

Supplementary Information

Article

Zinc/Silver Particle (Zn/AgP) Composite Coatings: Evaluation of Corrosion in Physiological Environments and Antibacterial Activity Against *P. aeruginosa*

Berenice Castro-Rodríguez¹, Arnulfo Terán-López¹, Yolanda Reyes-Vidal¹, Francisco J. Bácame-Valenzuela¹, José G. Flores¹, Raúl Ortega¹, José Mojica¹, Erika Acosta², Jorge Vázquez-Arenas³, René H. Lara⁴ and Gabriel Trejo^{1,*}

- ¹ Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Parque Tecnológico Sanfandila, Querétaro C.P. 76703, Mexico; bcastro@cideteq.mx (B.C.-R.); ateran@cideteq.mx (A.T.-L.); mreyes@cideteq.mx (Y.R.-V.); fbacame@cideteq.mx (F.J.B.-V.); jflores@cideteq.mx (J.G.F.); rortega@cideteq.mx (R.O.); jmojica@cideteq.mx (J.M.)
- ² Facultad de Medicina, Centro de Investigación en Salud Aplicada (CIASaP), Universidad Autónoma de Sinaloa, Sinaloa C.P. 80246, Mexico; erika.acosta@uas.edu.mx
- ³ Centro Mexicano para la Producción más Limpia, Instituto Politécnico Nacional, Mexico City 07340, Mexico; jorge_gva@hotmail.com
- ⁴ Laboratorio de Electroquímica y Análisis de Superficies, Facultad de Ciencias Químicas, Departamento de Ciencia de Materiales, Universidad Juárez del Estado de Durango (UJED) Circuito Universitario, Durango 34120, Mexico; Icrh75@hotmail.com
- * Correspondence: gtrejo@cideteq.mx

Received: 21 February 2020; Accepted: 23 March 2020; Published: 1 April 2020

Figure S1. SEM images of Zn/AgP composite coatings obtained from S_0 solution (= 81 g·L⁻¹ ZnCl₂ + 25 g·L⁻¹ H₃BO₃ + 208.8 g·L⁻¹ KCl + 1.5 g·L⁻¹ PEG 8000 + 0.2 g·L⁻¹ BDA + 0.03 g·L⁻¹ cetyl trimethylammonium hydrogen sulphate (CTHS) + 2.8 g·L⁻¹ triethanolamine) + 3.5 g·L⁻¹ AgNPs.

(b)

Figure S2. Elemental mapping analyses of the Zn/AgP coatings obtained from. (**a**) S_0 solution + 0.5 g·L⁻¹ AgPs (**b**) S_0 solution + 1.5 g·L⁻¹ AgPs. (**c**) S_0 solution + 3.5 g·L⁻¹ AgPs. (**d**) S_0 solution + 4.5 g·L⁻¹ AgPs.

Figure S3. GD-OES profiles obtained from Zn/AgP composite coatings formed from. *S*₀ solution with: (a) 1.0 g·L⁻¹AgPs, (b) 2.5 g·L⁻¹ AgPs and (c) 3.5 g·L⁻¹AgPs by applying 8.5 mA cm⁻² for 60 min a 25 °C.

Zn

Zn/AgP (0.29 wt. % Ag)

(a)

Figure S4. (a) Elemental mapping analyses of the Zn and Zn/AgP (0.30 wt. % Ag) coatings obtained after 7 days of immersion in PBS's solutions at 37 °C. (b) Elemental mapping analyses of the Zn coatings obtained after 7 days of immersion in Hank's solutions at 37 °C. (c) Elemental mapping analyses of the Zn/AgP (0.30 wt. % Ag) coatings obtained after 7 days of immersion in Ringer's solutions at 37 °C.

Figure S5. XPS analyses of the Zn and Zn/AgP (0.30 wt.% Ag) coatings obtained after 7 days of immersion in Hank's solutions at 37 °C.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).