
coatings

Article

Heat Transfer Effect on Viscoelastic Fluid Used as a
Coating Material for Wire with Variable Viscosity

Zeeshan Khan 1, Haroon Ur Rasheed 2,* , Saeed Islam 2 , Sahib Noor 1, Ilyas Khan 3 ,
Tariq Abbas 1, Waris Khan 4 , Asiful H. Seikh 5 , El-Sayed M. Sherif 5,6 and
Kottakkaran Sooppy Nisar 7

1 Sarhad University of Science and Information Technology, Peshawar, KPK 25000, Pakistan;
zeeshansuit@suit.edu.pk (Z.K.); sahib.csit@suit.edu.pk (S.N.); tariqabbas56@yahoo.com (T.A.)

2 Department of Mathematics, Abdul Wali Khan University Mardan, KPK 23000, Pakistan;
mathematics@awkum.edu.pk

3 Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952,
Saudi Arabia; i.said@mu.edu.sa

4 Institute of Numerical Sciences, Kohat University of Science and technology, Pakistan;
wariskhan758@yahoo.com

5 Center of Excellence for Research in Engineering Materials (CEREM), King Saud University, P.O. Box 800,
Al-Riyadh 11421, Saudi Arabia; aseikh@ksu.edu.sa (A.H.S.); esherif@ksu.edu.sa (E.-S.M.S.)

6 Electrochemistry and Corrosion Laboratory, Department of Physical Chemistry, National Research Centre,
El-Behoth St. 33, Dokki, Cairo 12622, Egypt

7 Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University,
Wadi Al-Dawaser 11991, Saudi Arabia; drnisarks1@gmail.com

* Correspondence: haroon.csit@suit.edu.pk

Received: 7 October 2019; Accepted: 15 December 2019; Published: 11 February 2020
����������
�������

Abstract: This article examines a wire coating technique using a viscoelastic Eyring–Powell fluid in
which magnetohydrodynamic (MHD) flow, thermal transfer, and Joule heating effects are studied.
Temperature-dependent, variable-viscosity models are used. Flexible-viscosity models which are
temperature dependent are also considered. The interface of the thermal boundary layer which
describe the flux and thermal convection phenomena, are evaluated by using a dominant numerical
technique known as the fourth-order Runge–Kutta method. In particular, this article takes into
account the impact of a permeable matrix which behaves like a dielectric in order to avoid heat
dissipation. The effect of thermal generation is also explained, since it controls power. The novel
effects for the numerous parameters which affect the velocity and temperature profiles on the wire
coating process are investigated through graphs explained in detail. These include non-Newtonian,
hydromagnetic, permeability, and heat source/sink effects. For validation purposes, the numerical
scheme is also compared with a semi-numerical technique HAM and BVPh2 software, and found a
closed agreement with the numerical results.

Keywords: HAM; variable viscosity; coating process; Joule heating; Eyring–Powell fluid; BVPh2;
hydromagnetic flow

1. Introduction

Wire coating is an extrusion process that is usually used in the polymer manufacturing industries
for the insulation of wires and cables. There are five units in a typical wire coating apparatus:
a pay-off device, a wire preheater, an extruder equipped with a crosshead die, a cooling trough, and a
take-up device. There are two classes of cross-sectional dies that are normally used in wire coating
analysis—tubing-type die and pressure-type die. The pressure-type die closely resembles an annulus.
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Consequently, flow through this type of die has a similarity with the flow through the annular region
formed by two coaxial cylinders, where the inner cylinder is moving in the axial direction while the
outer cylinder is fixed. Different types of fluids are used for wire coating, depending on the geometry of
the die, the fluid viscosity, and the temperature of the wire and molten polymer. Significant attention has
been given to studying heat transfer analysis in Newtonian fluids. Numerous fluids such as air, water,
and some oils are considered as non-Newtonian fluids in science and engineering technologies. In many
circumstances, Newtonian fluid behavior may be complex. Therefore, a perturbed non-Newtonian
model must be considered. Non-Newtonian behavior exists in liquid materials such as glue, paint,
ketchup, custard, and blood. Because it has vast and significant applications in fluid mechanics and
industries such as petroleum and chemical engineering, Non-Newtonian behavior has therefore gained
the attention of researchers [1–9].

Ellahi et al. [10] discussed the non-Newtonian micro-polar liquid in blood movement through
a composite stenosis. An Eyring–Powell fluid is a non-Newtonian fluid which was first presented
in 1944 by Eyring and Powell. Many important features of an Eyring–Powell fluid are discussed by
researchers [11–15]. Wire coating technique is very important in order to avoid injuries and decrease
the losses that could be generated by machine oscillation. In manufacturing industries, various liquid
polymers are used in the wire coating process. Melt polymer is poured over a wire and then the wire
is pulled through the die that is covered by viscoelastic material. Three methods of wire coating are
electro-static deposition, coaxial processing, and dipping. Compared to the first two, the dipping
method of wire coating provides a stronger bond in the field, but is very slow. It contains a payoff

device, a die and extruder device, a cooling device, a preheater, a straightener, a tester, a capstan, and a
take-up reel. In this process, a bare wire is rolled over the payoff device and then goes through the
straightener. Heat is then applied to the wire by a preheater and crosshead die, which has a conical die
holding the liquid polymer where the wire is coated. The temperature of the hot, coated wire is reduced
with a cooling device, after which it passes through a capstan and then a tester. Finally, the coated
wire is puffed at the take-up reel. Many other researchers [16–24] have used various non-Newtonian
materials for the wire coating process. In the magnetohydrodynamic (MHD) process, a magnetic
field induces a current, which has a major effect on the motion of the fluid material. In recent years,
the MHD process has been an attractive area for researchers because of its extensive use in industries
such as magnetic-material and glass manufacturing. Many researchers [25–33] describe the MHD
process as a current conducting liquid in the presence of an applied magnetic field.

Fluid flux through a permeable medium has a countless significance for scientists because of
its broad scope in engineering technology. Some renowned permeable media are wood, carbonate
rocks, and metal foams. Many researchers [34–38] have paid attention to permeable media. Currently,
a thin permeable layer has domestic and industrial applications such as filters, batteries, fuel cells,
and printing papers. The study of heat convection in non-Newtonian liquids has gained interest
with time because of its application to different industries. Rehman and Nadeem [39] investigated
heat convective analysis for multi-directional stagnation flow movement. Zeeshan, along with other
researchers [40–46], studied the effect of thermal convection and hydromagnetic fluid flow. By studying
all of the above articles, we found that a wire coating technique with an MHD process with a viscoelastic
Eyring–Powell liquid as a coating substance has yet not been discussed. This paper discusses the
procedure of a wire coating process with the impact of thermal generation and permeable media along
with temperature-dependent flexible viscosity using Vogel’s and Reynolds’ models.

2. Modeling of Wire Coating

In Figure 1 the geometry of our problem is described. The parameters include the length of
the pressure die L, radius Rd, and the saturated temperature θd due to incompressible viscoelastic
Eyring–Powell material. As the temperature of the wire reaches θW , the radius equals RW and the
velocity becomes UW in the permeable medium. The wire is then pulled through the center length of
the die in the static-pressure die. The out-flux fluid is acted upon simultaneously by uniform pressure
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gradient dp
dz along the axis of the object and by a magnetic field of strength B0. The magnetic field is

perpendicular to the direction of the Eyring–Powell incompressible fluid movement. To reduce or
neglect the perturbation in the magnetic field, we used the Reynolds number in our problem. The wire
and die have a common axis of symmetry, which was taken as a reference for the coordinated system.
The appropriate expressions for the fluid velocity

→
q , the stress tensor S, and the field temperature for

this problem can be taken as:
→
q = oi + 0 j + w(r)k (1)

S = S(r) (2)

θ = θ(r) (3)

The Cauchy stress tensor for the Eyring–Powell viscoelastic fluid is as

S = µ∇v+
1
β

sin−1
( 1

C
∇v

)
(4)

where µ denotes the viscosity, S denotes the Cauchy stress tensor, V denotes the velocity, and C denotes
the material constant. Equation (4) can be expressed as

sin−1
( 1

C
∇v

)
=

1
C
∇v−

1
6

( 1
C
∇v

)3
, |

1
C
∇v| � 1 (5)

The boundary conditions for the proposed model take the form of

w(Rw) = Uw, θ(Rw) = θw, w(Rd) = 0, θ(Rd) = θd (6)

Governing equations are given by
∇
→
q = 0 (7)

ρ

D
→
q

Dt

 = →

F −∇p +
µ
→
q

K∗p
(8)

ρCp

D
→
q

Dt

 = k∇2 + ϕ+ Q0(θ− θw) + Jd (9)

where
→
q is the velocity vector, ρ represents the density, D

Dt represents the temporal derivative,
Q0 represents the rate of volumetric heat generation, and Jd is the Joule dissipation term.

Applying Equations (1)–(3), the continuity of Equation (7) is identically satisfied and we get
nonvanishing components of extra stress tensor S as

Szr =

(
µ+

1
βC

)
dw
dr
−

1
6βC3

(
dw
dr

)3

(10)

Putting the velocity field and Equations (9)–(10) into Equation (8), we get

∂p
∂r

= 0 (11)

∂p
∂θ

= 0 (12)

∂p
∂z

=
1
r

d
dr

r

(
µ+

1
βC

)
dw
dr
−

1
6βC3

(
dw
dr

)3

− µw

K∗p
(13)
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However, Equation (13) shows the flow due to the pressure gradient. When we leave the die,
only dragging of the wire occurs. Therefore, the pressure gradient contributes nothing in the axial
direction. So, Equation (14) takes the form

1
r

d
dr

r

(
µ+

1
βC

)
dw
dr
−

1
6βC3

(
dw
dr

)3

− µw

K∗p
= 0 (14)

and the energy Equation (9) becomes

K
(

d2θ

dr2 +
1
r

dθ
dr

)
+

(µ+ 1
βC

)
dw
dr
−

1
6βC3

(
dw
dr

)3.
dw
dr

+ Q0(θ− θw) = 0 (15)

The dimensionless parameters are defined as:

r∗ = r
Rw

, w∗ = w
Uw

, Kp =
R2

w
K∗p

, w = v0
Uw

, N = 1
µβC , θ∗ = (θ−θw)

(θd−θw)

Q =
Q0R2

w
K , Br = µU2

w
K(θd−θw)

, Rw =
βv0
µ , ε = µ

6w2(βC)3

(16)

Using these new variables in Equations (13) and (14) with Equation (6) and after removing
asterisks, we get the following:

(1 + N)

(
r

d2w
dr2 +

dw
dr

)
− ε

(dw
dr

)3

+ 3r
(

dw
dr

)2 d2w
dr2

−Kpwr = 0 (17)

w(1) = 1 and w(δ) = 0 (18)

d2θ

dr2 +
1
r

dθ
dr

+ Br(1 + N)

(
dw
dr

)2

+ εBr

(
dw
dr

)4

+ Qθ = 0 (19)

θ(1) = 0 and θ(δ) = 1 (20)
Coatings 2020, 10, x FOR PEER REVIEW 5 of 17 

 

 

Figure 1. Geometry of the model problem. 

3. Temperature-Dependent Viscosity 

Two basic models are used for temperature-dependent viscosity: Reynolds’ model and Vogel’s 
model, whose details are given below. 

3.1. Reynolds’ Model 

Here we use Reynolds’ model to explain temperature-dependent viscosity. The temperature-
dependent viscosity for the Reynolds model can be expressed by the following relation: 

01 mμ β θ= −  (21)

This is applied for the variation of temperature-dependent viscosity, while m  is used for the 
viscosity parameter. Using nondimensional parameters, 

( )
( ) ( ) ( )

2
* * *0

*
0 0

2 2
* 0 0 0 0

32
0

1,  ,   ,  ,  ,   

,  ,  ,  ,  
6

w
p

w w p w

w w w
w

d w d w

R vr wr w K w N
R U K U C

Q R U vQ Br R
K K w C

μμ
μ β μ

θ θ μ β μθ ε
θ θ θ θ μ β

= = = = = =

−
= = = = =

− −

 (22)

After removing asterisks, we obtain nondimensional forms of momentum and energy equations 
along boundary conditions: 

( )
22

0 0 02

3

1 3 1

0p

d w dw dw dr m rN r m N mr
dr dr dr dr

dw K wr
dr

θβ θ ε β θ β

ε

    − + − + − + −         

 − − = 
 

 (23)

( ) ( )1 1  0w and w δ= =  (24)

( ) ( )
2 22

02
1 1 0r r

d d dw dwm B B N Q
dr r dr dr dr

θ θ β θ ε θ   + + − + + + =   
   

 (25)

( ) ( )1 0  1andθ θ δ= =  (26)

3.2. Vogel’s Model 

In this case, we take temperature-dependent viscosity as 

Figure 1. Geometry of the model problem.

3. Temperature-Dependent Viscosity

Two basic models are used for temperature-dependent viscosity: Reynolds’ model and Vogel’s
model, whose details are given below.

3.1. Reynolds’ Model

Here we use Reynolds’ model to explain temperature-dependent viscosity. The temperature-dependent
viscosity for the Reynolds model can be expressed by the following relation:

µ = 1− β0mθ (21)
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This is applied for the variation of temperature-dependent viscosity, while m is used for the
viscosity parameter. Using nondimensional parameters,

r∗ = r
Rw

, w∗ = w
Uw

, Kp =
R2

w
K∗p

, w = v0
Uw

, N = 1
µ0βC , µ∗ = µ

µ0

θ∗ =
(θ−θw)
(θd−θw)

, Q =
Q0R2

w
K , Br = µ0U2

w
K(θd−θw)

, Rw =
βv0
µ0

, ε = µ0

6w2(βC)3

(22)

After removing asterisks, we obtain nondimensional forms of momentum and energy equations
along boundary conditions:

d2w
dr2

(
r(1− β0mθ) + rN − 3rε

(
dw
dr

)2
)
+ dw

dr

(
1− β0mθ+ N − β0mr dθ

dr

)
−ε

(
dw
dr

)3
−Kpwr = 0

(23)

w(1) = 1 and w(δ) = 0 (24)

d2θ

dr2 +
1
r

dθ
dr

+ (1− β0mθ)Br

(
dw
dr

)2

+ Br

(
dw
dr

)2

(N + ε) + Qθ = 0 (25)

θ(1) = 0 and θ(δ) = 1 (26)

3.2. Vogel’s Model

In this case, we take temperature-dependent viscosity as

µ = µ0 exp
( D

B′ + θ
− θw

)
(27)

Applying expansions, we get

µ = Ω

1−
Dθ

(B′)2

 (28)

where D, B are parameters of viscosity and

Ω = µ0 exp

 D

(B′)2 − θw

 (29)

We obtain nondimensional equations of momentum and energy along boundary conditions after
removing asterisks

d2w
dr2

(
rΩ

(
1− Dθ

(B′)2

)
+ rN − 3rε

(
dw
dr

)2
)
+ dw

dr

(
Ω

(
1− Dθ

(B′)2

)
+ N −Ω D

(B′)2 r dθ
dr

)
−ε

(
dw
dr

)3
−Kpwr = 0

(30)

w(1) = 1 and w(δ) = 0 (31)

d2θ

dr2 +
1
r

dθ
dr

+ Ω

1−
Dθ

(B′)2

Br

(
dw
dr

)2

+ Br

(
dw
dr

)2

(N + ε) + Qθ = 0 (32)

θ(1) = 0 and θ(δ) = 1 (33)

4. Solution Procedure via Fourth-Order Runge–Kutta Method

Equations (23)–(26) in the case of Reynolds’ model, and Equations (30)–(33) for Vogel’s model
are solved by using the fourth-order Runge–Kutta method along with shooting techniques. First,
the above governing higher-order differential equations are converted into first-order ordinary
differential equations.
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Equations (23) and (25) can be written as

d2w
dr2 =

ε
(

dw
dr

)3
− (1 + N) dw

dr + Kpwr

(1 + N)r + 3rε
(

dw
dr

)2 . (34)

d2θ

dr2 = −

1
r

dθ
dr

+ Br(1 + N)

(
dw
dr

)2

+ εBr

(
dw
dr

)4

+ Qθ

 (35)

New variables are defined to convert higher-order ordinary differential equations into first order as

w = z1, w′ = z2, w′′ = z′2 and θ = z3, θ′ = z4, θ′′ = z′4 (36)

z′2 =
ε(z2)

3
− (1 + N)z2 + Kpz1r

(1 + N)r + 3rε(z2)
2 (37)

z′4 = −
[1

r
z4 + Br(1 + N)(z2)

2 + εBr(z2)
4 + Qz3

]
(38)

The boundary conditions given in Equations (23) and (25) are changed into initial conditions as

z1(1) = 1 and z1(δ) = 0 (39)

z3(1) = 0 and z3(δ) = 1 (40)

4.1. Reynolds’ Model

Equations (30) and (32) may be written after using Equation (36) as

z′2 =
ε(z2)

3 + Kpz1r− z2(1− β0mz3 + N − β0mrz4)(
r(1− β0mz3) + rN − 3rε(z2)

2
) (41)

z′4 = −
1
r

[
z4 + (1− β0mz3)Br(z2)

2 + Br(z2)
2(N + ε) + Qz3

]
(42)

The boundary conditions given in Equations (31) and (33) are changed into initial conditions as

z1(1) = 1 and z1(δ) = 0 (43)

z3(1) = 0 and z3(δ) = 1 (44)

4.2. Vogel’s Model

Using Equation (36) in Equations (30) and (32) we get the desired first-order differential equations as

z′2 =
ε(z2)

3 + Kpz1r− z2

(
Ω

(
1− Dz3

(B′)2

)
+ N −Ω D

(B′)2 rz4

)
rΩ

(
1− Dz3

(B′)2

)
+ rN − 3rε(z2)

2
(45)

z′4 = −

1
r

z4 + Ω

1−
Dz3

(B′)2

Br(z2)
2 + Br(z2)

2(N + ε) + Qz3

 (46)

along with transformed boundary conditions as
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z(1) = 1 and z1(δ) = 0 (47)

z3(1) = 0 and z3(δ) = 1 (48)

5. Validation of the Method

To validate our numerical solution, we made the following comparison, which proves the
thoroughness of the proposed method. Our comparison is illustrated in Tables 1 and 2. An excellent
agreement is noted between the fourth-order Runge–Kutta method, the semi-numerical method HAM,
and BVPh2.

Table 1. Comparison of numerical, HAM, and BVPh2 methods for velocity profile.

w(r) Numerical Solution HAM Solution BVPh2

1.0 1.0000000000 1.0000000000 1.0000000000

1.2 0.6369559249 0.6369559343 0.6369559239

1.4 0.4274349292 0.4274349325 0.4274349352

1.6 0.3071882095 0.3071882321 0.3071882632

1.8 0.1968612792 0.1968612624 0.1968612547

2.0 0.00000000000 0.00000000000 0.00000000000

Table 2. Comparison of numerical, HAM, and BVPh2 methods for temperature profile.

θ(r) Numerical Solution HAM Solution BVPh2

1.0 0.00000000000 0.00000000000 0.00000000000

1.2 0.9500451152 0.9500451271 0.9500451321

1.4 1.9209191828 1.9209191651 1.9209191658

1.6 2.7196458893 2.7196458689 2.7196458567

1.8 2.7456308985 2.7456308634 2.7456308695

2.0 1.00000000000 1.00000000000 1.00000000000

6. Results and Discussion

This paper on wire coating considers the Eyring–Powell fluid. The method of coating a wire
takes place in a die with a constant magnetic field and thermal generation effects in permeable
media. Different measurable emerging parameters on velocity and temperature profiles are explained
through graphs, including the non-Newtonian parameter β0, viscosity parameter m, thermal generation
parameters Q and Ω for Reynolds’ and Vogel’s models respectively, permeable medium parameter Kp,
Brinkman number Br and the other parameter D . In Figure 2, the geometry of the problem is explained.
Figure 2 displays the Brinkman number Br over velocity distribution for the Reynolds’ model, and the
velocity profile shows an increasing behavior as Br increases. In Figure 3, the results of the permeable
medium parameter Kp on the velocity distribution for Reynolds’ model were investigated when
Q = 0.1, β0 = 0.1, m = 0.3 and Br = 0.1. From this, the velocity profile decreases with increasing
values of Kp. By increasing the value of N, the velocity curve shows a decreasing behavior, as predicted
in Figure 4 for Reynolds’ model. In Figure 5, it is observed that by increasing the Brinkman number
Br for Vogel’s model, the velocity profile increases while keeping some parameters fixed. Figure 6
represents the velocity profile for different values of D. The velocity profiles increase with increasing
D. In Figure 7, it is shown that taking D = 0.2, Br = 0.2 , the velocity profile rises with increasing Q for
Vogel’s model. Figure 8 describes the inequality in temperature profile as a result of ε for uniform
viscosity while keeping other parameters fixed. The velocity profile decreases as the value of ε increases.
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Figure 9 illustrates the output of Br on temperature distribution for uniform viscosity. When the value
of Br increases, the velocity profile decreases. In Figure 10, the impact of Q on the temperature profile
was observed, while keeping the viscosity and other parameters constant. Increasing the value of
Q causes an increase in the velocity profile. In Figure 11 it is observed that the temperature curve
increases by increasing ε for Reynolds’ model. A clear decline in the behavior of the velocity profile
curve can be seen in Figure 12 as Q increases. In Figure 13, a decreasing behavior in temperature profile
is observed by increasing Ω for Vogel’s model, keeping N = 0.2, B′ = 1.3, Kp = 0.1 and D = 0.3.
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Q = 0.3, B′ = 0.1, N = 0.5, Br = 0.6, Ω = 1.2, Kp = 0.2.
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during the flow and heat conduction process. The result is derived from the fourth-order Runge–
Kutta method and sketched onto velocity and temperature profiles. The consequences are also 
verified by using the semi-numerical method techniques HAM and BVPh2. From these methods, a 

Figure 12. The influence of Q on temperature distribution in case of Reynolds’ model when,
β0 = 2.1, m = 0.2, ε = 0.2, Br = 0.5, M = 0.6, N = 0.2, Kp = 0.1.
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Figure 13. The influence of Ω on temperature distribution for Vogel’s model when
B′ = 1.2, Q = 0.5, D = 0.5, Br = 0.3, M = 0.21, N = 0.4, Kp = 0.5.

7. Concluding Remarks

In this article we investigated the effect of pertinent parameters such as hydromagnetic stream
movement and heat transmission in a wire coating process using liquid polymer in a permeable medium
along with a Joule heating effect and changeable viscosity. The wire is layered into a pressure-type
die in order to interact with an Eyring–Powell liquid. A permeable matrix is used as a dielectric in
order to enhance the heating/cooling process and to reduce the Joule heating effect during the flow
and heat conduction process. The result is derived from the fourth-order Runge–Kutta method and
sketched onto velocity and temperature profiles. The consequences are also verified by using the
semi-numerical method techniques HAM and BVPh2. From these methods, a good agreement is found.
The significant outcomes of the analysis presented in this research work are given below:

1. An increase in fluid velocity behavior occurs as the values of Br, M, N, D, and ε increase, and a
decrease in fluid velocity behavior occurs as the values of Q, ε and Kp increase.

2. The temperature distribution displays an increasing effect as the values of M and ε increase,
while it shows a decreasing effect when the values of Q, ε and Br increase.
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