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Abstract

:

In this work, various NiAl-LDH thin films, exhibiting specific surface morphologies, were developed directly on aluminum AA 6082 substrate to understand the two main characteristics of layered double hydroxide (LDH), i.e., ion-exchange behavior and barrier properties, which are found to have a significant influence on the LDH corrosion resistance properties. The as-prepared NiAl-LDH films were analyzed through the scanning electronic microscope (SEM), X-ray diffraction (XRD), while the corrosion behavior of the synthesized films was investigated by the electrochemical impedance spectroscopy (EIS) and potentiodynamic curves. The results indicated that NiAl-LDH microcrystals grow in various fashions, from porous relatively flat domains to well-developed platelet structure, with the variation of nickel nitrate to ammonium nitrate salts molar ratios. The LDH structure is observed in all cases and is found to cover the aluminum surface uniformly in the lamellar order. All the developed NiAl-LDHs are found to enhance the corrosion resistance of the aluminum substrate, specifically, a well-developed platelet structure is found to be more effective in chloride adsorptive and entrapment capabilities, which caused higher corrosion resistance compared to other developed NiAl-LDHs. The comparison of the synthesized NiAl-LDH morphologies on their ion-exchange capabilities, barrier effect and their combined effect on corrosion resistance properties is reported.
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1. Introduction


Protection against corrosion of aluminum alloys is a widely investigated subject to increase the usage of aluminum in a variety of applications due to aluminum high strength to weight ratio, thermal and electrical conductivities, along with their abundance and low price. In that scenario, numerous approaches have been studied to develop economic coating systems to protect aluminum alloys, for instance, magnetron sputtering [1], anodizing [2], self-assemble [3], polymeric coatings [4], and chemical conversion techniques [5]. Recently, layered double hydroxides (LDHs) have got prominent attention for potential applications in various fields, including, adsorbents [6], drug delivery systems [7], environmental sciences [8], and biomedical science [9]. LDHs have also be found an efficient system to enhance corrosion resistance due to their ion-exchange capabilities, high surface area, a wide range of cationic salts availability, cost-effectiveness and other lucrative characteristics [10,11,12]. LDH is a class of two-dimensional anionic clays, represented by the general formula [M2+1−xM3+x(OH)2]x+ (An−)x/n, and exhibit a brucite like structure that formed when some of the divalent cations (M2+) are substituted by trivalent cations (M3+), while anions (An) stabilize the layered positive charge [12,13]. Generally, co-precipitated [14] and in situ growth methods are used to develop LDHs, while in situ growth approach can be an optimum choice due to strong adhesion with the substrate, caused by the chemical bonding between the two phases, and thus can prolong the service life of the LDH based anti-corrosion coatings, moreover simple synthetic approach also made it an attractive approach to investigate [10,11,12,13].



Numerous studies have been reported on the synthesis of various LDHs with different cationic source Mg2+, Zn2+, Fe2+, etc. on aluminum substrate and with various type of anions intercalated between the LDH interlayers. The NO3− has shown the lowest ion-exchange equilibrium constant among the following; CO3− > SO4−> OH− > F− > Cl− > Br− > NO3 [15], Therefore, it is easy choice for nitrate anions support to modify the LDH geometry by making ion-exchange with various corrosion inhibitors [16]. Recently, we succeeded to synthesize novel CaAl-LDH directly on an aluminum substrate and investigated their physical and electrochemical properties [11]. Nickel-based LDH can also be another class of LDH to enhance the metallic substrate corrosion resistance and to further ascribe various multifunctional properties in it. There are few reports on NiAl-LDH where NiAl-LDHs are investigated for environmental and electrochemical applications [17,18,19,20,21]. Recently, Ye, Xin, et al. synthesized NiAl-CO3-LDH on AZ31 magnesium alloy to enhance the alloy corrosion resistance [18], Zhang, Fazhi, et al. prepared NiAl-CO3-LDH on nickel foil and foams to analyze electrochemical properties [19], Liu, Yi, et al. synthesized NiAl-CO3-LDH on pure aluminum and study the potentiodynamic studies but did not thoroughly investigate the corrosion resistance properties [20]. Carbonate intercalated LDHs may be ideal choice where carbonates ions are difficult to exchange with corrosive species thus cause an increase in corrosion inhibition capacity. However, it is advisable to synthesize nitrate-based LDHs, where nitrate groups act as active precursors to modify the LDH chemistry with different anticorrosion inhibitors through ion-exchange and can design multifunctional coating systems for corrosion protection. Furthermore, nitrate ions can exchange with the corrosive species and can hold them inside the interlayers [15].



Herein, we investigated the NiAl-NO3-LDHs films directly grown directly on aluminum AA6082 substrate, and the complete characterization of corrosion resistance properties is reported. Moreover, as the LDH anticorrosion properties mainly depends upon its barrier effect and of ion-exchange capabilities, in this work, we mainly focused on the understanding of influential impact of various NiAl-LDH morphological structures and measured their chloride uptake capabilities on contact with chloride electrolyte solution (0.1 M NaCl), to better analyze the chloride entrapment capabilities of synthesized NiAl-LDH. Further, the effort is made to analyze the comparative effect of ion-exchange and barrier properties of NiAl-LDHs on the corrosion resistance properties.




2. Experimental Section


2.1. Material and Methods


Aluminum AA6082 extruded ingot was purchased from Metal Center (Italy), containing (0.60–1.20) wt % Mg, (0.10) wt % Cu, (0.70–1.30) wt % Si, (0.40–1.0) wt % Mn, (0.50) wt % Fe and balance Al. Ni(NO3)2.6H2O (purity ≥ 98%), NH4NO3 (purity ≥ 98%), and NaOH were purchased from Merck KGaA (Darmstadt, Germany). The Al 6082 were cut to the size of 3.14 cm2 and were ground using 600#, 800#, 1200# 2400# 4000# grit silicon carbide papers, and were washed ultrasonically with ethanol for 10 min, and further etched with 0.1 M NaOH solution for 1 min followed by rinsing in distilled water several times.



To synthesize NiAl-LDH, the four different solutions of Ni(NO3)2 6H2O and ammonium nitrate salt were prepared, based on the variation of ammonium nitrate solution (Table 1), as the ammonium nitrate salt is found to be an effective reagent to obtain unique LDH morphological characteristics [12]. The pH of the prepared solutions was adjusted at 10 with a drop by drop addition of 0.3 mol/L NaOH solution. 70 mL of above-prepared solutions were purged with nitrogen gas for 30 min to remove adsorbed gases and were separately transferred into a 100 mL Teflon-lined autoclave. The pretreated aluminum substrates, which act as a source of Al3+, were placed in the above-prepared solutions and the system was treated in an oven at 130 °C for 24 h. After experiment completion, the coated specimens were washed with deionized water and were dried with nitrogen gas.




2.2. Characterization


The morphology of the synthesized NiAl-LDHs was characterized by SEM-EDX (JEOL JSM-IT300 equipped with an EDS detector, Tokio, Japan). The crystallographic structure was studied by XRD (XRD (X’Pert High Score diffractometer, Rigaku, Japan) was performed using cobalt Kα emission, λ = 1.79 Å−1 at 10 mA and 30 kV conditions. The scanning rate was 4° min−1. The corrosion resistance of LDH was analyzed by the electrochemical measurements, performed in 0.1 M NaCl solution at ambient conditions using a Parstat 2273 potentiostat/FRA (Princeton Applied Research/Ametek, Berwyn, IL, USA). Fourier transformed infrared spectroscopy Varian 4100 FTIR Excalibur Series instrument (Agilent, Santa Clara, CA, USA), in the attenuated total reflectance (ATR) mode were recorded to analyze surface functional group and the chemical bonding of the samples, in the range of 550 to 4000 cm−1 with a 4 cm−1 resolution and at 32 scans, by using a diamond crystal as Internal Reflective element (IRE). A classic three-electrode cell configuration is used to measure the electrochemical properties of NiAl-LDH, in which a Pt plate served as the counter electrode, while Ag/AgCl (+207 mV vs. SHE) and prepared NiAl-LDH was used as the reference electrode and working electrode respectively. The prepared coatings were sealed by epoxy resin but leaving the testing surface (3.14 cm2) uncovered for the corrosion tests. The potentiodynamic measurements were performed at a scan rate of 2 mV/s versus OCP. EIS measurements were acquired from 100 kHz down to 10 mHz, using a 5 mV (rms) amplitude perturbation. Before the experimentation, the LDH film was exposed to the electrochemical solution (0.1 M NaCl) for 30 min for system stabilization.





3. Results and Discussion


3.1. Structure and Morphology of the LDH Films


Figure 1 shows the XRD patterns of the NiAl-LDHs, exhibits distinct reflection peaks around at 2(θ) 11.7°, 23.0°, 35° correspond to (003), (006) and (012) respectively, demonstrating the characteristics peaks of LDH formation [18,22]. The calculated cell parameters of the NiAl-LDHs are reported in Table 2. The “003” reflections of all synthesized NiAl-LDHs were observed almost on the same 2(θ) angle of ~11.7°, indicating a basal spacing around 0.88 nm, which correspond to the presence of NO3 inside LDHs [23,24]. With the variation of ammonium nitrate salt concentration, the intensity and broadness of the reflection peaks vary and diffraction peaks (003) of NiAl-LDH begin to be bit sharper, depicted the enhance crystallinity. Crystallite size reduced slightly from NiAl-LDHa to NiAl-LDHd, where NiAl-LDHd have shown crystallite size of 17.22 nm, compare to 19.94 nm of NiAl-LDHa. The cell parameter “c” is further calculated by the correlation “c = 3d003 = 6d006” where gradual reduction from NiAl-LDHa to NiAl-LDHd is observed. The basal spacing from NiAl-LDHa to NiAl-LDHd is found to reduce slightly, indicating the strong intercalation of NO3− ions. The interlayer thickness, lattice constants of “c” and crystallite size for NiAl-LDHs are listed in Table 1. The selective samples, NiAl-LDHd, was further investigated by FTIR analysis in attenuated reflection mode as shown in Figure 2. The broadband displayed around 3370 cm−1 is assigned to OH group stretching, while absorption band around, 1627 to 1633 cm−1 caused due to the flexural oscillation peaks of interlayer water molecules [25]. Moreover, the absorption peaks around 1350 cm−1 assigned to the asymmetric stretching bond of intercalated NO3−1 [26]. The bond at 655, 751 and 1202 cm−1 may associate with the Al-OH stretching [27].



Figure 3 shows the SEM images of the synthesized NiAl-LDHs, where in all cases, LDHs microcrystals uniformly covered the entire aluminum substrate surface in the lamellar form. By comparing the surface morphologies of obtained LDHs from NiAl-LDHa to NiAl-LDHd, it can be found that NiAl-LDHa is a less porous structure than that of NiAl-LDHd, where well ordered LDH platelet-structure is observed. This phenomenon is particularly evident in high-resolution SEM micrographs (Figure 3b,d,f,h), where four distinct morphologies can clearly be observed, from less porous amorphous structure to well-formed platelet flower-like structure. It can be concluded that due to well organize geometry structure, ion exchange property might be the basic attributes of NiAl-LDHd to increase the corrosion resistance of Al AA6082, while the comparatively NiAl-LDHa basically less profound to exchange NO3− with the Cl− and exposed to be more dominant barrier layer. The same trend is observed in the other developed NiAl-LDHs i.e., NiAl-LDHb, NiAl-LDHc. Table 3 shown the weight % composition of NiAl-LDHs, calculated by energy dispersive spectroscopy in-plane scanning mode. It is clear that NiAl-LDHs mainly consist of Ni, Al, O, and N. The Ni/Al ratio from amorphous porous structure to platelet structure is found to be increased from 3.44 to 4, which provides a reflection for the NiAl-LDH assembly. The effect of structural growth on the film thickness reported in Figure 4b, with a cross-sectional image of NiAl-LDHd in Figure 4a (reported as an example). It is clear that the film thickness remains in the range of 30 to 35 µm, and regular platelet NiAl-LDHd structure has shown slightly higher film thickness (34.6 µm) then amorphous NiAl-LDHa structure (30.01 µm). It can be said that the thickness of the LDH correlates with the amount of cations, pH, reaction temperature, aging time, alkali solution and so on [28]. However, on consistent values of all the describe factors, that the morphological quality of LDH nanostructures increases with the increase of nitrate concentration in the solution. In an aqueous solution containing metallic aluminum and nitrate anions several electrochemical processes involving anodic dissolution of aluminum and cathodic reduction of nitrates and oxygen can occur. The cathodic processes generate hydroxyl ions and create a pH gradient. Although the reduction of nitrates to nitrite has been proven, there are other possible reactions involving nitrate and nitrite anions, producing nitrogen gas or ammonia, which may contribute to the overall reduction process [29] and thus can affect the film thickness as well surface morphology. In that view, we can say, the anions concentration in the solution may have effect on the growth rate of LDH, but up to what extent, this is not clear.



The possible formation mechanism of NiAl-LDH is associated, where the aluminum surface dissolved in the basic reaction solution to form Al3+. The anodic regions results in the large concentrations of OH− groups on the surface of aluminum and favor the formation of Al(OH)3 which act as a precursors for the formation of LDH, while the final step is related to the precipitation of Ni, OH and NO3 on the surface of Al(OH)3 to form the NiAl-LDH hydroxide mixture. Finally, the divalent Ni2+ ions in Ni(OH)2 were substituted by the trivalent Al3+ ions, which result in the coexistence of Al(OH)3 and Ni(OH)2 to form precursor film of hydrotalcite-like LDH structure [30,31,32].




3.2. Corrosion Behavior of the LDH Films


The polarization curves of the developed NiAl-LDH on AA6082 are shown in Figure 5. The polarization curves of synthesized NiAl-LDHs coating have shown a decrease in both anodic and cathodic current density compared to the bare AA6082. All the synthesized NiAl-LDHs films on AA6082 have shown lower corrosion current density along with a shift of the corrosion potential to higher values as compared to bare AA6082, however, NiAl-LDHd has shown the significantly reduced anodic and cathodic current density compared to the substrate and also from other developed NiAl-LDHs. It is also worthy to note that NiAl-LDHd has shown the relatively higher film thickness of around 35 µm, which may provide a comparatively better barrier film against the aggressive media, and this phenomenon is well correlated with the previous works [10,11,12,13] and for NiAl-LDHd a reduction of about 3-orders of magnitude in corrosion current density was observed compared to the substrate. Furthermore, the open circuit potential (OCP) is switched toward nobler values with structural variation from NiAl-LDHa to NiAl-LDHd, whilst a high corrosion potential of −0.18 V vs. Ag/AgCl was observed for NiAl-LDHd, probably due to the formation of well-ordered platelet structure.



The EIS measurements of as-prepared NiAl-LDHs after1 day immersion in 0.1 M NaCl solution are shown in Figure 6. The higher value of impedance in the low-frequency domain (impedance modulus at 0.01 Hz, |Z|0.01) roughly indicates higher corrosion resistance properties [33]. From Figure 6a, NiAl-LDHd has shown the impedance value around 6.3 Ώ cm2 at |Z|0.01, which is near 2-orders magnitude higher than bare AA6082 alloy. The higher shift of impedance for NiAl-LDHc and NiAl-LDHd defined the presence of the strong dielectric protective film which is well consistent with the anti-corrosion behavior obtained from the potentiodynamic curves and also it well explained the ion-exchange effect on the increase in corrosion resistance. In fact, the LDHs are related to providing corrosion protection due to: (1) barrier effect, as they are dielectric materials which protect the metal surface by avoiding the interaction with the metal substrate; and (2) by ion-exchange capability and entrapping Cl− ions by releasing nitrates [34].



Considering the EIS response of the samples, two relaxation processes can be observed in the phase angle spectrum (Figure 6b): The time constant in the high-frequency range (103–104 Hz) can be attributed to the properties of the LDH layer itself, while the time constants in the middle frequency range 100–101 Hz are the overlapping of the contributions of the aluminum oxide and of the faradic process of substrate and solution interphase. In the case of aluminum AA6082 substrate, two-time constants can also be observed, one related to the formation of the oxide in the middle-frequency range and other due to corrosion reactions in the low-frequency range. The EIS results (Table 4) were further fitted using “ZSimpWin” software to get more detail of corrosion resistance properties in an effort to understand in detail the effect of surface morphologies on the corrosion resistance parameters. As the synthesized coating has shown two relaxation processes from middle-high to low-middle frequency range due to coating systems, while the variation in LDH film thickness can also be responsible for the change in behavior of electrochemical response and so as defects/porosity. The electrical equivalent circuit Rs(CPELDH(RLDH(CPEdlRct))) is used to analyze the EIS response of NiAl-LDHs, [35,36], where Rs is the resistance of electrolyte, while RLDH describe the NiAl-LDH film resistance with a constant phase element which accounts for the Dielectric properties of the LDH film (CPELDH) and Rct represents the charge transfer resistance in parallel with constant phase element (CPEdl). According to the mathematical representation of a CPE, (i.e., ZCPE = 1/(Q(ωj)α) the parameters Q and α have been employed to describe the response of the electrodes. The total resistance (Rt) can be used to analyze the protective ability of deposited NiAl-LDHs. Since the Rt values give relative information related to the corrosion rate i.e., higher is the total resistance, lower will be the corrosion rate. It can be seen that total resistance (Rt = Rct + RLDH) gradually increases with the change of surface morphologies (porous domains to platelet structure), moreover, a well-formed platelet structure showed the higher value of total resistance. The relatively high values of RLDH values indicate that the LDH coatings are more compact while also protective as suggested by the relatively high values of Rct. This is well consistent with the polarization curves and bode plots analysis, but here it is also important to mention that CPELDH and CPEdl have a value of α far from 1, and thus the film did not act as a pure capacitance and it is difficult to interpret the real physical meanings of EIS fitting parameters. From electrochemical and physical characterization, we can conclude that better is the ion-exchange capability to hold firmly the chlorides inside the interlayer’s, the better is the corrosion resistance properties. The equivalent circuit used to model the impedance results is shown in Figure 7, along with an example of fitting the experimental results of NiAl-LDHd. The well organizes geometry of NiAl-LDH is found to facilitate better ion-exchange with the Cl− and strongly hold them between the LDH interlayer’s thus act as a strong protective film on aluminum alloy against corrosion. Due to well-formed platelet LDH structure, nitrate ions properly intercalate between the interlayers and cause an increase in the chloride uptake and holding capacity, thus leading to the stabilization of the layered structure which prevents chloride ions migration to the underlying metal. That made LDH structures a compact system for entrapping the chloride ions and prevents the aggressive media from interacting with the aluminum surface.



In Table 5 a comparison of the fitting parameters RLDH and Rct after 1 day of immersion in a sodium chloride electrolyte is reported. The value of RLDH for the coatings developed in this study is remarkably higher compared to the data reported in the literature. However, one should consider that: (1) in this study the crystallization treatment has been prolonged in order to obtain relatively thick coatings, while in the literature very often only thin conversion layer of LDHs are investigated; (2) the electrolyte employed in this study is more diluted than 3.5 wt % NaCl (0.1 M ≈ 0.58 wt %): for this reason, higher resistance values are expected.



To understand the Chloride entrapment capabilities of NiAl-LDHs, a direct Mohar chloride measurement method is used to measure chlorine adsorption behavior of LDHs before and after the contact with 0.1 M chlorine solution for a period of one day. Here, silver nitrate is used as a reagent and potassium chromate as an indicator [39], the silver nitrate solution was added slowly in the tested chloride solution, and result the formation of a precipitate of silver chloride, while the endpoint of the titration occurs when all the chloride ions are precipitated and the addition of silver nitrate reacts with the chromate ions (indicator) to form a red-brown precipitate of silver chromate (Figure 8). The calculated concentration of chloride after contact with NiAl-LDH and for comparison the chlorine concentration in 0.1 M NaCl solution is listed in Table 6. It can be seen that the chloride uptake value for NiAl-LDHd is much greater than the other prepared NiAl-LDHs. The mechanisms behind the chloride removal from the solution are likely to rely on the ion-exchange capability of the LDHs. In fact, the reduced amount of Cl− measured upon exposure to the NiAl-LDH is in agreement with the anions uptake in the film. Among the investigated samples, NiAl-LDHd has been found to combine the best corrosion protection properties (as suggested by polarization curves and EIS) as well as the highest chloride uptake capability. A hypothesis to explain these findings is to assume that chloride ions are entrapped inside the LDH structure (thanks to anions exchange mechanism), thus reducing the aggressiveness of the salt solution towards the metal substrate. Together with higher thickness, this would help to increase the corrosion protection properties of the LDH coating. Figure 9 shown the optical images of NiAl-LDHs after corrosion analysis and can be seen that LDH film remains visually intact and uniform, which is in agreement with the observed system stability of the LDHs.





4. Conclusions


In this study, an in situ growth approach was used to prepare anticorrosive NiAl-LDHs of various morphologies on aluminum AA6082 substrate and the effect of different LDH surface morphologies on their ion exchange capability with Cl− and corresponding corrosion resistance properties are reported. It is revealed that platelet NiAl-LDHd structure has shown better ion-uptake behavior compared to other analyzed morphologies. About 122 mg/L chloride uptake was observed from 0.1 M NaCl the electrolyte. In addition, it was found to remarkably reduce both the anodic and cathodic current compared to the bare substrate. The findings from EIS analysis furtherly confirmed the ability of NiAl-LDHd to protect the underlying metal against corrosion.



Together with a physical barrier effect, the capability of the developed LDH structure to entrapped chloride ions, thus reducing the aggressiveness of the salt solution towards the metal substrate, are believed to be responsible for the observed increase in the corrosion protection properties of the LDH coating. As a general conclusion, the selection of an appropriate choice of metal cations ratio and microstructure optimization seems to play a key role in the development of LDH coatings with enhanced corrosion protection properties.
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Figure 1. XRD patterns of the developed NiAl-LDH films, (a) NiAl-LDHa, (b) NiAl-LDHb, (c) NiAl-LDHc, (d) NiAl-LDHd. 
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Figure 2. ATR-FTIR spectra of scraped NiAl-LDHd powder. 
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Figure 3. SEM images of the synthesized NiAl-LDH films: (a,b) NiAl-LDHa, (c,d) NiAl-LDHb, (e,f) NiAl-LDHc, and (g,h) NiAl-LDHd. 
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Figure 4. (a) For representation, the optical images of NiAl-LDHd; (b) thickness of the NiAl-LDH films measured from the cross-sectional optical microscope images. 
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Figure 5. Polarization curves in 0.1 M NaCl aqueous solution: (a) NiAl-LDHa, (b) NiAl-LDHb, (c) NiAl-LDHc, and (d) NiAl-LDHd. 
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Figure 6. Impedance modulus (a) and phase (b) plots of NiAl-LDH coated specimens at various synthetic conditions in 0.1 M NaCl solution after 1-day immersion. 
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Figure 7. An example of electrochemical impedance spectroscopy (EIS) fitting of NiAl-LDHd experimental data, and the equivalent circuit used to model the experimental results. 
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Figure 8. (a) The chromate indicator gives a faint lemon-yellow color of fresh 0.1 M NaCl solution. (b) The endpoint, all the Cl− ions have precipitated and with silver nitrate, precipitates with the chromate indicator giving a slight red-brown coloration. 
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Figure 9. Specimen surfaces after corrosion test: (a) NiAl-LDHa, (b) NiAl-LDHb, (c) NiAl-LDHc, (d) NiAl-LDHd. 
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Table 1. The molar concentration of salts for the formation of NiAl layered double hydroxides (LDH).
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	Specimens
	NiNO3 6H2O
	NH4NO3





	NiAl-LDHa
	0.003 M
	-



	NiAl-LDHb
	0.003 M
	0.003 M



	NiAl-LDHc
	0.003 M
	0.009 M



	NiAl-LDHd
	0.003 M
	0.018 M
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Table 2. Calculated cell parameters of the NiAl-LDHs.
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	Sample
	Interlayer Distance “d003” (nm)
	Interlayer Distance “d006” (nm)
	Cell Parameter, “c” (nm)
	Crystallite Size 003 “nm”





	NiAl-LDHa
	0.886
	0.449
	2.675
	19.94



	NiAl-LDHb
	0.881
	0.449
	2.668
	18.72



	NiAl-LDHc
	0.878
	0.448
	2.659
	17.64



	NiAl-LDHd
	0.872
	0.449
	2.656
	17.22
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Table 3. EDS quantitative analysis of the synthesized NiAl-LDHs.
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The Weight Percentage of NiAl-LDHs




	
Sample

	
Ni

	
Al

	
N

	
O

	
Ni/Al




	
NiAl-LDHa

	
26.2 ± 2.2

	
7.60 ± 4.1

	
4.1 ± 1.3

	
56.7 ± 5.2

	
3.44




	
NiAl-LDHb

	
26.4 ± 2.5

	
7.51 ± 4.3

	
4.8 ± 1.7

	
57.2 ± 5.3

	
3.51




	
NiAl-LDHc

	
31.8 ± 3.1

	
7.48 ± 4.2

	
4.3 ± 1.2

	
52.7 ± 5.1

	
4.25




	
NiAl-LDHd

	
34.7 ± 3.8

	
7.42 ± 4.7

	
4.6 ± 1.4

	
53.0 ± 5.6

	
4.67




	
The Atomic Percentage of NiAl-LDHs




	
Sample

	
Ni

	
Al

	
N

	
O

	
Ni/Al




	
NiAl-LDHa

	
9.7 ± 3.2

	
6.7 ± 2.1

	
5.6 ± 1.1

	
68.5 ± 4.2

	
1.44




	
NiAl-LDHb

	
10.1 ± 3.5

	
6.4 ± 2.2

	
5.3 ± 1.8

	
69.2 ± 4.3

	
1.57




	
NiAl-LDHc

	
10.4 ± 2.9

	
6.0 ± 3.3

	
5.1 ± 1.9

	
70.7 ± 4.4

	
1.73




	
NiAl-LDHd

	
10.8 ± 2.1

	
5.9 ± 3.7

	
5.2 ± 1.4

	
69.0 ± 5.5

	
1.83
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Table 4. Evolution with a time of the fitting parameters RLDH, QLDH, αLDH, Rct, Qdl, and αdl.
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	Sample
	Immersion Time
	RLDH

kΩ cm2
	QLDH

Ω−1 cm−2 sα
	αLDH
	Rct

kΩ cm2
	Qdl

Ω−1 cm−2 sα
	αdl





	NiAl-LDHa
	1 day
	11.77
	1.69 × 10−6
	0.91
	308
	1.41 × 10−6
	0.90



	NiAl-LDHb
	1 day
	21.87
	7.62 × 10−6
	0.83
	467
	2.04 × 10−6
	0.90



	NiAl-LDHc
	1 day
	333.61
	4.92 × 10−7
	0.51
	1391
	8.60 × 10−7
	0.70



	NiAl-LDHd
	1 day
	1208.8
	5.78 × 10−7
	0.67
	1819
	4.19 × 10−6
	0.79
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Table 5. Comparison with literature data referred to LDH thin films on aluminum alloys.
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	LDH
	NaCl Conc.
	Time
	RLDH (kΩ cm2)
	Rct (kΩ cm2)
	Ref.





	Li/Al
	3.5 wt %
	0 h
	2.2
	6490
	[35]



	Mg/Al
	3.5 wt %
	1 day
	n.p.
	5.88
	[36]



	Li/Al
	3.5 wt %
	1 day
	0.8
	0.18 × 103
	[37]



	Zn/Al (+VOx)
	0.05 M
	1 day
	18.2
	7.96 × 108
	[38]



	NiAl-LDHd
	0.1 M
	1 day
	1415
	1819.9
	This work
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Table 6. The concentration of chloride in 0.1M NaCl solution before and after contact with NiAl-LDHs after one-day immersion.
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	0.1 M NaCl (Fresh)

mg·L−1
	NiAl-LDHa

mg·L−1
	NiAl-LDHb

mg·L−1
	NiAl-LDHc

mg·L−1
	NiAl-LDHd

mg·L−1





	Chloride Conc.
	3462
	3426
	3388
	3340
	3337
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