23cosh(2yA8)A18 + cosh(2A2)A22 + 2A28,

A33 =
√
ηA31cosh(5A2) −

√
η(cosh((h− 4y)A8) + cosh((h− 4y)A8)) + 16

√
η(cosh((h− 2y)A8)

+cosh((h + 2y)A8)),
A34 = Msinh(5A2)(ξη+ 4Q) + Mξη(sinh((h− 4y)A8) + sinh((h− 2y)A8) + sinh((h + 4yy)A8)),
A35 = 48M3

(
h2
− y2

)
ξA5 + 16MηξA5 − 32MΩA5 + 96M3ΩξA5,

A36 = 61, 440M2η3/2ξ(h− y−Q) + 675η3/2cosh(5A2) − 14, 940M2η3/2ξΩ cosh(5A2)

+2025η3/2cosh((h− 4y)A8) − 1800η3/2cosh((h− 2y)A8),
A37 = 10, 800M2η3/2ξ cosh((h− 2y)A8)(h− y) − 2700η3/2cosh((3h− 2y)A8)−

η3/2cosh((h + 2y)A8)
(
8100− 10, 800hξM2

)
,

A38 = 10, 800Mη sinh((h− 2y)A8) + 10, 800
(
Myη2Sinh((h− 2y)A8) − 3η2ξMSinh((3h− 2y)A8)

)
+115, 200Sinh(yA8),

A39 = 2025Mη2ξ sinh((h + 4y)A8 ) + 400hMA5
(
54η− 216ηξ+ 216µξΩ

h

)
− 32, 400M3ξηA7

(
h2
− y2

)
+25MηξA7

(
997η+ 756Ω − 2592M2Ω

)
,

A40 = 1

460,800η
5
2 A4

1(A4+M
√
ηξA5)A5

29

,

A41 = −3
√
ηA6

(
5 + 12M2Ωξ

)
− 17MηξA7 − 28MΩA7 + A33 + A34 + A35,

A42 = 675η
3
2 (16M2ycosh((h + 2y)A8) − 4cosh((3h + 2y)A8) + 3cosh((h + 4y)A8))

+9Mη sinh(5A2)(163ηξ− 300Ω) + 25Mη2ξ(81 sinh((h− 4y)A8)−1024 sinh(3yA8)

+ 4608
25 sinh(5A8)) + 10, 800Mη sinh((h + 2y)A8)(h− y) + 2700Mη2ξ(sinh((h + 2y)A8)

−3 sinh((3h + 2y)A8)),
We have calculated the pressure-rise per metachronal wavelength and the fluid frictional force by

numerical integration of Equations (24) and (25).
To validate the above first-order perturbation solution, we made a comparison with previously

reported results by with Jothi et al. [46] considering a limiting case (for non-ciliated channel and ξ→0)
In Figure 2, we compare the velocity profiles of both studies on the same scale of axes. The figure
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shows a good agreement between both solutions, which indicates that the first-order perturbation
series provides enough accuracy and thus verifies the efficiency of the present solution.
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4. Entropy Analysis

We assume two main causes of entropy production: the heat transfer irreversibility and the fluid
friction irreversibility. Thus, the total volumetric local rate of entropy generation is described by [47,48]

S”’
gen =

k
T2

0

(∇T)2 +
µ0

T0
[S·∇V]. (45)

Dividing Equation (45) with the characteristic entropy (SG0) and using Equations (14) and the
lubrication approximations in, one gets the total entropy generation number (NG) as:

NG = τ

(
∂θ
∂y

)2

+ Br

η
(
∂u
∂y

)2

+
φ

6

(
∂u
∂y

)4
, (46)

where τ = ∆T/T0 is the nondimensional temperature difference (assuming τ = 1). In Equation (46), the
first term signifies the entropy due to heat transfer while the second term associated with the Brinkman
number corresponds to the fluid friction irreversibility.

Introducing the Bejan number to enquire the discerning effects of fluid friction irreversibility over
the heat transfer irreversibility

Be =
1

1 + Φ
, (47)

where Φ = Br
{
η
(
∂u
∂y

)2
+

φ
6

(
∂u
∂y

)4
}

/τ
(
∂θ
∂y

)2
represents the ratio of fluid friction irreversibility to the heat

transfer irreversibility. The Bejan number Be takes the values between 0 and 1. Its value of more than
0.5 implies the leading effects of heat transfer irreversibility over fluid friction irreversibility and its
value of less than 0.5 directs that dominating effects of fluid friction irreversibility.

5. Results and Discussion

In this section, a graphical analysis is presented for the various important physical quantities,
such as axial velocity u(y), pressure gradient dp/dx, pressure-rise per wavelength ∆P, fluid frictional
force Fλ at the ciliated wall, the total entropy generation number Ng, and the Bejan number Be, and
streamlines by varying the different parameters of interest. Figures 3–6 determine the effects of velocity
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slip parameter (ξ), cilia length (ε), Prandtl fluid (η) and time relaxation parameters (φ) on the velocity
profile. From Figure 3, it can be seen that the axial velocity is impeded with increasing ξ in the channel
center. At the channel wall, the fluid velocity is no longer equal to the velocity of the boundary
due to the occurrence of slip. Therefore, at the boundary the fluid velocity augments as ξ increases.
Figure 4 indicates that large values of ε create more resistance at the center of the channel, which
causes deceleration in the fluid velocity. However, near the edge of the channel, the axial velocity
augments by increasing ε. Figure 5 shows the velocity profile against various values of time relaxation
parameter φ. It is observed from the figure that the velocity profile increases near the center part of the
channel as φ increases. However, an inverse behavior is noticed close to the boundary. This is because
of the decreasing strain rate as φ increases which results in a decrease in velocity near the boundary.
Figure 6 states that at lesser values of fluid material parameter η, the velocity profile enhances near the
channel wall and decreases at the center. This behavior of Prandtl fluid parameters is quite expected as
increasing η corresponds to a high shear rate which results in a large velocity near the wall.

Figure 7 reveals that the adverse pressure gradient is boosted for higher values of cilia length
parameter ε, and this increase is more significant in the contracted channel part. From Figure 8, the
adverse pressure gradient decreases as the velocity slip parameter ξ increases. This reduction is more
noticeable in the contracted channel part than the channel wider part. Figure 9 depicts that the adverse
pressure gradient noticeably increases as the material parameter η increases and this increases is more
significant in the contracted part of the channel as compared to the wider part. From Figure 10, it is
observed that higher values of cilia length parameter ε enhance the pressure rise in the pumping
zone but produce a decline in the augmented pumping zone. Figures 11 and 12 illustrate that the
pressure rise per metachronal wavelength increases with a decrease in slip parameter ξ and Prandtl
fluid parameter η in the pumping zone. The effect of these parameters is completely converse in the
augmented pumping zone. Moreover, the effects of ε, ξ and η are insignificant in the free pumping zone.
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From Figure 13, it is noticed that the fluid temperature cools down by increasing the slip parameter
ξ. This decrease is more prominent at the channel center as compared to the wall. This is due to the
decrease in the convective heat transfer effect because of the jump in the fluid velocity at the boundary.
Figure 14 shows that the fluid temperature rises when large values of thermal slip parameter Ω are
taken into consideration. This is obvious since the fluid temperature is higher than the boundary
temperature, and increasing the thermal slip parameter results in low convection near the boundary.
Figures 15 and 16 reveal that large values of cilia length parameter ε and the Hartmann number M
induce a noticeable drop in the fluid temperature near. Since both resist the fluid flow and reduce the
convection phenomenon in the flow, this drop in temperature is obvious.Coatings 2020, 10, x FOR PEER REVIEW 13 of 22 
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Figure 17 indicates that the total entropy generation number decreases as the cilia length ε
increases. Moreover, the cilia length parameter helps in promoting fluid friction irreversibility and
demoting the heat transfer irreversibility (see, for instance, Figure 18). Figure 19 demonstrates that the
total entropy increases as the fluid material parameter η increases. This increase is more significant
at the channel wall which is due to the high viscous effects near channel boundary. From Figure 20,
it can be seen that the entropy of the ciliated channel rises with an increase in eccentricity parameter α.
Figure 21 shows that the velocity slip parameter also reduces the entropy production in the channel
and this reduction is due to a decrease in the heat transfer irreversibility and the dominancy of fluid
friction irreversibility, as observed from Figure 22. In Figures 23 and 24, 3D visualizations of the total
entropy generation number and the Bejan number, respectively, are presented. Figure 23 discloses that
the total entropy generation number is at its maximum in the narrow part of the channel, while in
the wider part it has lower values. This indicates that the entropy increases due to the compression
of the channel. The dominancy of the irreversibilities can be analyzed through Figure 24, where the
Bejan number is plotted against x and y variables. It indicates that at the narrow part of the channel,
the effect of the irreversibility due to heat transfer is dominated, however, in the wider part of the
channel heat transfer irreversibility decreases and the fluid friction irreversibility starts increasing.
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From Figures 25 and 26, the graphs of the heat transfer coefficient are found to be oscillating
in shape. This behavior is quite likely due to metachronal waves travelling along the channel wall
(stimulated by the power and recovery strokes of evenly distributed cilia lined in the channel surface).
It is observed that the heat transfer coefficient decreases in magnitude when higher values of slip
parameter ξ and small values of cilia length ε are selected. To see the effects of frictional force at
the ciliated wall versus mean flow rate, Figures 27–29 are presented. It is noticed that the behavior
of frictional forces at the ciliated wavy wall is entirely opposite to pressure rise per metachronal
wavelength. A direct proportionality between the frictional force and mean flow rate can be exhibited
through Figures 27 and 28. Figure 27 indicates that the frictional force is a decreasing function of
Hartmann number in region −4 < Q < 2 and an increasing function in region 2 < Q < 8. From
Figure 28, it is clear that the cilia reduce frictional forces at the wall in region −2 < Q < 1 but support
the frictional forces in the region 1 < Q < 4. Figure 29 depicts that the zone −2 < Q < 2, the higher
values of velocity slip parameter enhance the frictional force effects. However, in the −2 < Q < 4 part,
frictional force decreases as the situation is moved from non-slip to partial slip.
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Figure 29. Variations in fluid frictional forces at various ξ.

Trapping is a remarkable manifestation of pumping ciliary flow. The development of internally
circulating fluid mass confined by streamlines of travelling waves in wave frame is named as trapping.
Due to an elevated flow rate and substantial occlusions, confined bolus is carried by streamlines and
driven forward along with the metachronal wave (by power and recovery strokes of cilia). From
Figure 30, it is established that the imprisoned bolus enlarges in size for large values of cilia length ε
which indicates the increasing flow rate. Figure 31 demonstrates the effects of velocity slip parameter ξ
on streamlines. The graph shows that the flow rate decreases as the velocity slip increases. Figure 32
depicts that the size of the trapped bolus shrinks down as the Hartmann number M increases. This
indicates the reduction in the flow rate, which is due to the increase in the resistive Lorentz force
against the flow.
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6. Conclusions

A complete thermodynamical analysis has been presented for a ciliated channel coated with a
visco-inelastic Prandtl fluid under the uniform magnetic field in wave frame. The effects of momentum
slippage and temperature jump are considered at the boundary of a symmetric channel. The flow
in the channel is induced due to the propagation of metachronal waves produced by cilia motion.
Assuming a long wavelength and low Reynolds number approximations, the governing equations are
normalized and solved with a regular perturbation method. Some important remarks extracted from
the study are:

• As the cilia length increases, the temperature profile and the entropy production decrease, while
the velocity profile shows the opposite effect near the boundary and demonstrates decreasing
effects near the center;
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• The Prandtl fluid material parameter ηhas increasing effects on the velocity and entropy production
near the boundary;

• Due to wall slip, the velocity increases, while temperature and the entropy production decrease;
• The temperature jump brought an increasing change in the temperature profile;
• Near the channel center, fluid friction irreversibility is dominant, whereas near the heated ciliated

wall, the effect of heat transfer irreversibility is noticeable;
• In the contracted part, a significant elevation in pressure gradient is achieved for small values of ξ

and high values of ε and η;
• Pressure-rise per wavelength increases as ε increases and shows a decreasing trend as ξ and η

increase in the pumping part and completely reverse conduct in the augmented pumping part;
• Frictional force at the wavy wall explains a direct proportionality with mean flow rate.

Author Contributions: Conceptualization, N.S. and S.M.; methodology, N.S.; software, N.S.; validation, S.M.;
formal analysis, S.M.; investigation, N.S. and S.M.; resources, N.S.; data curation, S.M.; writing—original draft
preparation, N.S.; writing—review and editing, S.M.; visualization, S.M. and N.S.; supervision, N.S.; project
administration, S.M.; funding acquisition, N.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research receives no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bustamante-Marin, X.M.; Ostrowski, L.E. Cilia and mucociliary clearance. Cold Spring Harb Perspect Biol.
2017, 4, a028241. [CrossRef]

2. Knowles, M.R.; Boucher, R.C. Mucus clearance as a primary innate defense mechanism for mammalian
airways. J. Clin. Investig. 2002, 109, 571–577. [CrossRef]

3. Pablo, J.L.; DeCaen, P.G.; Clapham, D.E. Progress in ciliary ion channel physiology. J. Gen. Physiol. 2016, 1,
37–41. [CrossRef]

4. Ghazal, S.; Makarov, J.K.; de Jonge, C.J. Egg transport and fertilization. Glob. Libr. Women Med. 2014, 2014.
[CrossRef]

5. Eddy, C.A.; Pauerstein, C.J. Anatomy and physiology of the fallopian tube. Clin. Obstet. Gynecol. 1980, 4,
1177–1193. [CrossRef]

6. Lehti, M.S.; Sironen, A. Formation and function of sperm tail structures in association with sperm motility
defects. Biol. Reprod. 2017, 97, 522–536. [CrossRef]

7. Mills, Z.; Aziz, B.; Alexeev, A. Beating synthetic cilia enhance heat transport in microfluidic channels.
Soft Matter 2012, 45, 11508–11513. [CrossRef]

8. Drummond, I.A. Cilia functions in development. Curr. Opin. Cell Biol. 2012, 1, 24–30. [CrossRef]
9. Agrawal, H.L. Anawaruddin. Cilia transport of bio-fluid wih variable viscosity. Indian J. Pure Appl. Math.

1984, 15, 1128–1139.
10. Qiu, T.; Lee, T.; Mark, A.G.; Morozov, K.I.; Münster, R.; Mierka, O.; Turek, S.; Leshansky, A.M.; Fischer, P.

Swimming by reciprocal motion at low Reynolds number. Nat. Commun. 2014, 5, 1–8. [CrossRef]
11. Brennen, C. Oscillating-boundary layer theory for ciliary propulsion. J. Fluid Mech. 1974, 65, 799–824.

[CrossRef]
12. Wu, A.; Abbas, S.Z.; Asghar, Z.; Sun, H.; Waqas, M.; Khan, W.A. A shear-rate-dependent flow generated via

magnetically controlled metachronal motion of artificial cilia. Biomech. Model. Mechanobiol. 2020. [CrossRef]
13. Farooq, A.A.; Siddiqui, A.M. Mathematical model for the ciliary-induced transport of seminal liquids through

the ductuli efferentes. Int. J. Biomath. 2017, 10, 1750031. [CrossRef]
14. Farooq, A.A.; Tripathi, D.; Elnaqeeb, T. On the propulsion of micropolar fluid inside a channel due to ciliary

induced metachronal wave. Appl. Math. Comput. 2019, 347, 225–235. [CrossRef]
15. Stud, V.K.; Sephon, G.S.; Mishra, R.K. Pumping action on blood flow by a magnetic field. Bull. Math. Biol.

1977, 39, 385–390.

http://dx.doi.org/10.1101/cshperspect.a028241
http://dx.doi.org/10.1172/JCI0215217
http://dx.doi.org/10.1085/jgp.201611696
http://dx.doi.org/10.3843/GLOWM.10317
http://dx.doi.org/10.1097/00003081-198012000-00023
http://dx.doi.org/10.1093/biolre/iox096
http://dx.doi.org/10.1039/c2sm26919h
http://dx.doi.org/10.1016/j.ceb.2011.12.007
http://dx.doi.org/10.1038/ncomms6119
http://dx.doi.org/10.1017/S0022112074001662
http://dx.doi.org/10.1007/s10237-020-01301-y
http://dx.doi.org/10.1142/S1793524517500310
http://dx.doi.org/10.1016/j.amc.2018.10.021


Coatings 2020, 10, 414 20 of 21

16. Mekheimer, K.S. Peristaltic transport of a couple stress fluid in a uniform and non-uniform channels.
Biorheology 2002, 39, 755–765.

17. Hatzikonstantinou, P.M.; Vafeas, P. A general theoretical model for the magnetohydrodynamic flow of
micropolar magnetic fluids. Application to Stokes flow. Math. Methods Appl. Sci. 2010, 33, 233–248. [CrossRef]

18. Tripathi, D.; Jhorar, R.; Beg, O.A. A KadirElectro-magneto-hydrodynamic peristaltic pumping of couple
stress biofluids through a complex wavy micro-channel. J. Mol. Liq. 2017, 236, 358–367. [CrossRef]

19. Akram, S.; Afzal, F.; Imran, M. Influence of metachronal wave on hyperbolic tangent fluid model with
inclined magnetic field. Int. J. Geom. Methods. Mod. Phys. 2019, 16, 1950139. [CrossRef]

20. Mekheimer, K.S.; Mohamed, M.S. Interaction of pulsatile flow on the peristaltic motion of a
magneto-micropolar fluid through porous medium in a flexible channel: Blood flow model. Int. J. Pure Appl.
Math. 2014, 94, 323–339. [CrossRef]

21. Saleem, N.; Hayat, T.; Alsaedi, A. A hydromagnetic mathematical model for blood flow of Carreau fluid. Int.
J. Biomath. 2014, 7, 1–14. [CrossRef]

22. Papadopoulos, P.K.; Vafeas, P.; Hatzikonstantinou, P.M. Ferrofluid pipe flow under the influence of the
magnetic field of a cylindrical coil. Phys. Fluids 2012, 24, 1–13. [CrossRef]

23. Taherali, F.; Varum, F.; Basit, A.W. A slippery slope: On the origin, role and physiology of mucus. Adv. Drug
Deliv. Rev. 2018, 124, 16–33. [CrossRef]

24. Tripathi, D.; Beg, O.A.; Curiel-Sosa, J.L. Homotopy semi-numerical simulation of peristaltic flow of generalised
Oldroyd-B fluids with slip effects. Comput. Method. Biomec. 2014, 17, 433–442. [CrossRef]

25. Makinde, O.D.; Reddy, M.G.; Reddy, K.V. Effects of thermal radiation on MHD peristaltic motion of walters-B
fluid with heat source and slip conditions. J. Appl. Fluid Mech. 2017, 10, 1105–1112. [CrossRef]

26. Akram, S. Effects of slip and heat transfer on a peristaltic flow of a Carreau fluid in a vertical asymmetric
channel. Comp. Math. Math. Phys. 2014, 54, 1886–1902. [CrossRef]

27. Akbar, N.; Nadeem, S. Thermal and velocity slip effects on the peristaltic flow of a six constant Jeffrey’s fluid
model. Int. J. Heat Mass Tran. 2012, 55, 3964–3970. [CrossRef]

28. Makinde, O.D. Entropy analysis for MHD boundary layer flow and heat transfer over a flat plate with a
convective surface boundary condition. Int. J. Exergy 2012, 10, 142–154. [CrossRef]

29. Adesanya, S.O.; Makinde, O.D. Thermodynamic analysis for a third-grade fluid through a vertical channel
with internal heat generation. J. Hydrodyn. 2015, 27, 264–272. [CrossRef]

30. Chamkha, A.J.; Selimefendigil, F. MHD free convection and entropy generation in a corrugated cavity filled
with a porous medium saturated with nanofluids. Entropy 2018, 20, 846. [CrossRef]

31. Butt, A.S.; Ali, A.; Munawar, S. Slip effects on entropy generation in MHD flow over a stretching surface in
the presence of thermal radiation. Int. J. Exergy. 2013, 13, 1–20. [CrossRef]

32. Bejan, A. A study of entropy generation in fundamental convective heat transfer. J. Heat Transf. 1979, 101,
718–725. [CrossRef]

33. Bejan, A. Second-law analysis in heat transfer and thermal design. Adv. Heat Transf. 1982, 15, 1–58.
34. Souidi, F.; Ayachi, K.; Benyahia, N. Entropy generation rate for a peristaltic pump. J. Non-Equilib. Thermodyn.

2009, 34, 171–194. [CrossRef]
35. Akbar, N.S. Entropy generation and energy conversion rate for the peristaltic flow in a tube with magnetic

field. Energy 2015, 82, 23–30. [CrossRef]
36. Saleem, N. Entropy production in peristaltic flow of a space dependent viscosity fluid in asymmetric channel.

Therm. Sci. 2018, 22, 2909–2918. [CrossRef]
37. Munawar, S.; Saleem, N.; Aboura, K. Second law analysis in the peristaltic flow of variable viscosity fluid.

Int. J. Exergy 2016, 20, 170–185.
38. Saleem, N.; Munawar, S. Entropy analysis in cilia driven pumping flow of hyperbolic tangent fluid with

magnetic field effects. Fluid Dyn. Res. 2020, 52, 2. [CrossRef]
39. Siddiqui, A.M.; Farooq, A.A.; Rana, M.A. Hydromagnetic flow of Newtonian fluid due to ciliary motion in a

channel. Magnetohydrodynamics 2014, 50, 109–122.
40. Ramesh, K.; Tripathi, D.; Beg, O.A. Cilia-assisted hydromagnetic pumping of biorheological couple stress

fluids. J. Propul. Power 2019, 8, 221–233. [CrossRef]
41. Alsaedi, A.; Batool, N.; Yasmin, H.; Hayat, T. Convective heat transfer analysis on prandtl fluid model with

peristalsis. Appl. Bionic. Biomech. 2013, 10, 197–208. [CrossRef]

http://dx.doi.org/10.1002/mma.1170
http://dx.doi.org/10.1016/j.molliq.2017.04.037
http://dx.doi.org/10.1142/S0219887819501391
http://dx.doi.org/10.12732/ijpam.v94i3.3
http://dx.doi.org/10.1142/S1793524514500107
http://dx.doi.org/10.1063/1.4769177
http://dx.doi.org/10.1016/j.addr.2017.10.014
http://dx.doi.org/10.1080/10255842.2012.688109
http://dx.doi.org/10.18869/acadpub.jafm.73.241.27082
http://dx.doi.org/10.1134/S0965542514080028
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.03.026
http://dx.doi.org/10.1504/IJEX.2012.045862
http://dx.doi.org/10.1016/S1001-6058(15)60481-4
http://dx.doi.org/10.3390/e20110846
http://dx.doi.org/10.1504/IJEX.2013.055775
http://dx.doi.org/10.1115/1.3451063
http://dx.doi.org/10.1515/JNETDY.2009.010
http://dx.doi.org/10.1016/j.energy.2014.12.034
http://dx.doi.org/10.2298/TSCI161020164S
http://dx.doi.org/10.1088/1873-7005/ab724b
http://dx.doi.org/10.1016/j.jppr.2018.06.002
http://dx.doi.org/10.1155/2013/920276


Coatings 2020, 10, 414 21 of 21

42. Patel, M.; Timol, M.G. The stress strain relationship for viscous-inelastic non-Newtonian fluids. Int. J. Appl.
Math. Mech. 2010, 6, 79–93.

43. Hayat, T.; Saleem, N.; Ali, N. Peristaltic flow of a Carreau fluid in a channel with different wave forms.
Numer. Meth. Part. Differ. Equ. 2010, 26, 519–534. [CrossRef]

44. Tripathi, D. A mathematical model for the peristaltic flow of chyme movement in small intestine. Math.
Biosci. 2011, 233, 90–97. [CrossRef]

45. Mehmood, O.U.; Mustapha, N.; Shafie, S. Heat transfer on peristaltic flow of fourth grade fluid in inclined
asymmetric channel with partial slip. Appl. Math. Mech. 2012, 33, 1313–1328. [CrossRef]

46. Jothi, S.; Prasad, A.R.; Reddy, M.V.S. Peristaltic flow of a Prandtl fluid in a symmetric channel under the
effect of a magnetic field. Adv. Appl. Sci. Res. 2012, 3, 2108–2119.

47. Bejan, A. Second law analysis in heat transfer. Energy 1980, 5, 720–732. [CrossRef]
48. Munawar, S.; Saleem, N. Second law analysis of ciliary pumping transport in an inclined channel coated

with carreau fluid under a magnetic field. Coatings 2020, 10, 240. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/num.20435
http://dx.doi.org/10.1016/j.mbs.2011.06.007
http://dx.doi.org/10.1007/s10483-012-1624-6
http://dx.doi.org/10.1016/0360-5442(80)90091-2
http://dx.doi.org/10.3390/coatings10030240
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Mathematical Formulation 
	Perturbation Solution 
	Zeroth Order System 
	First Order System 

	Entropy Analysis 
	Results and Discussion 
	Conclusions 
	References

