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Abstract: Metallic platinum–titanium coatings were deposited by co-sputtering of two metallic Pt
and Ti targets in pure argon atmosphere. The titanium concentrations varied from 0 to 47 atomic
percent and were adjusted as a function of the current applied to the titanium target. The structural
and chemical features of these films were assessed by X-ray diffraction (XRD) and scanning electron
microscopy (SEM). All as-deposited coatings exhibit a perfect covering of the alumina pellets’ substrate
surface. The coatings containing more than 4 at.% Ti are amorphous, whereas the others crystallize
in the face-centered cubic (fcc) structure of platinum. After an annealing treatment under air for
2 h, all of the coatings adopt the fcc structure with a crystallization temperature depending on the
titanium content. For titanium concentrations higher than 32 at.%, the TiO2 phase appears during the
annealing treatment. For the smaller film thickness of Pt–Ti alloys (15 nm), the Ostwald ripening
mechanism is observed by SEM increasing the annealing temperature regardless of the content of Ti.
The film resistivity measured at room temperature is lower than 7 × 10−4 Ω·cm and increases with
the temperature to achieve an insulating behavior (in air and reducing atmosphere Ar-H2 (90-10) at
1123 K the resistivity is ρ ≈ 10+36 Ω·cm). When the thickness of intermetallic Pt3Ti layer is higher than
50 nm, the coating is continuous and the resistivity is below 5 × 10−4 Ω·cm in air and in reducing
atmosphere (Ar with 10% of H2) up to 1273 K.

Keywords: resistivity; magnetron sputtering; coating; Pt–Ti alloys

1. Introduction

Platinum is an interesting material used as a catalyst [1–4] for fuel cell electrodes [3–5] and a
protective layer against industrial corrosive atmosphere [2] or sensors [1,6]. However, this material is
very expensive, and its use as thin film is susceptible to minimizing the quantity used. One powerful
technique to avoid its waste is DC magnetron sputtering. Kawamura et al. [7] showed that platinum
grows with a Volmer–Weber mode. In order to obtain a continuous film, the minimal thickness is around
0.4 nm. However, some problems appear when pure platinum is used, such as pollution by CO during
the catalysis process [8], or microstructure coarsening with the temperature that promotes pinholes or
discontinuous films [9,10]. Many studies have focused on stabilizing continuous platinum coating
with the temperature, and one solution is to deposit metallic platinum alloys (Pt–X): Pt–Ni [11,12],
Pt–Ru [8], Pt–Ir [13,14], and Pt–Ti [15–19]. Among the solutions available in the literature, the Pt–Ti
system presents some interesting properties, such as high thermal stability, very good behavior as a
catalyst, and high resistance against corrosion due to the negative value of the formation enthalpy of
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the Pt–Ti bonds [15]. The phase diagram of Pt–Ti alloys firstly presented by Murray [20] was supported
by many publications, and some minor corrections have been proposed on this system so far [21].

In this paper, we deposited Pt–Ti metallic thin films through pulsed DC magnetron sputtering
with various titanium concentrations. The chemical and morphological features were assessed via
scanning electron microscopy equipped with energy dispersive X-Ray spectroscopy. The structural
evolution was characterized by X-ray diffraction, and the electrical properties were determined by
the four-point probe technique as a function of the temperature under static air and under reducing
atmosphere (Ar with 10% of H2). Firstly, we deposited a thin coating within a large panel of titanium
contents (0 to 47 at.%). Then, an intermetallic coating Pt3Ti with different thicknesses was synthesized
(10 to 100 nm). The aim of this study is to propose the minimum thickness of Pt3Ti intermetallic layer
required to be used as a current collector (for example in fuel cells) at high temperatures.

2. Experimental Details

Coatings have been deposited by co-sputtering of metallic targets in pure argon atmosphere.
Pulsed DC supplies power the platinum (Pt, purity 99.95%) and titanium (Ti, purity 99.5%) targets
mounted on balanced magnetrons—respectively, an Advanced Energy Pinacle+ pulsed at a fix
frequency of 100 kHz for the Pt and 150 kHz for the Ti target. The reactor was a 90-litre cylinder
pumped down with a turbo molecular pumping system allowing a base vacuum of less than 10−4 Pa
before refilling with argon at a convenient pressure. The argon flow rate introduced in the deposition
chamber was controlled by a Brooks flowmeter, and the total pressure was measured using an MKS
Baratron Gauge (model 690A01TRC, MKS Instrument France SA, Munchen, Germany) [22].

The targets, 50 mm in diameter and 3 mm in thickness, are parallel to the substrate-holder and
are spaced 120 mm from each other. Their distance from the substrate holder (DT-S) was fixed at
60 mm. Different substrates, such as glass slides and dense alumina pellets (Keral 99, diameter =

16 mm, thickness = 0.63 mm), produced by Kerafol Gmbh (Eschenbach in der Operpfalz, Germany),
were positioned at a distance around 55 mm from the axis of the rotating substrate-holder. Alumina
substrates were used to carry out the heat treatments as well as the structural, microstructural,
and electrical characterizations of the films. Glass slides were used to measure thickness through
tactile profiling in addition to the thickness obtained by SEM. During the deposition stage, the different
substrates were regularly rotated (20 Round Per Minute). The Pt discharge current was fixed at 0.2 A
for all experiments, and the discharge current applied to the Ti target was varied from 0 to 1 A in order
to obtain Pt–Ti coatings with different Ti contents. The main sputtering parameters are summarized in
Table 1.

Table 1. Main deposition conditions of the study.

Air Flow Rate (sccm) 50 Discharge Current on Pt (A) 0.2

Total Pressure (Pa) 0.5 Pulse Frequency (kHz)
Toff (µs)

100
2

Sputtering Time (min) 2.5 Discharge Current on Ti (A) 0→ 1

Drawing Distance (mm) 60 Pulse Frequency (kHz)
Toff (µs)

150
3.3

The structural features of the coatings were determined through X-ray diffraction in a grazing
incidence geometry using an incidence angle of 4 degrees configuration. A BRUKER D8 (Karlsruhe,
Germany) focus diffractometer (Co Kα1+α2 radiations, λ = 0.178897 nm) equipped with a LynxEye
linear detector (Bruker, Karlsruhe, Germany) with a fix incidence of 4◦ was used. Diffractograms
were collected under air flow for 10 min in the [20◦–80◦] scattering angle range by steps of 0.019◦.
The morphology of the coatings was characterized via scanning electron microscopy (FEG SEM) using a
JEOL JSM 7800F (Croissy sur Seine, France) equipped with energy-dispersive X-ray spectroscopy (EDS,
XFlash 6|30, Bruker nano, Berlin, Germany) for chemical measurements. Resistivity measurements
were first made at room temperature by means of a certified Jandel device (Multi height probe,



Coatings 2020, 10, 224 3 of 10

Jandel Engineering Limited, Lindslade, UK), which allows the determination of the form factor of the
measured cell temperature. Then, the electrical resistivity measurements as a function of temperature
were taken with an HP 3458A multimeter (Agilent, Massy, France) on the Pt–Ti film deposited on
alumina substrates. The four-point probe technique with four Pt aligned electrodes was employed.
The two outer probes are the current-carrying electrodes (I1, I2), and the two inner ones were used
to measure the voltage (E1, E2). The cell was placed inside an alumina tube and positioned in a
Pekly furnace. The resistivities of the films were recorded from room temperature up to 1273 K with
temperature steps and stabilization times of about 25 K and 20 min, respectively. Measurements were
taken under static air and under reducing atmosphere (total flow rate was 60 sccm, and the gas was
composed by Ar with 10% of H2).

3. Results and Discussion

3.1. Influence of Ti Content

Figure 1 shows the titanium content in the coating as a function of the current applied to the
titanium target. The linear evolution was assumed to proceed from the metallic flux increasing
quite linearly with the discharge current on the Ti target in neutral atmosphere. Regardless of the
film composition, as-deposited Pt–Ti metallic films perfectly cover the surface of alumina substrates.
The micrographs obtained via SEM of the film top-view (Figure 2) show that all the samples perfectly
reproduce the substrate surface topography. Only the coatings of pure platinum and with 4 at.%
titanium are crystallized in the face-centered cubic structure of platinum. All other films with higher Ti
content present an amorphous structure. XRD patterns obtained after two hours of thermal oxidation
at 1173 K in air of the Pt–Ti metallic films are shown in Figure 3. All coatings are crystallized under
the fcc structure according to the pure platinum structure. In comparison with the cubic cell of bulk
platinum, the cell is more and more deformed with each increase in titanium content. The atomic radii
are 0.139 and 0.147 nm for the platinum and titanium, respectively. Basically, the substitution of Pt
atoms by titanium increases the lattice constant (i.e., the Bragg angle corresponding to (111) planes of
platinum moves to smaller values while increasing the titanium content in the coating). Figure 3 shows
a reverse behavior for titanium concentration range from 4 at.% to 25 at.%. Spencer [17] explained this
phenomenon through the attractive bond length between platinum and titanium, which implies that
the Pt–Ti bond is shorter than the Pt–Pt bond. Irrespective of the Ti content, the coatings remain a
supersaturated fcc solid solution after annealing treatment at 1173 K. The intermetallic phases Pt3Ti,
Pt5Ti3, and PtTi of the Pt–Ti system predicted by Biggs et al. [21] do not appear in these coatings.
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Figure 1. Titanium concentration measured by EDS as a function of the discharge current applied on
the Ti target (The intensity on platinum is fixed at 0.2 A).
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Figure 2. SEM observations of the top surface of Pt–Ti coatings with different Ti concentrations
as-deposited on alumina pellets.
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Figure 3. XRD patterns of the Pt–Ti films deposited on alumina pellets after annealing treatment in air
at 1173 K during two hours and for different titanium concentrations.

Figure 4 represents the resistivity of around 15 nm thick platinum-based coating of different Ti
contents as a function of annealing temperature. The resistivity is quite constant when the temperature
is lower than 673 K. As the temperature rises, the film resistivity increases as well [9,10]. The transition
temperature from conductor to insulator is a function of the titanium content. Figure 5 shows the
XRD patterns of four coatings with different titanium concentrations as a function of the annealing
temperature. The temperature at which the films start to crystallize depends on the Ti concentration.
It extends over a range from 673 to 873 K, respectively, for pure Pt and Pt with 47 at.% of Ti. In the
case of pure Pt and Pt with 4 at.% of Ti, the films are crystallized, roughly worked up, under the
face-centered cubic structure. For films containing from 19 at.% to 47 at.% of Ti, crystallization begins
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from 873 K. Some jumps on the electrical resistivity value are observed (Figure 4). The temperature
of these jumps is expected to correspond to the morphological evolution of the coatings. Indeed,
SEM observation performed after electrical measurements up to 1273 K clearly shows the discontinuity
of the films with the lower Ti contents that consist in isolated islands of submicronic size. For higher
Ti contents, the film morphology appears granular, and although it seems to still percolate, the high
resistivity is assumed to proceed from a strong refinement of the layer between the grains.
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It is worth noting that the continuity of platinum coating with the temperature is very important
to use this material as a current collector for fuel cell applications. Figure 6 shows the top-view
observation via SEM of the films after electrical measurements performed at 1273 K for coatings with
four different concentrations of titanium (4 at.%, 19 at.%, 35 at.%, 47 at.%). When the temperature is
higher than 873 K, the coatings containing up to 19 at.% Ti are not continuous and are composed by
small islands a few nanometers of platinum on the alumina surface [9,10,23]. This surface morphology
is attributed to the Ostwald ripening mechanism during the sintering of the film with the annealing
treatment during the electrical measurement [10]. The coating containing 35 at.% Ti also presents less
covering of the alumina substrate, but it still percolates, thus maintaining a measurable resistivity.
Finally, the coating containing 47 at.% Ti remains continuous.
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3.2. Influence of the Thickness of Pt3Ti Coatings

The convenient composition of Pt3Ti is obtained if the discharge currents are 0.2 A pulsed at
100 kHz on the Pt target and 0.7 A pulsed at 150 kHz on the Ti target. The coatings were deposited
under 0.5 Pa argon pressure, and the sputtering time was adjusted to synthesize the films with different
thicknesses (26, 52, and 104 nm). The thinner film annealed under air presents an insulating behavior
over about 1173 K, while thicker films continue to conduct up to about 1273 K (Figure 7a). When the
annealing has been realized under reducing atmosphere, an insulating behavior is observed over
about 1100 K for the 26 nm thick film and over about 1200 K for the 52 nm thick one. The thickest
film behaves as a conductor for up to at least 1273 K (Figure 7b). In all atmospheres, the resistivity
decreases with increasing the film thickness and remains stable up to at least 1273 K for the highest
thickness (≈ 104 nm). This behavior is consistent with the SEM observation (top-view in Figure 8),
where the thinnest film consists in separated islands, whereas the thicker one still percolates under
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air and remains quite continuous under reducing atmosphere. The benefit effect of titanium addition
against grain coarsening and the Ostwald ripening mechanism is less important when the thickness
increases. A minimum of 50 and 100 nm thickness is necessary to obtain a stable current collector at high
temperature application and avoid some island formation under air or under reducing atmosphere.Coatings 2020, 10, 224 7 of 10 
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Figure 8. SEM micrographs of the top surface of Pt3Ti coatings with different thicknesses after the
resistivity measurements under air and under reductive atmosphere at 1273 K.

4. Conclusions

Platinum–titanium is a potential material as a current collector in the fuel cell applications. Pt–Ti
thin films were elaborated via co-sputtering of two metallic Pt and Ti targets in pure Ar atmosphere.
The titanium concentration of coating ranged as a function of intensity applied on the titanium target.
All as-deposited coatings were perfectly covering and reproduced the substrate surface morphology of
alumina pellets. X-ray diffraction results showed that the as-deposited metallic films with or without
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small addition of titanium are crystallized in the fcc platinum structure, while for Ti concentrations
higher than 4 at.%, the coatings become amorphous. For the thinner coating (15 nm), the Ostwald
ripening phenomenon was observed with the annealing treatment irrespective of the Ti concentration.

We also observed that if the Pt3Ti coating thickness is higher than 100 nm, the electrical
and morphological properties as a function of the annealing treatment remain stable. This film
could be a good potential candidate as a current collector at high temperature under oxidizing or
reducing atmosphere.
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