Supplementary Materials: Cu-MoS₂ Superhydrophobic Coating by Composite Electrodeposition

Lucia Helena Prado and Sannakaisa Virtanen*

Institute for Surface Science and Corrosion, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Germany; lucia.prado@fau.de

* Correspondence: virtanen@ww.uni-erlangen.de; Tel.: +49-9131-852-7577 (S.V.)

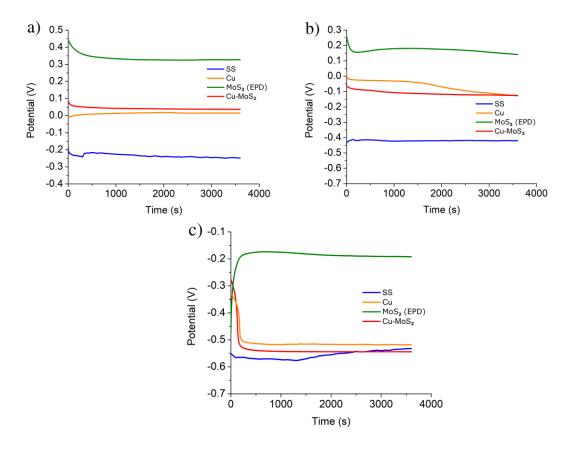


Figure S1. Open circuit potential measurements in (a) 0.1 M H₂SO₄, (b) 0.1 M NaCl, (c) 0.1 M NaOH.

Contact angle obtained with different parameters. All samples were fabricated following the procedure described in the paper. Contact angles were measured with a Drop Shape Analyzer Krüss DSA30 depositing a 3 μ L distilled water droplet in the center of the sample to avoid border effect in five different locations. Finally, the mean value and standard error were calculated for each sample.

Table S1. Contact angle of different samples.

MoS ₂ g/L	Time (Minutes)	Current density (mA/cm ²)	Temperature	CA (Deg)	σ ca
2,5	1			93.2	4.1
2.5	2	50	Ambient	80.2	3.4
2.5	3			139.2	4.7

15	1			141.8	5.8
		50			
15	2			77.5	9.7
15	3			83.0	4.9
10	1	40		99.7	8.2
10	2			102.2	4.1
10	3			157.8	1.2
10	1	50		153.6	2.6
10	2			166.0	3.1
10	3			151.7	2.0
10	5			152.4	5.9
10	2	60		143.6	5.8
10	3			153.3	3.2
15	2	40		155.2	4.4
15	3			149.5	2.7
15	2	50		159.3	3.9
15	3			155.2	3.1
15	1	60		143.6	5.9
15	3			152.6	1.6
20	3	40		161.1	1.4
20	3	50		157.1	2.1
20	1	60		80.3	6.0
20	3			128.2	5.9