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Abstract: The effects of film thickness on the tribological behavior have been investigated for
hydrogen-free diamond-like carbon coating in this paper. The film was deposited on cemented
carbide substrate (YG10C) by applying a high power impulse magnetron sputtering (HiPIMS)
technique. The reciprocating ball on the disc test was conducted on the film with different thicknesses
from 0.66~1.26 µm against the ZrO2 ball. The friction coefficient and wear resistance of the coating
with different thickness showed a unimodal change. Numerous defects were observed on the surface
of the film with a thickness of 0.66 µm and the wear mechanism was mainly plow-grinding. Therefore,
the steady-state friction coefficient reached the maximum value of 0.22. The coating with a thickness
of 1.01 µm had a higher sp3 content and a smoother, dense surface. A graphite transfer layer with
low shear strength was detected on the ZrO2 ball against the film with a thickness of 1.01 µm, which
led to the reduction in friction, thus the steady-state friction coefficient reached the minimum value
of 0.10. However, the internal stress of the film increased with increasing thickness due to the
distortion of the bond angle of internal structure when the film was bombarded by high-energy
particles. The peeling coating was observed under reciprocating sliding, which both played the role
of plowing and boundary lubrication film. The steady-state friction coefficient was 0.14 with a coating
thickness of 1.26 µm. As a result, the hydrogen-free diamond-like carbon coating with optimized
thickness shows a smooth and compact surface, low internal stress, high sp3 content, and better
tribological properties.

Keywords: hydrogen-free diamond-like carbon coating; friction and wear; pulsed magnetron
sputtering; coating thickness; transfer film

1. Introduction

Hydrogen-free diamond-like films, as a kind of DLC film (a-C film), mainly composed of sp2

and sp3 bonded carbon atoms have attracted great interest for their high hardness, high thermal
conductivity, broad band gap, excellent anti-friction, and anti-wear performances [1–3] as well as
important applications such as aerospace, biomedical, machining, and automotive parts [4–8]. However,
there are some shortcomings such as high intrinsic stress, poor adhesion strength between the film and
substrate, and unstable tribological properties, which limit their further development [9–13]. Most of
the previous studies in recent years investigated the effect of deposition temperature [14], sputtering
power [15,16], deposition pressure [16], and substrate material [17] on the tribological behavior of
hydrogen-free diamond-like carbon coating. Few studies [2,18] have been found on the relationship
between film thickness and tribological properties of DLC coatings, and the tribological properties of
ultra-thick (more than 1 µm) DLC coating deposited by HiPIMS technique remain unclear. However,
the thickness is an important factor affecting the tribological behavior of coatings, it is necessary to
study the relationship between the tribological behavior of diamond-like coatings and film thickness.
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Thickness has an important effect on the tribological performance of various coatings, such as
TiN, CrN, and TiAlN coating [19–21], the thicker the coating, the higher the wear resistance. However,
the relationship may not work for the hydrogen-free diamond-like carbon coating. The non-monotone
variation relationship was presented on the growth of the coating and the degree of crosslinking of the
internal carbon structure, the degree of distortion of the bond, intrinsic stress, adhesion strength, and
the ability to withstand reciprocating shear force.

In this study, five groups of coatings with different thicknesses were deposited on cemented
carbide (YG10C) substrates by the HiPIMS technique. The influence of the thickness on the tribological
behavior was investigated. Furthermore, the effects of the thickness on the wear resistance and friction
coefficient were analyzed to improve the tribological performance of the coatings.

2. Film Deposition

In this project, hydrogen-free diamond-like films were deposited on the cemented carbide (YG10C)
substrates in a vacuum chamber with argon gas by applying the HiPIMS (PLASMAADS400) technique.
The substrate is 16 mm × 16 mm × 2.5 mm in dimension with a roughness of 35 nm. The relative
position between specimens and target is shown in Figure 1 and the deposition chamber is shown in
Figure 2. There are 4 magnetron sputtering targets applied alternately to deposit the hydrogen-free
diamond-like carbon coating, 2 Ti targets (99.9%, 49 mm in diameter) on the left and 2 graphite targets
(99.9%, 49 mm in diameter) on the right. The substrates were sandblasted for 2 min with glass beads of
220 mesh under a pressure of 1.5 pa, polished by cotton wheel at a velocity of 3000 r/min for 3 min,
ultrasonically cleaned with ethanol for 10 min and distilled water for 5 min, and heated in a thermostat
at 120 ◦C for 5 min prior to deposition. The coating deposition process was then carried out by using a
flow of 50 sccm Ar gas at a pressure of 1 × 10−3 pa, the vacuum was maintained at 8 × 10−2 pa during
the sputtering process. The Ar was ionized at 2000 V and the substrates were etched for 20 min at a
bias of −500 V. Ti was deposited on the substrate surface as the bottom layer to enhance the adhesion
strength between the substrate and film at a repetition rate of 15 Hz for 25 min. Ti and graphite
were then deposited on the bottom layer simultaneously at a repetition rate of 15 Hz for 15 min.
The thickness of the film difference was altered by controlling the sputtering time of the graphite target;
the sputtering time of each group varied by 20 min.

Tribological tests of the as-deposited films were performed on a ball-on-disk tribometer (UMT-3,
California, CA, USA) in air and at room temperature (with the atmospheric humidity 40%). The mating
ball was a ZrO2 ball with 8 mm in diameter. The applied load was 10 N, the reciprocating frequency
was 10 Hz with an amplitude of 10 mm. The specimens and ZrO2 balls were ultrasonic cleaned for
5 min in anhydrous ethanol solution prior to the experiment. The surface morphology of specimens
was analyzed by microscopy (GSX-500, Beijing, China) and the roughness was evaluated by a
three-dimensional surface profilometer (Talysurf CCI Lite, London, England), the roughness test length
was 8 mm and the test speed was 0.1 mm/s. The microstructures of the coating were observed by
Raman spectroscopy (B&WTek bws465-532s, California, USA) with the wavelength of incident light of
532 nm. The adhesion strength was measured by the Rockwell indenter (HRS-150, Shanghai, China).
The thickness of the films were measured by applying a non-destructive testing instrument (XUL-FTM,
Bad Salzuflen, Germany) and the average value of the 5 sets of test data was taken as the result.
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3. Results and Discussions

3.1. Surface Morphology

The surface morphology of the films is shown in Figure 3. The surface roughness of the films is
shown in Figure 4. Different micrograph and surface roughness were observed with different film
thicknesses. There are deep and wide defects of large density that appeared on the coating surface
(Figure 3a) and the surface roughness reaches the maximum value of 28.5 nm with a thickness of
0.66 µm. Subsequently, due to the increase of sputtering time, the defects on the film surface are found
to be gradually fused and the surface roughness of as-deposited film sharply declines. When the film
thickness reaches 1.01 µm (Figure 3c), the film surface clearly shows a smooth, dense micrograph with
the minimum surface roughness of 9.3 nm. However, with the further increase of the film thickness,
the surface performance of the film tends to decline. There are more defects observed on the coating
surface with a thickness of 1.15 µm (Figure 3d) and a surface roughness of 13.1 nm, and then the
surface roughness slowly increased to the value of 15.4 nm at a thickness of 1.26 µm. Such changes in
surface roughness could be attributed to the reasons as follows: the surface roughness of the film is
mainly affected by the surface roughness of the substrate when the film thickness is less than 1.01 µm,
otherwise, the surface roughness of the film mainly depends on the value of sp2/sp3 [22–24].
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Figure 4. Roughness value of coatings with different thicknesses.

3.2. Microstructures of the Films

Usually, the Raman spectra of the hydrogen-free diamond-like carbon film are composed of a G
peak at ~1560 cm−1 and a D peak at ~1380 cm−1. The D peak is attributed to the breathing mode of sp2

bonded carbon atoms and its intensity is strongly related to the presence of six-fold aromatic rings,
whereas G peak is assigned to the bond stretching of all pairs of sp2 atoms in chains and rings [2,10].
Figure 5 shows a series of Raman spectra of films with different thicknesses of 0.66~1.26 µm. It is
evident that the G peak is first redshifted and then blueshifted. In the thickness interval of 0.66~1.01 µm,
it shows a decrease of the ID/IG from 0.693 to 0.244 and a shift of the G peak from 1564 cm−1 to
1558 cm−1. It also showed an increase in the number of sp3 content in the film, the formation of
sp3 is considered to be promoted by the denser film and the stronger internal crosslinking in the
process of film growth. While in the thickness interval of 1.01~1.26 µm, the G peak is blueshifted
from 1558 cm−1 to 1567 cm−1 and the value of ID/IG increases from 0.244 to 0.747. The film was
bombarded by high-energy particles accelerated by the electromagnetic field after sputtering from the
target material and loses its original stress state, which leads to a decrease in the number of sp3 content
in the film. Therefore, the G peak locates far away from the D peak. The results are also consistent
with the research of Casiraghi et al. [25] and Ferrari and Robertson [26].



Coatings 2020, 10, 243 5 of 9

Coatings 2020, 10, x FOR PEER REVIEW 4 of 9 

 

3.2. Microstructures of the Films 

Usually, the Raman spectra of the hydrogen-free diamond-like carbon film are composed of a G 
peak at ~1560 cm−1 and a D peak at ~1380 cm−1. The D peak is attributed to the breathing mode of sp2 
bonded carbon atoms and its intensity is strongly related to the presence of six-fold aromatic rings, 
whereas G peak is assigned to the bond stretching of all pairs of sp2 atoms in chains and rings [2,10]. 
Figure 5 shows a series of Raman spectra of films with different thicknesses of 0.66~1.26 μm. It is 
evident that the G peak is first redshifted and then blueshifted. In the thickness interval of 0.66~1.01 
μm, it shows a decrease of the ID/IG from 0.693 to 0.244 and a shift of the G peak from 1564 cm−1 to 
1558 cm−1. It also showed an increase in the number of sp3 content in the film, the formation of sp3 is 
considered to be promoted by the denser film and the stronger internal crosslinking in the process of 
film growth. While in the thickness interval of 1.01~1.26 μm, the G peak is blueshifted from 1558 cm−1 
to 1567 cm−1 and the value of ID/IG increases from 0.244 to 0.747. The film was bombarded by high-
energy particles accelerated by the electromagnetic field after sputtering from the target material and 
loses its original stress state, which leads to a decrease in the number of sp3 content in the film. 
Therefore, the G peak locates far away from the D peak. The results are also consistent with the 
research of Casiraghi et al. [25] and Ferrari and Robertson [26]. 

 

 

Figure 5. Raman spectra of deposited films with different thickness (a) 0.66 μm, (b) 0.82 μm, (c) 1.01 
μm, (d) 1.15 μm, (d) 1.26 μm. 

3.3. Adhesion Strength 

The adhesion strength of the as-deposited film was shown in Figure 6. According to the VDI3198 
standard from the German Association for Science and Technology, the loading force is 60 N and the 
specimen is observed under a 100× microscope. The adhesion strength of the film with a thickness of 
0.66~0.82 μm is HF3. The adhesion strength of the films with a thickness of 1.01 μm is HF1 is the best. 
While the adhesion strength of the films with a thickness of 1.15 μm and 1.26 μm are HF3 and HF5, 
respectively. The indentation results showed first an increased adhesion strength and then a 
decreased adhesion strength of the films with a film thickness increasing from 0.66 μm to 1.26 μm. 
The film with a thickness of 0.66 μm showed many defects, a poor uniformity, and low external force 

ID/IG=0.244 (a) 0.66um ID/IG=0.693 (b) 0.82um ID/IG=0.417 (c) 1.01um 

(d) 1.15um (e) 1.26um ID/IG=0.522 ID/IG=0.747 

Figure 5. Raman spectra of deposited films with different thickness (a) 0.66 µm, (b) 0.82 µm, (c) 1.01 µm,
(d) 1.15 µm, (d) 1.26 µm.

3.3. Adhesion Strength

The adhesion strength of the as-deposited film was shown in Figure 6. According to the VDI3198
standard from the German Association for Science and Technology, the loading force is 60 N and the
specimen is observed under a 100×microscope. The adhesion strength of the film with a thickness of
0.66~0.82 µm is HF3. The adhesion strength of the films with a thickness of 1.01 µm is HF1 is the best.
While the adhesion strength of the films with a thickness of 1.15 µm and 1.26 µm are HF3 and HF5,
respectively. The indentation results showed first an increased adhesion strength and then a decreased
adhesion strength of the films with a film thickness increasing from 0.66 µm to 1.26 µm. The film with a
thickness of 0.66 µm showed many defects, a poor uniformity, and low external force bearing capacity.
The film was subjected to uneven stress under the effect of external pressure, the substrate was more
prone to deformation and in this case, the coating was easy to peel off from the substrate. With the
increase of the thickness, the films showed a stronger bearing capacity, a denser and more uniform film
layer, and lower intrinsic stress. In that case, the film was subjected to even stress under the effect
of external pressure, only small micro-cracks were formed. However, with a further increase in the
thickness, the bond angle was distorted by the bombardment of high-energy particles, which resulted
in a sharp rise in the intrinsic stress, thus the coating became more brittle. When the film was subjected
to external pressure, the deformation of the film and the substrate were not in step with each other,
therefore, the film peeled off from the substrate into pieces and exhibited very low adhesion strength.

3.4. Tribological Properties

The relationship between the coefficient of friction (COF) and the film thickness was shown in
Figure 7. It is obvious that the thickness strongly affected the friction coefficient of the films. The films
with different thicknesses all went into the stable wear stage within 7200 cycles after the running-in
stage. It is worth mentioning that after the running-in-period, the COF value of the film with a
thickness of 0.66 µm remains 0.15 around 1600 cycles and then increases slowly to 0.22. Tiny peaks
with slow slope change appeared on the friction coefficient curves with a thickness of 0.66 µm and
0.82 µm, which was considered to be caused by changes in the shape of surface defects during the
friction and wear process. The film with a thickness of 1.01 µm had smooth wear and a minimum
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friction coefficient of 0.1. The friction coefficient slowly rising to 0.12 with the thickness increased from
1.01 µm to 1.15 µm and continually rising to 0.14 when the thickness reached up to 1.26 µm. A peak
span of about 200 cycles appeared on the friction curve of the film with a thickness of 1.26 µm.
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stage. It is worth mentioning that after the running-in-period, the COF value of the film with a 
thickness of 0.66 μm remains 0.15 around 1600 cycles and then increases slowly to 0.22. Tiny peaks 
with slow slope change appeared on the friction coefficient curves with a thickness of 0.66 μm and 
0.82 μm, which was considered to be caused by changes in the shape of surface defects during the 
friction and wear process. The film with a thickness of 1.01 μm had smooth wear and a minimum 
friction coefficient of 0.1. The friction coefficient slowly rising to 0.12 with the thickness increased 
from 1.01 μm to 1.15 μm and continually rising to 0.14 when the thickness reached up to 1.26 μm. A 
peak span of about 200 cycles appeared on the friction curve of the film with a thickness of 1.26 μm. 

 
Figure 7. The relationship between the coefficient of friction and the thickness.

The wear morphology of the films with various thicknesses were shown in Figure 8. The wear
resistance of the as-prepared film exhibited a trend of first increasing and then decreasing, with the
film thickness increasing from 0.66 µm to 1.26 µm. There is a disturbance of about 0.1−0.2 nm on the
curve of Figure 8 which may be attributed to the contact probe of the applied equipment vibrates when
it encounters micro-asperities. However, this effect can be ignored for the characterization results.
In the thickness interval of 0.66~1.01 µm, the wear of the film gradually decreased, and the abrasion
resistance was on the rise. In the thickness interval of 1.01~1.26 µm, the wear of the film gradually
increased, the abrasion resistance gradually reduced, and two peaks were observed in the deep ground
of the wear track. The film with a thickness of 0.66 µm (Figure 8a) was worn out with a wide and
deep wear track. That rapid wear was considered to be caused by the high surface roughness of the
film, which led to the large shear force at the asperities due to the uneven stress. The film with the
thickness 1.01 µm (Figure 8c) obtained the minimum wear track width. As the film worked under
more uniform stress, which had little effect on the variation of the shear force. The sp3 content of the
film was relatively high, as well as the density of the σ bond with strong bonding C-C type which was
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not easily broken down by the friction [2]. As the thickness increased to 1.26 µm (Figure 8e), a deeper
wear track was found with two peaks in the deep ground. The scratched area was clearly separated
from the unscratched area, thus it could be concluded that the coating has been peeled off.
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To investigate whether there is a transfer on the counter-body surface. The grinding surface of the
ZrO2 ball was evaluated using Raman spectra after the friction test, as shown in Figure 9. The signal
only appears in the counter-body against the film with thickness 1.01 µm, a peak at ~1560cm−1 became
evident and sharp, which can be identified to the G peak. The D peak can be identified as the small
shoulder peak at ~1390cm−1. The strength and area of the G peak are much larger than that of the D
peak, the Raman spectra also reveal a typical structure of the graphite phase [2,10]. The graphite layers
would slide over one another during the friction process, which has a good lubrication effect. This may
be the reason for the lowest friction coefficient of the film with a thickness of 1.01 µm.Coatings 2020, 10, x FOR PEER REVIEW 7 of 9 
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Figure 9. Raman spectra of the grinding surface of the ZrO2 ball and the film with a thickness
of 1.01 µm.

Through the above findings, it is evident that the film thickness has a significant influence on
the tribological properties of the hydrogen-free diamond-like carbon films. When the film thickness
is below 0.66 µm, the film surface had numerous defects that led to the severe plowing effect in the
friction process against the ZrO2 balls, and this plowing effect could not be relieved because the wear
debris captured by the pinholes were unable to fill the pinholes. Moreover, the convex defects on the
film surface made the film worked under uneven force and the convex structure was subject to a larger
shear force that was worn rapidly, which results in the relatively high friction coefficient and poor
wear resistance of the film. However, the hydrogen-free diamond-like carbon films had sp2 structure,
the sideslip of which would reduce the friction coefficient. Therefore, although there was a severe
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plowing effect on the film, the friction coefficient of the hydrogen-free diamond-like carbon coating
was still lower than that of the TiNx, TiAl1-xNx, and nc-TiAl1-xNx/SiNx coatings [27].

With the increase of film thickness, the defects gradually integrated. The film gained a smooth
and dense surface with a thickness of 1.01 µm, the wear debris captured by the pinholes were able to
fill the pinholes which could relieve the plowing effect. The graphite transfer film formed on the ZrO2

ball surface which can reduce the plowing effect and work as a lubricant. Thus, the friction coefficient
showed a sharp decline and got a stable value of 0.10. In addition, the high sp3 content could increase
the wear resistance of the films as well. As the film thickness continues increasing, the film was
bombarded by high-energy particles, and the bond angle was distorted, which results in a sharp rise in
intrinsic stress. When the film was subjected to external pressure, it peeled off into pieces, thus the film
performed low wear resistance and showed deep wear track. The coating pieces that peeled off would
scratch the surface that was working in the following reciprocating motion under normal pressure,
and two peaks appeared in the deep ground of the wear track. Whereas graphitization occurred on
parts of the coating pieces peeled off at an elevated temperature, and the friction coefficient slowly
raised to 0.14 under that boundary lubrication.

4. Conclusions

(1) The surface morphology, sp3 bond content and adhesion strength of the hydrogen-free
diamond-like carbon film first increased and then decreased by increasing the film thickness from
0.66 µm to 1.26 µm. The film with a thickness of 1.01 µm had the best performance with smooth and
dense surfaces and the highest sp3 bond content and the adhesion strength reached up to HF1.

(2) When the film thickness is too thin, the island structure on the surface was not fused, thus the
plowing effect was obvious in the friction process. The convex island structure on the surface made the
film work under an uneven force, which resulted in a high friction coefficient and poor wear resistance.
While if the film thickness is too thick, the internal structure bond angle was seriously distorted with
high intrinsic stress, therefore, the film was prone to peel off the substrate.

(3) During the wear process of the as-deposited film against the ZrO2 ball, graphitization was
generated on the wear debris due to high contact temperature and high contact stress. The transfer
film was formed on the ZrO2 ball surface, which had a lubrication effect on the friction area. As a
result, the friction coefficient was reduced.
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