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Abstract: The paper presents the new concept of low frictional hybrid composite coatings on nodular
cast iron. The structure of it is multilayer and consists of MoS2 and/or WS2 nanoinclusions embedded
in the iron nitrides’ zone and relatively deep hard diffusion zone. It offers a low friction coefficient as
well as high wear resistance of coated parts. The details of technology as well as the mechanism of
layer’s growth have been presented and discussed. The presented technology may be an interesting
alternative for chromium-based galvanic coatings of piston rings made of nodular iron using Cr6+.
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1. Introduction

Nodular cast iron is the most popular material used for piston rings. The extremely high and
intricate thermal and mechanical load of them [1–4] require the application of advanced solutions,
both for a bulk material [5] and surface layer [6,7], as well as for a lubrication regime [1,2,8,9]. In order
to improve cooperation between the piston ring and the cylinder sleeve, various coatings are applied.
Such coatings include chromium and/or chromium–molybdenum galvanic coatings [10] as well as
flame [11] or plasma sprayed [12–16], laser cladded, and PVD/CVD ones [17–19]. The PVD coatings
of machining tools [20,21], which are still developed, are generally not applicable for piston ring
improvement, due to an adhesive nature of the interface between a coating and the original material.
The most common protection of piston rings against scuffing and wear are chromium-based galvanic
coatings. However, they are also the most dangerous ones for the employees as well as the natural
environment, since Cr6+ is used [22].

The nitriding process is also widely used for surface treatment of rings made mainly of steel [17,23].
It improves the friction coefficient of the surface layer as well as its resistance against hydrogen wear
both at dry and lubricated regime [24–28]. More intricate is the issue of cast iron nitriding, due to the
presence of graphite precipitation in the microstructure [29,30] Recently, the new non-equilibrium,
low-pressure nitriding process (FineLPN) has been developed. It may be used for creation of fully
controlled phase structure of nitrided case both on steel and cast iron due to dedicated neural network
computer support [31].

Layered materials, like MoS2, WS2, etc., are well known as efficient solid lubricants [32,33].
They may be used in frictional contacts also at extremely high contact pressures as well as at elevated
temperatures. The critical issue with the application of them for the improvement of piston rings
frictional performance is the necessity to incorporate of them into a hard and strong matrix of a surface
layer. Similar trials of manufacturing of multiphase, gradient surface layers have been presented in
numerous papers [10,14,17,18].
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The new concept of low frictional hybrid composite coatings [34] on nodular cast iron has
been presented in the paper. The structure of it is multilayer and it consists of MoS2 and/or WS2

nanoinclusions embedded in iron nitrides zone and relatively deep hard diffusion zone. It offers low
friction coefficient, as well as high wear resistance and fatigue strength of coated parts. The details
of the multi-stage new technology, as well as mechanism of the layer’s growth, have been presented
and discussed.

2. Materials and Methods

The substrate material specimens for research were pieces of industrially manufactured piston
rings (Φ117.5 mm × 2.68 mm × 4.60 mm) made of S14 grade nodular cast iron. The standardised
chemical composition of used cast iron is shown in Table 1.

Table 1. Standardised Chemical Composition of S14 Nodular Cast Iron [% by Weight].

C Si Mn P S Cr

3.6–4.0 2.1–3.3 0.2–0.5 0.3 Max. 0.05 Max. 0.2

According to the industrial technology, the rings have been hardened to obtain the matrix
microstructure of tempered martensite free of carbide precipitations. The ca. 2 µm of micro-particles
diameter of tungsten disulphide and molybdenum disulphide have been used as low frictional
reinforcing phases. The creation of a low friction surface layer was multi-stage and the process has
been conducted as follows. First, the slurry 1 g of MoS2 or MoS2 + WS2 suspended in 10 mL of
C3H7OH + 1 mL of C5H11OH has been prepared. Then, it has been used for the uniform spray coating
of piston rings specimens. After the natural drying, the coated specimens have been annealed at
300 ◦C for 1 h in an inert N2 atmosphere to sinter the cladded particles and to adhere them to the
metallic substrate. Next, such preliminary prepared green compacts were thermo-chemically treated
by FineLPN low-pressure nitriding [31] or alternatively, additionally treated by gas sulphonitriding
in an active atmosphere containing ammonia gas and sulphur vapors [35]. Two options A and B of
the multi-stage surface engineering process have been conducted and compared. The technological
schedule and parameters of them are presented in the Table 2.

Table 2. Technological Details of Compared Processes Options.

Option A Option B

Low frictional particles—MoS2 + WS2 Low frictional particles—MoS2

Sintering—300 ◦C, 1 h, N2 Sintering—300 ◦C, 1 h, N2

Two-stage thermochemical treatment
—FineLPN – 8 h, 540 ◦C, 40–60 mbar

—Gas Sulphonitriding – 4 h, 540 ◦C, sulphur
evaporation at 180 ◦C

One-stage thermochemical treatment
—Fine – 12 h, 540 ◦C, 40–60 mbar

The cross-section microstructures of specimens were observed having used the optical microscope
Nikon MA200 (Nikon Instech Co., Ltd., Tokyo, Japan). The microstructure and chemical composition of
surface layers were investigated also by using the scanning electron microscope (SEM) JEOL JSM-6610
LV (JEOL Ltd., Tokyo, Japan) equipped with the energy dispersion spectroscope (EDS) X-MAX 80
Oxford Instruments (Oxford Instruments Group, Abingdon, UK).

Dry friction tribological tests at oscillating movement have been conducted using ball on
disc tribometer SRV Optimol Instruments Prüftechnik (Optimol Instruments Prüftechnik GmbH,
Munich, Germany). The parameters of tests were as follows: 20 N regular load, 1 mm stroke, 20 Hz
frequency, 1800 s total time of test, at temperature of 25 ◦C. Dry friction coefficient has been registered
during the test, and the maximum depth of frictional tracks has been measured after it alike. Three
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specimens were investigated for each option. The average values of frictional coefficient have been
determined from all plots’ courses (total duration 5400 s). The average values of the maximum depth
of frictional tracks as well as the standard deviation of results have been calculated too.

3. Results and Discussion

The external appearance of piston rings specimens after spray coating and preliminary annealing
are shown in Figure 1a. The metallic surface has been homogenously coated by a tight coating of low
frictional particles which adhere themselves strong enough, and also to the substrate. An exemplary
final microstructure cross-section of the obtained hybrid low frictional layer is presented in Figure 1b.
It consists of the following subzones: an externally grown compound zone containing low-friction
particles of MoS2 and optionally WS2 embedded in iron nitrides ε – 3 µm, white iron nitrides zone
(−17.8 µm), partially containing FeS fine inclusions (−5.8 µm), and relatively deep (−154 µm) dark
diffusive zone in the original microstructure. Such a multizone gradient structure of the surface layer
should be beneficial from the point of view of frictional and antiwear properties of piston rings made
of nodular cast iron.
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SEM cross sections and EDS pictures are presented in Figures 2 and 3 for layers options A and
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Figure 3. SEM Cross Sections and corresponding EDS of S, Mo and W distribution maps for layer
option B.

The analysis of SEM pictures and EDS maps confirmed the incorporation phenomenon of low
frictional particles MoS2 and WS2 into the structure of outer zone of hybrid layers.

The probable incorporation mechanism of them is the growth of ε iron nitrides during FineLPN
and sulphonitriding processes outside of the original metallic surface due to reciprocal diffusion of iron
ions through cationic defects in nitrides structure [35]. After the B process, the outer compound zone
that contains sulphur and molybdenum is relatively shallow and tight (Figure 2). The application of
additional sulphonitriding process after FineLPN treatment (option A) causes an important thickening
as well as structural loosening of composite’s outer zone that contains numerous and very fine inclusions
of low frictional particles MoS2 and WS2, which are embedded in ε-nitrides porous matrix. That porous
composite outer zone based on ε – iron nitrides matrix should be beneficial from a tribological point of
view for both dry [25] and liquid friction conditions [26,36]. Additionally, a relatively deep (ca. 150
µm) and relatively hard (up to 700 HV) diffusive zone should decrease the development of frictional
contact area and protect a nodular iron against hydrogen wear [24].

The low frictional and antiwear properties for optimized structure of hybrid layer (option A) have
been confirmed by dry friction and oscillation tribological tests. The results of them are presented in
Figure 4.
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Figure 4. (a) Comparison of friction coefficients obtained during tribological tests; (b) Comparison of
the maximum depth of frictional tracks.

The specimens treated in the hybrid process according to the schedule and parameters of option
A have shown an extremely low value of dry friction coefficient, 0.13, which is two-fold than the
non-optimum layers, e.g., those treated to the schedule and parameters of option B (Figure 4).
Also, the linear wear results after tribological tests have been twice as less for specimens treated
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according to the parameters A. That low frictional effect is the result of layered microstructure of
numerous and relatively deep distributed MoS2 and WS2 inclusions. They have been incorporated
relatively deep into hard ε – iron nitrides matrix. Therefore, they are durable structural sources of
solid lubricant for long frictional action in piston rings – engine cylinders systems.

The obtained tribological test results allow to conclude that optimized hybrid layers contain both
MoS2 and WS2 low frictional inclusions, and are well aerated by double thermo-chemical treatment
(FineLPN + sulphonitriding). Thus, such new technology may represent an interesting alternative
to replace and exclude the chromium-based galvanic coatings using Cr6+ from the manufacturing of
piston rings made of nodular iron.

4. Conclusions

• The new hybrid, multistage technology—that consists of following stages: slurry coating,
drying, sintering, FineLPN low pressure nitriding, and sulphonitriding thermochemical
treatments—may be an interesting alternative for chromium-based galvanic coatings of piston
rings made of nodular iron using Cr6+.

• The optimum tribological properties of hybrid layers have been obtained for option of two low
frictional particles MoS2 and WS2 and additional sulphonitriding heat treatment for important
thickening, as well as the structural loosening of outer composite zone.

• The extremely low dry friction coefficient (0.13) and low linear wear have been revealed for
the optimum hybrid layer, which were ca. twice as less in comparison to the benchmark
technological solutions.

• The optimised low frictional effect is the result of a layered microstructure composed of numerous
MoS2 and WS2 inclusions, which are and relatively deeply distributed in a hard ε – iron
nitrides matrix.
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