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Abstract: Present theoretical investigation is a mathematical illustration of an application to endoscopy
by incorporating hybrid nanoparticles and an induced magnetic field with a rheological fluid model for
more realistic results. Rheological fluid behavior is characterized by the Ostwald-de-Waele power-law
model. A hybrid nanofluid mechanism is considered comprising platelet-shaped nanoparticles since
nanoparticles are potential drug transportation tools in biomedical applications. Moreover, ciliary
activity is encountered regarding their extensive applications in performing complex functions along
with buoyancy effects. An endoscope is inserted inside a ciliated tube and peristalsis occurred due to
ciliary activity in the gap between tube and endoscope. A non-Newtonian model is developed by
mathematical formulation which is tackled analytically using homotopy analysis. The outcomes are
interpreted graphically along with the pressure rise and streamlining configuration for the case of
negligible inertial forces and long wavelength. A three-dimensional graphical interpretation of axial
velocity is studied as well. Moreover, tables are prepared and displayed for a more physical insight.

Keywords: hybrid nanofluid; induced magnetic field; mixed convection; heat generation; peristalsis;
cilia beating; Non-Newtonian

1. Introduction

Fluids possess a significant role in the amplification of heat exchange rate in numerous engineering
systems, e.g., heat exchangers, oil and petrochemical industries. Nanoparticle suspensions, pioneered
by Choi [1], made thermal performance of these fluids more effective and it has become a topic of
interest for many investigators [2–5]. Regardless of researchers’ efforts, there has been an elementary
issue with mono nanofluids that either they possess better thermal association or good rheological
characteristics. For example, metal oxides such as Al2O3 show excellent chemical inertness as well as
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stability, whereas metallic nanoparticles including Al and Ag exhibit better thermal conductivities.
Most of the authentic applications required transaction between different properties of nanofluids and
thus hybridization of nanomaterials has been introduced. Hybrid nanofluids can be manufactured
by dispersing nanoparticles of different materials individually or a mixture of nanoparticles in base
fluid. For instance, impacts of Cu–Ag nanohybrids on velocity and thermal boundary layer transport
inside the wedge have been investigated by Hassan et al. [6]. To gain the highest composite thermal
conductivity, chemical inertness and stability by using a small-volume fraction of nanoparticles at lower
production cost is the motivation of researchers behind their utilization of hybrid nanofluids [7–10].
Moreover, nanoparticles of TiO2 exhibit antibacterial and photocatalytic properties. Nguyen et al. [11]
has studied antibacterial properties of TiO2 by adopting silver decorative technique and revealed that
oxide nanoparticles of titanium did not show inhibitory impacts for bacteria whereas silver loaded
TiO2 nanocomposites display efficient antibacterial characteristics at a concentration of 40 mg/mL.
Ag nanoparticles are able to devastate pathogenic bacteria under ultraviolet radiation for efficient
degradation of toxic pollutants as well as being easy to attach to cell membranes [12–14]. Therefore,
Ag–TiO2 nanocomposite is preferred in this theoretical inspection. Moreover, platelet-shaped particles
are chosen since they capacitate swift healing in skin injuries because of their innate capability to make
a boundary intended for vascular walls.

A cilium is a microscopic, contractile, thin fiber-like slender appendage/protrusion that projects
from surfaces of specific cells. In the adult human body, epithelial cells along with motile cilia
are very prominent in specific brain sections. Due to their motility, they possess a considerable
role in many physiological processes like locomotion, alimentation and respiration. Peristalsis is a
spontaneous process of a symmetrical wave’s expansion and contraction within flexible boundaries.
Ciliary-induced peristalsis appears significantly in various biological transport processes such as
in biomedicine, physiology and nuclear reactors. Recently, Awais et al. [15] examined second-law
analysis for peristaltic nanofluid flow caused by ciliary action with magnetic effects. Furthermore,
they studied convective peristalsis of viscous fluid by considering non-uniform viscosity [16] as well.
Furthermore, the concept of peristaltic pumps, instigated by Engelman [17], has latterly been prominent
in several biological functions including roller pumps and heart-lung machines etc. As peristalsis
is a cutting-edge field due to physiological applications, several theoretical as well as experimental
attempts have been made to incorporate nanoparticles in order to improve thermal performance in
biomedical processes. Rashidi et al. [18] exemplified the application of MHD peristaltic transport of
blood containing nanoparticles in drug delivery through an incompatible channel which is practically
imperative in the bio-sciences. Hayat et al. [19] explicated mixed convective heat transfer in the
peristalsis of nanoparticles suspended in water assuming convective boundary conditions and joule
heating. Recently, Maqbool et al. [20] inspected the impacts of nanoparticles on magnetohydrodynamic
tangent hyperbolic fluid transportation in a ciliated tube.

Attention to non-Newtonian fluids arises as the majority of the physiological fluids possess
non-Newtonian behavior verified by experimental observations. In view of the fact that simplified
Newtonian models yield somewhat ambiguous results, several investigations on rheological fluid
behaviors have been carried out to obtain more realistic results. Examples include inelastic fluid
models e.g., the power-law model and viscoelastic fluid models such as the Johnson–Segalman model,
Oldroyd-B model and Maxwell model. Mixed convection impacts towards peristaltic transport of
magnetohydrodynamic non-Newtonian nanofluid were numerically evaluated by Hayat et al. [21].
The current study examines the rheological nature of fluid by employing Ostwald-de-Waele power law
model, a generalized one, in which rheological nature directly depends on power law index n and
deals with the shear thinning for (n < 1) and shear thickening for (n > 1) behaviors of fluid [22–25].

Moreover, the peristaltic flow with influences of applied magnetic field led to significant
applications in biomedical engineering problems [26–28]. In the case of large magnetic Reynolds
number for an electrically conducting fluid, induction becomes more prominent than magnetic diffusion,
and this made the induced magnetic field effects accountable. Shit et al. [29] examined the influence
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of induced magnetic field on peristalsis of a micropolar fluid assuming velocity slip. They observed
that peristaltic flow rate enlarges in an induced magnetic field which led to mechanical stimulation.
So, magnetic induction is appropriate in cancer treatment and magneto therapy as predicted in
literature [30–32]. Besides this, the performance of coatings with magnetic nanoparticles and heat
transport is ever-present in various fields. Magnetic nanoparticles, approved by the FDA (Food and
Drug Administration) [33], with coating are applicable in medical processes such as blood pressure
control of a patient, pharmacotherapy, surgery and alcohol detoxification etc. Ellahi et al. [34] carried
out a comparative investigation on shiny film coating on multi-fluids dispersed by nanoparticles. Akbar
and Butt [35] inspected the physiological flow of Casson fluid through a plumb duct. They observed
that fluid behaves as electrically conducting with a uniform magnetic field and found analytical results
under small wave number and low-Reynolds number approximations. The recent related research can
be read in [36–38].

Furthermore, endoscopic imaging is a precious diagnostic instrumental locating persistent access
to tissues deep inside hollow organs of the body. A conventional white-light endoscope is a solid
circular cylinder placed in a peristaltic tube. Fluid flow occurs in the space between the tube and
endoscope, and then further diagnostic procedures can be made such as for bleeding, cancerous
growths and precancerous polyps. Hayat et al. [39] have addressed the peristaltic transport of the
MHD power law fluid with endoscope effects. Hayat and Ali [40] have inspected the impact of an
endoscope on peristaltically induced flow of micropolar fluid. The influences of non-uniform viscosity
on peristaltic motion of Newtonian fluid through an endoscope have been conducted by Akbar and
Nadeem [41]. Rathod and Asha [42] have investigated endoscope effects along with a magnetic field
on peristalsis of the Newtonian fluid. They concluded that stress formation in a curved structure wall
augments as compared to straight walls. In view of the significance of research regarding endoscopy
applications, various studies have made (see refs. [43–48]).

With several advantages, advanced endoscopes are deficient in the spatial resolution for detection
and treatment of cancers and abnormalities at small scales. Ciliary walls have importance since these
biological cilia are helpful to perform complex biomimetic functions and applicable in vitro and in vivo
synthetic organs as well as drug-delivery applications. In these unmet requirements, the effects of
hybrid nanofluid and induced magnetic field on endoscopy application inside a ciliated peristaltic
tube are addressed. Mathematical modeling is performed by considering negligible inertial forces
and small wave number. An analytical solution of governing model is carried out by the homotopy
analysis method, and results are plotted physically against several sundry parameters via tables and
graphs. The trapping phenomenon is examined with the effects of electromagnetic induction as well.

2. Problem Description

A non-linear problem, concerning the transport and heat-transfer characteristics of non-Newtonian
(Ag-TiO2/H2O) hybrid nanofluid in an endoscope due to ciliary metachronical rhythm is investigated
here. A cylindrical coordinate system is used with (R,θ, Z) as position coordinates of fluid particles.
Non-Newtonian behavior of the flow is considered with Ostwald-de-Waele power law model expressed
as [22,25]:

τ = −k


√∣∣∣∣∣12 ∆ : ∆

∣∣∣∣∣n−1∆. (1)

where,
1
2

∆ :∆ = 2

(∂U
∂R

)2

+
(U

R

)2
+

(
∂W
∂Z

)2+ (
∂W
∂R

+
∂U
∂Z

)2

. (2)

In above expression k and n respectively represents flow consistency index and power law index.
In this study, non-Newtonian shear thickening fluid is considered with n = 2. Moreover, a constant
magnetic field having intensity H0 is taken in radial direction causes an induced magnetic field
H′(Hr(r, z), 0, Hz(r, z)) and, thereby, total magnetic field vector is H(H0 + Hr(r, z), 0, Hz(r, z)).
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The governing system of equations in an unsteady form is [25,29,30]:
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where,
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Wave shapes in the laboratory frame for envelope of cilia tips according to Figure 1 can be
expressed as:Coatings 2020, 10, x FOR PEER REVIEW 5 of 30 
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R1 = a1, (9)

R2 = f (Z, t) =
[
a2 + b cos

(2π
λ
(Z− ct)

)]
(10)

where, α1 and α2 represents radii of internal and external cylindrical tubes, accordingly. Considering
the motion of cilia in an elliptical path, the vertical position of cilia tips is expressed as:

Z = g(Z, Z0, t) =
[
Z0 + αbSin

(2π
λ
(Z− ct)

)]
, (11)

Since the velocities of the fluid layers are similar to those of the cilia tips under the no-slip wall
conditions, the vertical and horizontal velocities are:

W = ∂Z
∂t

∣∣∣
Z0

=
∂g
∂t +

∂g
∂Z

∂Z
∂t ,

U = ∂R
∂t

∣∣∣
Z0

=
∂ f
∂t +

∂ f
∂Z

∂Z
∂t .

(12)

With the help of Equations (10) and (11), Equation (12) becomes:

At R = R2 W =

−2π
λ bαcCos

(
2π
λ (Z− ct)

)
1− 2π

λ bαcCos
(

2π
λ (Z− ct)

) , U =
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λ bαcSin

(
2π
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)
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(

2π
λ (Z− ct)

) . (13)

The associated boundary conditions are defined as:

W = 0, at R = R1, W =

−2π
λ bαcCos

(
2π
λ (Z− ct)

)
1− 2π

λ bαcCos
(

2π
λ (Z− ct)

)at R = R1. (14)

If (R, Z, U, W) and (r, z, u, w) are, respectively, the coordinates and velocities in the laboratory
and wave frame, then transformations from the laboratory frame to wave frame for a steady problem
are [48]:

r = R, z = Z− ct, p(r, z) = P(R, Z− ct), u(r, z) = U(R, Z− ct),
w(r, z) = W(R, Z− ct) − c.

(15)

We introduce the following dimensionless quantities in the wave frame as [29,31]:

r = r
a2

, z = z
λ , δ = a2

λ , r1 = r1
a2

= ξ, r2 = r2
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λ ,

φ =
φ
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ψ
a2c , Hr = −

δ
r
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r
∂φ
∂r ,u = − δr

∂ψ
.

∂
¯
z

, ε = b
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,

w = 1
r
∂ψ
∂r , p =

a2
n+1p

cnλk , θ = T−T1
T0−T1

, E = − E
cH0µ̂

.

(16)

A non-dimensional governing model for the aforementioned quantities along with long wavelength
and creeping Stokesian flow approach is:

∂p
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r

(
−

1
r2
∂ψ
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r
∂2ψ
∂r2

)2
+ 2

(
−

1
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∂ψ
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r
∂2ψ
∂r2

)(
2
r3
∂ψ
∂r −

2
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∂2ψ
∂r2 + 1

r
∂3ψ
∂r3

)
−
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(
E− 1

r
∂ψ
∂r

)
−A1Grθ = 0,

(17)

∂p
∂r

= 0. (18)
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Equation (17) is simplified in the form:

−
1
r2

(
−

1
r2

dψ
dr + 1

r
d2ψ
dr2

)2
+ 2

r

(
−

1
r2

dψ
dr + 1

r
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dr2

)(
2
r3

dψ
dr −

2
r2

d2ψ
dr2 + 1

r
d3ψ
dr3

)
+2

(
−

1
r2

dψ
dr + 1

r
d2ψ
dr2

)(
−

6
r4

dψ
dr + 6

r3
d2ψ
dr2 −

3
r2

d3ψ
dr3 + 1

r
d4ψ
dr4

)
+2

(
2
r3

dψ
dr −

2
r2

d2ψ
dr2 + 1

r
d3ψ
dr3

)2
+ M2

(
−

1
r2

dψ
dr + 1

r
d2ψ
dr2

)
−A1Gr dθ

dr = 0,

(19)

1
r
∂θ
∂r

+
∂2θ

∂r2 +
Ω
A2

= 0, (20)

E−
1
r
∂ψ

∂r
−

1
Rm

(
−

1
r2

∂φ

∂r
+

1
r
∂2φ

∂r2

)
= 0. (21)

where, bar notation is ignored.
Corresponding boundary conditions are listed as:

ψ(r) = −F
2 , 1

r
∂ψ
∂r = −1, φ(r) = 0, θ(r) = 1, at r = r1 = ξ,

ψ(r) = F
2 , 1

r
∂ψ
∂r = −1− 2πεαδ cos(2πz), φ(r) = 1,

θ(r) = 0, at r = r2 = 1 + ε cos(2πz).

(22)

In the above expressions, u and w denotes r- and z-components of velocity within the wave frame,
respectively. Emerging parameters in the above model are expressed as [48,49]:

M2 = ReS2Rm, Re =
an

2ρf

kcn−2 , Rm = σµ̂a2c, S = H0
c

√
µ̂
ρf

,

pm = p + 1
2 Reδ µ̂(H)2

c2ρf
, Ω =

Q0a2
2

κf(T0−T1)
, Gr =

(ρβ)f (T0−T1)a
n+1
2

kcn .
(23)

where as

A1 = (1−φ1 −φ2) + φ1(
(ρβ)s1
(ρβ)f

)] + φ2
(ρβ)s2
(ρβ)f

,

A2 =
κs2+(s−1)κbf−(s−1)φ2(κbf−κs2 )

κs2+(s−1)κbf+φ2(κbf−κs2 )

κs1+(s−1)κf−(s−1)φ1(κf−κs1 )

κs1+(s−1)κf+φ1(κf−κs1 )
.

(24)

Moreover, the pressure gradient can be achieved from the following relation:

F =

r2∫
r1

rwdr =

r2∫
r1

∂ψ

∂r
dr (25)

where, F is the volumetric rate of flow inside the wave frame. Now, non-dimensional mean flow rate Q
into the laboratory frame assuming the transformations of Equations (16) is:

Q = F +
1
2

(
1− ξ2 +

ε2

2

)
. (26)

Pressure rise per wavelength is calculated utilizing Equation (25) as:

∆P =

1∫
0

dp
dz

dz. (27)

All variables and parameter are defined in Appendix A.



Coatings 2020, 10, 186 7 of 28

3. Methodology and Convergence of HAM Solutions

3.1. Methodology

The dimensionless governing model containing Equations (19)–(21) under the associated boundary
conditions (22) is analyzed by employing homotopy analysis method. For this, the initial guesses are
ψ0(r), φ0(r) and θ0(r) and linear operators are chosen in the subsequent manner as:

L1(ψ) = ψ(iv), L2(φ) = φ′′ ,L3(θ) = θ′′ . (28)

And
L1

(
C1 + C2r + C3r2 + C4r3

)
= L2(C5 + C6r) = L3(C7 + C8r) = 0, (29)

where, C1-C8 represents constants while h1, h2 and h3 being auxiliary parameter which plays a key role
in the frame of HAM, since the convergence of solutions strongly depends on h. Now, for embedding
parameter γ ∈ [0, 1] and non-zero auxiliary parameters, the problem under study can be constructed in
the following manner [29,30]:

Zeroth-order deformation problem:

(1− γ)L1[ψ(r,γ) −ψ0(r)] = γh1N1[ψ(r,γ),φ(r,γ),θ(r,γ)], (30)

(1− γ)L2[φ(r,γ) −φ0(r)] = γh2N2[ψ(r,γ),φ(r,γ),θ(r,γ)], (31)

(1− γ)L3[θ(r,γ) − θ0(r)] = γh3N3[ψ(r,γ),φ(r,γ),θ(r,γ)]. (32)

and,
At r = r1 = ξ,ψ(r1,γ) = −F

2 , 1
r1
ψ′(r1,γ) = −1,φ(r1,γ) = 0,θ(r1,γ) = 1.

At r = r2 = 1 + ε cos(2πz),ψ(r2,γ) = F
2 , 1

r2
ψ′(r2,γ) = −1− 2πεαδ cos(2πz),

φ(r2,γ) = 1,θ(r2,γ) = 0.

(33)

On the basis of selected linear operator, auxiliary parameter and initial guesses, the m th order
solution series is constructed as:

L1[ψm(r,γ) − χmψm−1(r,γ)] = h1R1
m(r,γ), (34)

L2[φm(r,γ) − χmφm−1(r,γ)] = h2R2
m(r,γ), (35)

L3[θm(r,γ) − χmθm−1(r,γ)] = h3R3
m(r,γ). (36)

The boundary conditions are:

at r = r1 = ξ,ψm(r1,γ) = 0, 1
r1
ψ′m(r1,γ) = 0,φm(r1,γ) = 0,θm(r1,γ) = 0.

at r = r2 = 1 + ε cos(2πz),ψm(r2,γ) = 0, 1
r2
ψ′m(r2,γ) = 0,φm(r2,γ) = 0,

θm(r2,γ) = 0.

(37)

where the auxiliary parameter is found by plotting h-curves while χm is defined as:

χm = 0, m≤1
1, m>1

}
Therefore, we can write:

ψm(r,γ) = Ψm(r,γ) + C1 + C2r + C3r2 + C4r3,

φm(r,γ) = Φm(r,γ) + C5 + C6r,

θm(r,γ) = Θm(r,γ) + C7 + C8r.

(38)
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The particular solutions Ψm(r,γ), Φm(r,γ) and Θm(r,γ) are obtained using a symbolic software
mathematica while the constants are determined from the defined boundary conditions.

3.2. Convergence of HAM Solutions

To obtain the values of auxiliary parameters h1, h2 and h3, h-curves against ψ′′ , φ′′ and θ′ are
prepared and the results are given in Figures 2–4. Convergence intervals lie in the flat portion of these
h-curves as witnessed from plots. It is observed those permissible values of h1, h2 and h3 up to the
10th order of approximation are: −0.1 ≤ h1 ≤ 0.3, −0.12 ≤ h2 ≤ 0.01, −0.2 ≤ h3 ≤ 0.05.
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4. Quantitative Analysis

The governing model is tackled analytically and solutions are physically interpreted here.
The problem of rheological behavior of hybrid nanofluid flow induced by metachronical ciliary

transport with heat transfer is studied. Important physical features of water and nanomaterials are
represented in Table 1. Therefore, the behavior of velocity, temperature, induced magnetic field, stream
function and volumetric flow rate for involving parameters is discussed in this section. Magnitudes of
physical parameters are chosen corresponding to the physical situations assumed in the problem with
z = 1, ε = 0.2,α = 0.05 and δ = 0.002.

Figure 5 explores the variational trend of axial velocity for escalating values of magnetic Reynolds
number. As the magnetic Reynolds number rises, a high induction effects appear with the reduction
in magnetic diffusion. These effects can be observed from the figure in which the velocity inside the
annulus shows a decreasing behavior in the vicinity of the inner tube having radius a1 owing to no
slip velocity condition while it accelerates near the interior of outer tube with radius a2 due to the
continuous cilia beating. Moreover, a similar trend is noticed in Figures 6 and 7 for rising values of Gr
and M caused by increasing buoyancy effects towards the variation in Gr and due to adding the flow
mechanism with a rise in M which directly affects the flow rate. Figure 8 explicates the variational
trend of magnetic induction profile against R. This is due to the fact that induction is directly linked
with advection and the effects of R on the flow rate as described in Figure 5, cause magnetic induction
profile to decelerate near the boundary of inner tube and accelerate in the vicinity of outer tube.

The consequences of emerging parameters on the temperature profile are inferred in Figures 9
and 10. Correspondingly, a decrease in temperature of the hybrid nanofluid for gradually mounting
values of Gr is observed in Figure 9. The physics behind such behavior is an increase in heat-transfer
rate due to enhancing buoyancy forces for rise in values of Gr. An increasing response of temperature
of the fluid towards the magnetic Reynolds number is noted in Figure 10. This reveals that for high
values of R, fluid particles gain more kinetic energy which is directly related to fluid temperature.
All the results are plotted for mean flow rate Q = 2.
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Furthermore, there is a three-dimensional physical interpretation of the velocity profile for variation
in values of magnetic Reynolds number, Grashof number and Hartmann number, as displayed in
Figures 11–13, respectively. The velocity maps out the parabolic trajectory for all the involving
parameters. It is seen that velocity profile changes its behavior in the intervals 0.1 ≤ r ≤ 0.6 and 0.61
≤ Υ ≤ 1.0 and the influences of the parameters on axial velocity are similar to the two dimensional
velocity behaviors.
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Figure 12. Three-dimensional (3-D) velocity profile towards Gr.

Besides this, the maximum pressure rise towards which peristalsis behaves as a pump is analyzed
by means of pressure rise for one wavelength. In this regard, Figures 14–17 are prepared which exhibit
the influence of embedding parameters correspond to pressure rise per wavelength towards mean flow
rate. Non-linear behavior of these curves characterizes non-Newtonian fluid. All these plots contain
four main parts (a) peristaltic pumping region, i.e., ∆P > 0, (b) free pumping region, i.e., ∆P = 0 (c)
co-pumping region, i.e., ∆P < 0. In the region of peristaltic pumping, flow rate is positive and caused
by peristalsis that occurred due to overcoming pressure difference while peristalsis of the boundaries
of tube yields a free-pumping region. In the region of co-pumping, flow due to the peristalsis is
assisted by negative pressure difference. The influence of the heat-generation parameter and Hartmann
number are shown in Figures 14 and 15, and it is perceived that the pressure rise in co-pumping region
(−1.0 ≤ Q ≤ −0.45) for Gr and (−1.0 ≤ Q ≤ 0.5) for M are decreasing. As, for Ω = 0.1, 0.3, 0.5, 0.7 and
M = 0.0, 0.5, 1.0, 1.5, corresponding co-pumping regions contain (Q ∈ [−1.0, −0.45], Q ∈ [−1.0, −0.42],
Q ∈ [−1.0, −0.4], Q ∈ [−1.0, −0.39]) and (Q ∈ [−1.0, 0.5], Q ∈ [−1.0, 0.48], Q ∈ [−1.0, −0.56], Q ∈ [−1.0,
−0.4]), respectively. Pumping and free-pumping regions are increasing due to temperature gradient by
buoyancy effects and increasing induction, correspondingly. Moreover, a similar trend for a rise in the
values of Gr and R is depicted in Figures 16 and 17, and it is witnessed that the co-pumping region
contains Q ∈ [−1.0, −0.4] but the pumping region is increasing.
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The pressure gradient illustrates a direction and rate of rapid variation in pressure. Therefore,
the pressure gradient towards embedding parameters such as the heat-generation parameter (Ω),
Hartmann number (M), magnetic Reynolds number (R) and Grashof number (Gr) are studied and
portrayed in Figures 18–21. It is perceived from these plots that the pressure gradient decreases rapidly
with the variation in all the parameters. Hence, flow can easily pass through the endoscope for a small
pressure gradient at r = 1 (near outer tube) exclusive of the imposition of the high-pressure gradient.Coatings 2020, 10, x FOR PEER REVIEW 15 of 30 
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Trapping is a significant observable fact, whereby a bolus is transported with the wave speed
and then a trapped bolus pressed forward along metachronical waves. These configurations are
plotted in Figures 22–25 for different values of sundry parameters with panels (a)-(d) which inspect the
ciliary-induced peristaltic flow pattern in the annulus. In general, the shape of streamlines is similar to
the wave moving parallel to the walls of the tube. Under specific conditions, streamlines split and
form a bolus which moves and circulates along the channel. The setup for the magnetic Reynolds
number (R) is explained in Figure 22 for M = 1.5, Gr = 0.8, Q = 2, ε = 0.2. Higher values of R yield
oscillatory motion of the fluid, and therefore a confined bolus decreases in size. Figure 23 depicts the
behavior of streamlines for M = 1.5, R = 2, Q = 2, ε = 0.2 and it is perceived that with an increment in
values of Gr, the confined bolus is shrinked moving towards the boundary of external tube and finally
disappear due to temperature distribution caused by buoyancy forces. A similar formation of the flow
pattern against rising Hartmann number is explored in Figure 24 with Gr = 0.8, R = 2, Q = 2, ε = 0.2.
Physically, enhancement in magnitude of M augments fluid velocity which opposes trapping. This is
in view of the fact that the magnitude of the amplitude ratio parameter (ε) indicates the length of cilia
and the increment in values of ε enlarges cilia. The trapped bolus grows in size and circulates speedily
as noticed in Figure 25. Thus, the presence of cilia favors trapping.
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Figure 24. Behavior of streamlines for different values of Hartmann number (a–d).
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Figure 25 Behaviorof streamlines for different values of amplitude ratio (a-d). 

Experiment-based numerical values and mathematical formulas for thermophysical 
characteristics of the hybrid nanofluid are expressed in Tables 1 and 2. Furthermore, the impact of 
engrossing parameters towards velocity and temperature profiles are presented in tabular form as 
shown in Tables 3 and 4. Table 3 shows that for small values of r, velocity decreases gradually but an 
increasing behavior is observed for larger radial distance against M and R. A conflicting behavior of 
the temperature profile towards R and Gr is depicted in Table 4. Additionally, the behaviors of 
velocity, temperature and magnetic induction profiles for variation in radial distance are examined 
and results are portrayed in Table 5. All the variations are examined for M = 4, R = 2, Gr = 2.5, Ω = 4, 
Q = 2, z = 1, ε = 0.2. 

In addition, validation of existing results is examined by comparing them with those of Nadeem 
and Sadaf [50] in which an exact solution of a Newtonian Cu/blood nanofluid in the absence of 
magnetic induction has been studied. Table 6 shows that the two results are in good agreement. (See 
Table 6). 

Table 1. Numerical values of thermal characteristics of nanomaterials and base fluid at 25 °C [9,12]. 

Properties\Constituents H2O Ag TiO2 

Density, ρ(kg/m3) 997 10,500 4250 
Specific heat, Cp (J/kg K) 4179 235 686.2 

Thermal conductivity, κ (W/m K) 0.613 429 8.95 

Figure 25. Behaviorof streamlines for different values of amplitude ratio (a–d).

Experiment-based numerical values and mathematical formulas for thermophysical characteristics
of the hybrid nanofluid are expressed in Tables 1 and 2. Furthermore, the impact of engrossing
parameters towards velocity and temperature profiles are presented in tabular form as shown in
Tables 3 and 4. Table 3 shows that for small values of r, velocity decreases gradually but an increasing
behavior is observed for larger radial distance against M and R. A conflicting behavior of the temperature
profile towards R and Gr is depicted in Table 4. Additionally, the behaviors of velocity, temperature
and magnetic induction profiles for variation in radial distance are examined and results are portrayed
in Table 5. All the variations are examined for M = 4, R = 2, Gr = 2.5, Ω = 4, Q = 2, z = 1, ε = 0.2.

Table 1. Numerical values of thermal characteristics of nanomaterials and base fluid at 25 ◦C [9,12].

Properties\Constituents H2O Ag TiO2

Density, ρ (kg/m3) 997 10,500 4250
Specific heat, Cp (J/kg K) 4179 235 686.2

Thermal conductivity, κ (W/m K) 0.613 429 8.95
Thermal expansion coefficient, β

(10−5 m/(mK)) 21 1.89 0.9
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In addition, validation of existing results is examined by comparing them with those of Nadeem
and Sadaf [50] in which an exact solution of a Newtonian Cu/blood nanofluid in the absence of magnetic
induction has been studied. Table 6 shows that the two results are in good agreement. (See Table 6).

Table 2. Experimental relations for thermophysical characteristics of hybrid nanofluid [9,10].

Properties Hybrid Nanofluid

Density ρhnf = ρf(1−ϕ2)
[
(1−ϕ1) + ϕ1

( ρs1
ρf

)]
+ ϕ2ρs2

Heat Capacity
(
ρcp

)
hnf

=
(
ρcp

)
f
(1−ϕ2)

[
(1−ϕ1) + ϕ1

(
(ρcp)s1

(ρcp)f

)]
+ ϕ2

(
ρcp

)
s2

Viscosity µhnf =
µf

(1−ϕ1)
2.5(1−ϕ2)

2.5

Thermal Conductivity

κhnf
κbf

=
κs2+(s−1)κbf−(s−1)ϕ2(κbf−κs2 )
κs2+(s−1)κbf+ϕ2(κbf−κs2 )

,

whereκbf
κf

=
κs1+(s−1)κf−(s−1)ϕ1(κf−κs1 )
κs1+(s−1)κf+ϕ1(κf−κs1 )

Thermal Expansion Coefficient (ρβ)hnf = (ρβ)f[(1−φ1 −φ2) + φ1(
(ρβ)s1
(ρβ)f

)] + φ2(ρβ)s2
,

Table 3. Numerical values of velocity profile versus r for variation in values of M and R.

r
w(r)

M=0.0 M=2.0 M=4.0 R=1.5 R=3.0 R=5

0.1 −1.000000 −1.000000 −1.000000 −1.000000 −1.000000 −1.000000
0.3 2.916111 2.721028 2.141469 2.721303 2.720534 2.720410
0.6 1.396253 1.358720 1.246153 1.358769 1.358632 1.358609
0.9 −0.352214 −0.235930 0.109736 −0.236095 −0.235635 −0.235561
1.2 −1.000013 −1.000013 −1.000013 −1.000013 −1.000013 −1.000013

Table 4. Numerical values of temperature profile versus r for variation in values of R and Gr.

r
θ(r)

R=2.0 R=4.0 R=6.0 Gr=0.5 Gr=2.0 Gr=3.5

0.1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.3 1.074105 1.242672 1.298861 1.206081 1.140543 1.074070
0.6 0.981608 1.122851 1.169931 1.185397 1.083984 0.981587
0.9 0.501895 0.566682 0.588277 0.625917 0.564191 0.501894
1.2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Table 5. Variation in flow profiles for variation in radial distance r.

r Velocity Temperature Induced Magnetic Field

0.1 −0.999999 1.000000 9.468376
0.15 1.060587 0.965941 6.306623
0.2 1.943109 0.975023 4.723305

0.25 2.349953 0.999968 3.771855
0.3 2.515741 1.028599 3.136419

0.35 2.541556 1.054529 2.681561
0.4 2.478507 1.074105 2.339547

0.45 2.355582 1.085138 2.072744
0.5 2.1907886 1.086309 1.858574

0.55 1.9962259 1.076840 1.682671
0.6 1.7806156 1.056315 1.535457

0.65 1.5506610 1.024567 1.410307
0.7 1.3118123 0.981608 1.302488
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Table 5. Cont.

r Velocity Temperature Induced Magnetic Field

0.75 1.0687020 0.927579 1.208531
0.8 0.8253723 0.862717 1.125837

0.85 0.5853391 0.787332 1.052418
0.9 0.3514943 0.701789 0.986730

0.95 0.1257983 0.606497 0.927553
0.1 −0.0913227 0.501895 0.873915

1.05 −0.3020293 0.388449 0.825024
1.1 −0.5127976 0.266646 0.780240

1.15 −0.7371672 0.136990 0.739028
1.2 −1.000013 0.000000 0.700945

Table 6. Comparison of velocity with those of Nadeem and Sadaf [50] for n = 1,φ2 = 0, M =

0 and E = 0.

r

w(r)= 1
r
∂ψ
∂r

Gr=1.0 Gr=2.0 Gr=3.0

Existing [46] Existing [46] Existing [46]

0.1 −1.000000 −1.000000 −1.000000 −0.000000 −1.000000 −1.000000
0.17 −0.717905 −0.717905 −0.702637 −0.702637 −0.687369 −0.687369
0.24 −0.559148 −0.559157 −0.539095 −0.539095 −0.519033 −0.519033
0.31 −0.465611 −0.465615 −0.445894 −0.445894 −0.426172 −0.426172
0.38 −0.415011 −0.415014 −0.398441 −0.398441 −0.381868 −0.381868
0.45 −0.396309 −0.396313 −0.384359 −0.384359 −0.372405 −0.372405
0.52 −0.403142 −0.403151 −0.396393 −0.396393 −0.389636 −0.389636
0.59 −0.431481 −0.431483 −0.429839 −0.429839 −0.428195 −0.428195
0.66 −0.478539 −0.478546 −0.481408 −0.481408 −0.48427 −0.48427
0.73 −0.542336 −0.542343 −0.54867 −0.54867 −0.554997 −0.554997
0.80 −0.621365 −0.621371 −0.629747 −0.629747 −0.638123 −0.638123
0.87 −0.714447 −0.714452 −0.723131 −0.723131 −0.73181 −0.73181
0.94 −0.820564 −0.820638 −0.827574 −0.827574 −0.834509 −0.834509
1.01 −0.939132 −0.939145 −0.942016 −0.942016 −0.944887 −0.944887

1.04382 −1.00061 −1.00061 −1.00061 −1.00061 −1.00061 −1.00061

5. Conclusions

This study incorporates the effects of electromagnetic induction on a rheological model of a hybrid
nanofluid in ciliary-induced peristalsis through an endoscope. The major findings are summarized as:

v Velocity of the hybrid nanofluid reduces for M and Gr near the endoscope but it increases near
the external peristaltic tube having a ciliary surface due to a decreasing pressure gradient, even in
creeping flow condition as observed from 2-D and 3-D plots. These results show that buoyancy
effects are more prominent near the peristaltic tube and magnetic induction enhances peristalsis
in presence of Ag-TiO2 nanohybrids with 0.2% concentration.

v The magnetic induction profile displays a similar behavior as that of velocity towards the magnetic
Reynolds number. An increase in values of R upgrades the flow rate and hence it is concluded
that velocity and induced magnetic field relatively generate elastic oscillations. Consequently,
fluid having hybrid nanoparticles can deeply interact with tumors and efficiently deliver drugs
to specified section.

v The temperature of hybrid nanofluid depicts a decreasing behavior for Gr while a conflicting
trend is seen for R. This trend of temperature increase of the fluid will be helpful in the removal
of a cancer tumor and abnormal cells without affecting healthy parts within the body during
an endoscopy.
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v The behavior of the pressure rise for different parameters show that the pressure rise declines
in the co-pumping region whereas it is enhanced in the pumping and free-pumping regions.
Pumping rate increases for increment in radius ratio parameter which is favorable for accurate
endoscopic imaging.

v The pressure gradient decreases throughout the length of the endoscope close to the ciliated
peristaltic tube for r2 = 1.

v Numerical values of velocity and temperature against embedding parameters explore a similar
behavior as noticed in graphs. Flow profiles towards variation in radial distance are examined
which satisfy the conditions of the problem.

v The presence of cilia shows a dominant effect on the behavior of the flow variables. In most cases,
the sensitive interior surface of organs may be protected due to cilia as they assist velocity near
the peristaltic tube.

v The peristaltic flow pattern due to ciliary activity for different parameters is displayed via
streamline configuration and a reduction in the size of the trapped bolus is observed towards R,
M and Gr but conversely enlarges for ε.

v The present work appears to be the first attempt in the literature dealing with the effects of
electromagnetic induction on peristaltic transport and the heat transfer of non-Newtonian hybrid
nanofluid through a ciliated tube inserted by an endoscope. Additional developments and
characteristics of the problem can be examined.

v Results for Newtonian nanofluid [50] can be obtained in a limiting case.
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Nomenclature

b Wave Amplitude in Fixed Frame Wall (m)
c Wave speed (ms−1)
n Power law index
k Consistency index (Pa sn)
g Gravitational acceleration (ms−2)
s Nanoparticles shape factor
E Electric field strength (N/C)
p Pressure (Pa)
T Temperature (K)
T0 Temperature of inner tube (K)
T1 Temperature of outer tube (K)
Gr Grashof number (dimensionless)
Qo Heat sink/source parameter (Wm−2K−1)
Rm Magnetic Reynolds number
H0 Magnetic field strength (Am−1)
Hr Radial magnetic induction componentComponent (Am−1)
Hz Axial magnetic induction component (Am−1)
cp Specific heat (Jkg−1K−1)
M Hartman number
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U Radial velocity component (ms−1)
W Axial velocity component (ms−1)
Greek Symbol
ρ Density (kgm−3)
σ Electric conductivity (S/m)
φ Magnetic force function (A2m−1)
ψ Stream function (m2s−1)
β Thermal expansion coefficient (K−1)
λ Wavelength (m)
δ Wave number (dimensionless)
µ̂ Magnetic Diffusivity (m2s−1)
µ Dynamic viscosity (kgm-1s−1)
ε Wave amplitude in moving frame (m)
κ Thermal conductivity (Wm−1K−1)
Ω Dimensionless heat source/sink parameter
∆ Rate of deformation tensor (s−1)
τ Shear stress (Pa)
α Measure of eccentricity
Subscript
hnf Hybrid Nanofluid
f Base fluid
s1 Solid nano particles of Ag
s2 Solid nano particles of TiO2

Appendix A
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