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Abstract: As an essentially multi-input multi-output process, determination of optimal conditions
for laser cladding normally requires multi-objective optimization. To understand multi-response
coupling, the effects of processing parameters on the morphology quality of multi-pass laser claddings
of Fe50/TiC on medium carbon steel AISI 1045 were investigated based on composite central
design using response surface methodology. Multiple responses, including clad width, flatness,
and non-fusion area, were transformed into a single objective through grey relational analysis,
with weights objectively identified by principal component analysis. The correlation between grey
relational grade (GRG) and process parameters was established by regression analysis. The results
show that the GRG response model has excellent goodness of fit and predictive performance.
A validation experiment was conducted at the process condition optimized for maximum GRG.
The relative error of the predicted optimal GRG is 4.87% whereas those of interested individual
objectives, i.e. clad width, flatness, and non-fusion area, are 5.73%, 2.97%, and 6.73%, respectively,
which verifies the accuracy of the established model. The investigation of mechanical properties
suggests the hardness of substrate can be improved from 20 HRC to 60 HRC and wear resistance to
over 8.14 times better.

Keywords: laser cladding; multi-objective optimization; grey relational analysis; response surface
methodology; principal component analysis

1. Introduction

Laser cladding is a widely used surface engineering technology which applies high density laser
energy to the substrate with additive powder to rapidly obtain metallurgical bonding and significantly
improve mechanical, physical, and chemical properties of the substrate surface, such as wear, corrosion,
and oxidization resistance [1,2]. Due to its low dilution, small distortion, and better surface quality
compared with conventional processes, laser cladding technology has been implemented in numerous
fields like metallurgical mining, energy transportation, machinery manufacturing, and aerospace [3,4].

Quality assessment of laser claddings normally considers a variety of aspects including
morphology, properties, and production attributes, leading to an essentially multi-objective
evaluation problem. Some academics considered multiple responses of laser cladding process
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independently when conducting optimization. The authors of [5–7] used regression analysis (RA) to
develop empirical–statistical relationships between key parameters and geometrical characteristics
of single-pass NiCrAlY, Ti-6Al-4V, and WC-12Co claddings (i.e., clad height, clad width, penetration
depth, wetting angle, and dilution) as a combined parameter (PαVβFγ). These empirical–statistical
relationships were found to be in good agreement with measured values of single clad passes.
Shi et al. [8] evaluated the effects of processing parameters (laser power, scanning velocity, and powder
mass flow rate) on the geometric form of clad (clad height, width, and depth penetration into the
substrate) using multiple regression analysis (MRA). With optimized process parameters, a 45-mm-high
thin wall was formed with smooth side surfaces. By applying individual objectives, the laser cladding
process can be easily optimized for each criterion. However, multiple optimizations of process
conditions are hard to combine into a common goal.

Many researchers have presented numerous methodologies to integrate multiple objectives
for process optimization. Grey relational analysis (GRA), a process of quantifying the dynamic
development of complex systems, has become an efficient method to reveal the correlation between
influencing factors and multiple responses [9,10]. Mondal et al. [11] prepared Ni/Cr/Mo composite
coatings on AISI 1040 steel with a L9 orthogonal array, using GRA (response target weight was
one-third) to build the relationship between process parameters (laser power, scan speed, and powder
feed rate) and clad quality characteristics (clad height and width) to produce the best geometrical
morphology. Zhang and Kovacevic [12] also developed AISI 420/VC composite coatings on an A36
surface with L9 orthogonal array, applying the grey relational method (contribution one-third) to
optimize processing parameters (laser power, scanning speed, and powder feed rate) considering
multiple characteristics related to wear resistance (clad height, carbide volume fraction, and Fe matrix
hardness). Yu et al. [13] deposited Fe313 claddings on S55C carbon steel surface with an L25 orthogonal
array through grey relational theory (contribution one-third), using analysis of variance (ANOVA)
to quantify the process–response correlation. The optimized cladding layer has shown advantages
over others in morphology and microstructure, verifying the feasibility of the Taguchi-grey relational
method. Manikandan et al. [14] coated Ti6Al4V substrate with corresponding powder using an
L16 orthogonal array, and also used GRA (contribution one-quarter) to optimize the performance
characteristics (tensile strength, clad hardness, grain size, and clad porosity). Therefore, GRA is an
effective method for optimizing multiple-response problems. The problem with the current method is
lack of objective weight assignment approach for multiple responses.

Many academics have studied the application of intelligent algorithms to optimize process
parameters for an overall best performance of cladding layers. Mondal et al. [15] prepared
Cr/Ni/Mo composite coatings on commercial mild steel (S235) via laser cladding, and established the
interrelationship between process variables (laser power, scan speed of work table, and powder feed
rate) and response variables (clad width and depth) using a back propagation artificial neural network
(BPANN). Similarly, Liu et al. [16] applied a genetic algorithm-back propagation neural network
(GA-BPNN) to better understand the nonlinear correlation between process parameters (laser power,
powder thickness, and scanning speed) and geometrical characteristics of a single pass sectional profile
(clad height, clad width, and contact angle) deposited by a high power diode laser (HPDL) with a
rectangle spot. They suggested that the prediction accuracy of established BPNN was significantly
improved by implementing the genetic algorithm. Sohrabpoor [17] presented an adaptive neuro-fuzzy
inference system (ANFIS) to model the process response of laser powder deposition of Fe-based alloy
on ASTM 36 mild steel and improved the model accuracy using the imperialist competitive algorithm
(ICA). Chen et al. [18] investigated the effects of process parameters (laser power, scanning speed,
pre-paced powder thickness, laser spot diameter, and overlapping ratio) on the quality characteristics
(coating thickness, coating width, coating height, and micro-hardness) of TiC coating on Ti6Al4V
substrates. The correlation model was then established effectively based on support vector machine
(SVM). The issues for this method are that ANN modelling involves a set of complicated mathematical
structures and thus requires large amount of experimental data.
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In this work, a novel method integrating GRA with principal component analysis (PCA) is
proposed to investigate the multiple responses of multi-pass Fe50/TiC laser cladding on cylindrical
substrates composed of AISI 1045 carbon steel. A composite central design (CCD) was developed
based on response surface methodology (RSM) to evaluate the effects of significant factors (power
ratio, laser power, defocusing distance, and overlapping ratio) on the surface quality of single layer
multi-pass claddings with only limited experimental runs. The multiple responses, including clad
width, flatness, and non-fusion area, were integrated into a single objective using grey relational
analysis with response weights objectively determined by PCA. The values of grey relational grade
(GRG) were then found to be an exponential parabola function of process parameters. The established
regression model was validated with an experiment of optimized process condition.

2. Material and Methods

2.1. Material

The substrates, with dimension of φ60 mm × 60 mm, were composed of AISI 1045 steel. Cladding
powders Fe50 (ρ = 7.78 g/cm3, melting point of 1080 ◦C) and TiC (ρ = 4.93 g/cm3, melting point of
3140 ◦C) were supplied by Yuteng Ceramic Material, Ltd., Zhangzhou, China. Microscopic profiles
and chemical components are illustrated in Figure 1, Tables 1 and 2, respectively.

(a) Fe50 (b) TiC

Figure 1. SEM images of cladding powder.

Table 1. Chemical composition of AISI 1045 carbon steel (wt. %).

Steel C Cr Mn Ni Si Fe

AISI 1045 0.40∼0.50 ≤0.25 0.40∼0.50 ≤0.25 0.17∼0.37 Bal.

Table 2. Chemical composition of Fe50 and TiC (wt.%).

Powder Cr C Mo Si O Ni Fe N T.C F.C

Fe50 16.15 0.15 1.58 0.77 <0.1 1.75 Bal. - - -
TiC - - - - 0.5 0.08 - 0.5 >18.8 <0.5

2.2. Experimental Set-up

The laser cladding system used in the work, as depicted in Figure 2, is comprised of a laser head
FDH0273 (Lasermesh, USA) with a focus length of 300 mm, an industrial robot M-710iC/50 (FANUC,
Japan), a high power fiber laser YLS-3000 (IPG, Germany) cooled by a TFLW-4000WDR-01-3385 laser
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chiller (Tongfei, China), a gas-conveyed coaxial powder feeding machine CR-PGF-D-2 (Songxing,
China), and a rotational Leadshine worktable. The cladding powder as blown onto the substrate by
carrier/shielding argon gas at a pressure of 0.5 MPa, with purity contents listed in Table 3.
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Figure 2. Laser cladding system.

Table 3. Purity information about shielding argon gas.

Impurity Name O2 N2 H2O Purity

Content ≤5 ppm ≤30 ppm ≤10 ppm ≥99.99%

Before cladding, the substrate was cleaned with acetone to remove surface impurities and dried in
a vacuum. The cladding powder was mixed according to the designated mass fraction in a YXQM-2L
planetary ball mill machine at a speed of 300 rpm for 2 h, followed by 30 min vacuum drying at
a temperature of 120 ◦C. Cladding powders were then deposited onto the substrate at ambient
temperature. After laser cladding, the specimen was sectioned by wire-EDM in the longitudinal
direction to prepare metallographic samples of 20 mm×3 mm×5 mm, which were then mounted,
ground, and polished for geometrical morphology using a KH-1300 three-dimensional (3D) digital
microscopy system (Hirox, Japan) after etching in 4% nital.

2.3. Design of Experiment

RSM is a comprehensive optimization method for experiment design and modelling. Compared
with orthogonal design, RSM is capable of establishing correlations between targets and influencing
factors with high accuracy but lower experiment cost [19,20]. We used central composite design to
produce an experimental matrix for four factors with five levels (Specifically, 24 axial points and 6
replicated centre points). The four investigated factors were powder ratio (PR) of TiC, laser power
(LP), defocusing distance (DD), and overlapping ratio (OR). Table 4 illustrates the studied factors
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and their levels. The detailed experimental matrix was obtained according to CCD as illustrated
in Table 5. A laser beam of 4 mm in diameter was obtained when focused on the substrate surface.
OR is the ratio of overlapped distance (D) between two adjacent passes to the width of single pass
(Ws), as demonstrated in Figure 3. The ranges of the four variables were selected based on previous
investigation. Other parameters were remained constant: scanning speed = 7 mm/s and gas-powder
flow rate = 1100 L/h.

Table 4. Laser cladding process variables and their levels.

Variables Notation Unit Levels

Powder ratio of TiC PR wt. % 30 35 40 45 50
Laser power LP kW 1.2 1.4 1.6 1.8 2

Defocusing distance DD mm −4 −2 0 2 4
Overlapping ratio OR % 10 20 30 40 50

Ws

D

Figure 3. Schematic diagram of overlapped passes.

The response variables investigated included clad width (W), flatness (F) of multi-pass, and
non-fusion areas (Anf), as illustrated in Figure 4 and defined by Equations (1) and (2) [21], respectively.
The experimental results are appended in Table 5.

Figure 4. Macrograph of cross-section multi-pass clad layer.

F =
Ac

W × H
(1)

Anf =
n

∑
i=1

Ai
nf (2)

where Ac is the multi-pass clad area, W is the total width of 8 passes, H is the maximum height of the
clad layer, and Ai

nf is the non-fused area between adjacent ith and i + 1th pass.
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Table 5. Central composite design and results.

No. PR (%) LP (kW) DD (mm) OR (%) W(mm) F Anf(mm2)

1 40 1.6 0 30 12.96 0.9008 0.242
2 45 1.8 2 20 12.10 0.8780 0.620
3 35 1.4 2 40 9.82 0.9015 0.714
4 50 1.6 0 30 9.57 0.8644 0.756
5 40 1.6 0 50 9.64 0.8602 0.834
6 40 1.6 0 30 12.99 0.9030 0.421
7 40 2 0 30 12.23 0.9389 0.180
8 35 1.4 −2 20 11.44 0.8804 0.664
9 30 1.6 0 30 12.61 0.9107 0.246

10 45 1.4 −2 40 9.49 0.8901 0.648
11 40 1.6 0 30 12.16 0.9108 0.176
12 40 1.6 0 30 12.74 0.9036 0.281
13 40 1.6 0 30 12.31 0.8903 0.306
14 45 1.4 −2 20 11.2 0.8419 0.821
15 40 1.6 −4 30 10.1 0.8943 0.358
16 45 1.8 −2 40 11.12 0.9206 0.390
17 40 1.6 0 30 12.94 0.9052 0.312
18 45 1.4 2 40 9.58 0.8751 0.810
19 35 1.4 2 20 12.63 0.8804 0.820
20 40 1.2 0 30 10.74 0.8922 0.842
21 35 1.8 −2 20 14.67 0.9087 0.256
22 35 1.4 −2 40 9.53 0.9045 0.786
23 45 1.8 2 40 9.32 0.9007 0.881
24 45 1.8 −2 20 12.85 0.8863 0.514
25 35 1.8 2 20 13.45 0.903 0.240
26 40 1.6 0 10 15.4 0.8097 0.780
27 45 1.4 2 20 11.61 0.8581 0.844
28 35 1.8 −2 40 12.35 0.9111 0.152
29 35 1.8 2 40 12.31 0.9046 0.256
30 40 1.6 4 30 9.52 0.8900 0.654

3. Multi-Objective Approach

In this section, a new approach integrating GRA with PCA for weight determination is proposed
to optimize the multi-objective problem, with the detailed procedure outlined below.

3.1. Selection of Signal-to-Noise Ratios

In signal processing, signal-to-noise ratio (SNR) is commonly used to understand the extent to
which a desired property is affected by background noise. The higher the SNR, the better the product
performance [22,23]. To obtain good quality multi-pass laser claddings, the SNRs of three responses
were investigated to reveal the effects of the process parameters. The performance characteristics
can be classified into three categories: the Larger the Better (LB), the Smaller the Better (SB), and the
Nominal the Better (NB) [23,24]. Specifically, the clad width (W) and flatness (F) are considered as LB,
whereas the non-fusion area (Anf) is set to be SB, as calculated by

S/N =


− 10 log

(
1
n

n

∑
i=1

1
y2

i

)
for LB

− 10 log

(
1
n

n

∑
i=1

y2
i

)
for SB

(3)

where n is the total number of experiments and yi is the output value of the ith experimental run.
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3.2. Normalization of SNR Values

As the three responses have different ranges, normalization of SNR values was conducted to
obtain a common scale. In grey relational generation, the normalized responses correspond to the LB
criterion, which can be expressed as [25,26]:

y∗i (k) =
yi(k)−min yi(k)

max yi(k)−min yi(k)
(4)

where y∗i (k) are the data after normalization, yi(k) is the response SNRs, and max yi(k) and min yi(k)
are the maximum and minimum of the S/N data, respectively.

3.3. Calculation of Grey Relational Coefficients

The grey relational coefficient can be computed as follows [27,28]:

ξ∗i (k) =
∆ min+ψ∆ max

∆Oi(k) + ψ∆ max
(5)

where ∆Oi(k) = |Yi(k)− y∗i (k)| is the absolute value of difference between Yi(k) and y∗i (k), which are
the ideal sequence (always 1), and the normalized value for the kth response. ψ is a distinguishing
coefficient 0 ≤ ψ ≤ 1, where ψ = 0.5 for all quality characteristics. ∆ max and ∆ min are the largest
and smallest values of ∆Oi(k), respectively.

3.4. Determination of Response Weights

Conventionally, the weights for responses in grey relational generation are subjectively selected
and usually set impartially. However, for laser cladding, different responses in terms of clad profile and
mechanical properties normally require objective weight assignment. PCA, as a dimension reduction
technique, is useful for identifying significant features of high-dimensional data and projects them onto
a new subspace with equal or fewer dimensions [29]. The contributions of the three responses, i.e., clad
width, flatness, and non-fusion area, were determined with PCA using the following procedure [30,31].

3.4.1. Selection of Principal Components

(a) Establish original data sequence for multiple responses by Equation (6).

Y =


y11 y12. · · · y1n
y21 y22. · · · y2n

...
...

...
...

ym1 ym2. · · · ymn

 (6)

where m is the number of experiment runs, n is the number of output variables, and y represents the
observed response value. For this work, m = 30 and n = 3.

(b) Compute the correlation efficient matrix using Equation (7).

Rjl =

[
Cov(yi(j), yi(l))
ηyi(j)× ηyi(l))

]
(7)

where Cov(yi(j), yi(l)) is the covariance of data sequence yi(j) and yi(l), and ηyi(j) and ηyi(l) are the
standard deviations of yi(j) and yi(j), respectively.
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(c) Determine eigenvalues λk and eigenvectors by solving the characteristic equation:

|λk Im − R| = 0 (8)

where Im is the unit matrix. λ1 ≥ λ2 ≥ λ3 · · · λk ≥ 0, k = 1, 2, · · · , n are ranked eigenvalues in
descending order.

(d) Select principal components. With contribution rate Mk and cumulative contribution rate Nk
obtained from Equations (9) and (10), the top k principal components are selected when Nk ≥80%
which accounts for the most significant features.

Mk =
λk

n
∑

i=1
λi

(9)

Nk =

k
∑

i=1
λk

n
∑

i=1
λi

(10)

(e) Calculate principal component loads that reflect the correlation extent between principal
component Mk and original variable Yj, by:

Pjl = P(Ml , Yj) =
√

λl Rjl(l = 1, 2, · · · , k; j = 1, 2, · · · , n) (11)

3.4.2. Calculation of Response Weights

(a) Identify weights for principal components in linear combination using Equation (12):

Kjl =
Pjl√

λl
(l = 1, 2, · · · , k; j = 1, 2, · · · , n) (12)

(b) Compute coefficients in the score model by Equation (13):

K′j =

n
∑

j=1

k
∑

l=1
Kjl Ml

k
∑

i=1
Ml

(13)

(c) Obtain weights after normalization by:

β j =
K′j

n
∑

j=1
K′j

(14)

3.5. Calculation of Grey Relational Grade

Grey relational grade (GRG) is the weighted sum of grey relational coefficients, as shown in
Equation (15):

G =
n

∑
i=1

βiξ
∗
i (k) (15)

where ∑n
i=1 ξ∗i = 1, and βi is the weight of the ith response identified by PCA.
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4. Results and Discussion

4.1. SNR

Table 6 illustrates the SNRs of the three responses. The maximum SNR values were obtained at
the 26th, 7th, and 28th experimental runs for the three responses (S/NW = 23.7504 dB, S/NF = −0.5476
dB, and S/NA = 16.3631 dB), respectively. Therefore, an optimized condition cannot be achieved for
the three variables simultaneously.

Table 6. Signal-to-noise ratios (SNRs) of response targets.

No. S/NW (dB) S/NF (dB) S/NAnf (dB)

1 22.2521 −0.9074 12.3237
2 21.6557 −1.1301 4.1522
3 19.8422 −0.9007 2.926
4 19.6182 −1.2657 2.4296
5 19.6815 −1.308 1.5767
6 22.2722 −0.8862 7.5144
7 21.7485 −0.5476 14.8945
8 21.1685 −1.1064 3.5566
9 22.0143 −0.8125 12.1813

10 19.5453 −1.0112 3.7685
11 21.6987 −0.8115 15.0897
12 22.1034 −0.8805 11.0259
13 21.8052 −1.0093 10.2856
14 20.9844 −1.4948 1.7131
15 20.0864 −0.9703 8.9223
16 20.9221 −0.7186 8.1787
17 22.2387 −0.8651 10.1169
18 19.6273 −1.1588 1.8303
19 22.0281 −1.1064 1.7237
20 20.6201 −0.9908 1.4938
21 23.3286 −0.8316 11.8352
22 19.5819 −0.8718 2.0915
23 19.3883 −0.9084 1.1005
24 22.1781 −1.0484 5.7807
25 22.5744 −0.8862 12.3958
26 23.7504 −1.8335 2.1581
27 21.2966 −1.3292 1.4732
28 21.8333 −0.8087 16.3631
29 21.8052 −0.8709 11.8352
30 19.5727 −1.0122 3.6884

4.2. Response Weights

The results of principal component analysis are illustrated in Table 7. From Table 7, the
eigenvalues for the first and second principal components are greater than one (λ1 = 1.847,
λ2 = 1.001), which indicates their more significant impacts. The cumulative contribution of the
first and second eigenvalues was 94.926%. The load coefficients of two components were thus obtained,
as listed in Table 8.

Table 7. Eigenvalues and contribution of responses.

Principal Component Eigenvalue Contribution (%)

First 1.847 61.561
Second 1.001 33.365
Third 0.152 5.074
Total 100
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Table 8. Results of principal component load coefficients.

Response
Principal Component

First Second

W 0.612 0.771
F 0.741 −0.637

Anf 0.961 0.001

The coefficients for the linear combinations of two principal components are shown in Table 9.

Table 9. Linear combination coefficients.

Response First Values Second Values

W 0.4503 0.7706
F 0.5452 −0.6367

Anf 0.7071 0.001

With the coefficients, the corresponding combinations of three variables were obtained as depicted
in Equation (16):

F1 = 0.4503W + 0.5452F + 0.7071Anf

F2 = 0.7706W − 0.6367F + 0.0010Anf
(16)

Table 10 illustrates the score model coefficients and response weights.

Table 10. Results of comprehensive score model coefficient and response weight.

Response Coefficient of Comprehensive Score Model Response Weight

W 0.5629 0.4888
F 0.1298 0.1127

Anf 0.4589 0.3985

The score model was then established by Equation (17):

Y = 0.5629W + 0.1298F + 0.4589Anf (17)

4.3. Grey Relational Grade

The results of grey relational grade were computed by applying the weights determined in the
previous section, as illustrated in Table 11. The table shows that the largest GRG (0.7388) was obtained
from the 28th experimental run, which suggests the optimum process parameter combination.
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Table 11. Grey relational analysis (GRA) results.

No.
Deviation Sequence GRC

GRG Rank
∆Oi(W) ∆Oi(F) ∆Oi(Anf) GRC(W) GRC(F) GRC(Anf)

1 0.6565 0.7202 0.7353 0.5928 0.6412 0.6539 0.6226 7
2 0.5198 0.547 0.1999 0.5101 0.5247 0.3846 0.4617 17
3 0.1041 0.7254 0.1196 0.3582 0.6455 0.3622 0.3922 23
4 0.0527 0.4416 0.0871 0.3455 0.4724 0.3539 0.3631 29
5 0.0672 0.4087 0.0312 0.349 0.4582 0.3404 0.3579 30
6 0.6611 0.7367 0.4202 0.596 0.655 0.4631 0.5497 12
7 0.5411 1 0.9038 0.5214 1 0.8386 0.7018 3
8 0.4081 0.5655 0.1609 0.4579 0.535 0.3734 0.4329 19
9 0.602 0.794 0.726 0.5568 0.7082 0.646 0.6094 8

10 0.036 0.6395 0.1748 0.3415 0.581 0.3773 0.3828 25
11 0.5296 0.7948 0.9166 0.5153 0.709 0.857 0.6733 4
12 0.6224 0.7411 0.6503 0.5698 0.6589 0.5884 0.5872 9
13 0.5541 0.641 0.6018 0.5286 0.5821 0.5567 0.5458 13
14 0.3659 0.2634 0.0401 0.4409 0.4043 0.3425 0.3976 22
15 0.16 0.6713 0.5125 0.3731 0.6033 0.5063 0.4522 18
16 0.3516 0.867 0.4638 0.4354 0.7899 0.4825 0.4941 15
17 0.6534 0.7531 0.5908 0.5906 0.6694 0.5499 0.5833 11
18 0.0548 0.5247 0.0478 0.346 0.5126 0.3443 0.3641 28
19 0.6052 0.5655 0.0408 0.5588 0.535 0.3427 0.47 16
20 0.2824 0.6554 0.0258 0.4106 0.592 0.3392 0.4026 21
21 0.9033 0.7792 0.7033 0.8379 0.6936 0.6276 0.7379 2
22 0.0444 0.7479 0.0649 0.3435 0.6648 0.3484 0.3817 26
23 0 0.7194 0 0.3333 0.6406 0.3333 0.368 27
24 0.6395 0.6106 0.3066 0.5811 0.5622 0.419 0.5144 14
25 0.7304 0.7367 0.7401 0.6497 0.655 0.6579 0.6536 6
26 1 0 0.0693 1 0.3333 0.3495 0.6656 5
27 0.4375 0.3922 0.0244 0.4706 0.4513 0.3388 0.4159 20
28 0.5605 0.797 1 0.5322 0.7112 1 0.7388 1
29 0.5541 0.7486 0.7033 0.5286 0.6654 0.6276 0.5835 10
30 0.0423 0.6387 0.1696 0.343 0.5805 0.3758 0.3829 24

4.4. GRG Response Surface Model

To optimize the process parameters for multi-pass laser cladding, it was necessary to establish
the correlation between the process parameters and the GRG values. Through significance analysis of
GRG values, as depicted in Table 12, a natural logarithm transformation of GRG was well described
as a quadratic model of the investigated parameters. By identifying the regression coefficients, the
response surface model of GRG was obtained as shown in Equation (18).

ln(GRG) =− 4.322 + 0.147× PR + 2.296× LP + 0.106×DD + 7.692× OR
10−3

− 0.047× (PR)(LP)− 0.073× (LP)(DD)− 1.044× PR2

10−3

− 0.011×DD2 − 1.973× OR2

10−4

(18)
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Table 12. Sequential model sum of squares [GRG].

Source Sum of
Squares

df Mean
Square

F Value p-value
Prob>F

Mean vs. Total 7.79 1 7.79
Linear vs. Mean 0.3 4 0.074 12.05 <0.0001

2FI vs. Linear 0.052 6 8.720×10−3 1.63 0.1924
Quadratic vs. 2FI 0.072 4 0.018 9.28 0.0006 Suggested

Residual 0.012 7 1.670×10−3

Total 8.24 30 0.27

Table 13 shows the results of the ANOVA for the response GRG using stepwise regression to
eliminate the insignificant factors. The table shows that the p-value of model Prob(F) was less than
0.01% and lack-of-fit was greater than 73.78%, indicating that the correlation model has an existence
probability of more than 99.99% and the lack of fit is caused by ambient random noise. Therefore,
the selected model presented good fitting accuracy with respect to the studied factors. The value of
adequate precision was 17.469, indicative of high model resolution. The coefficients of determination,
R2, adjusted R2, and predicated R2 were all approximate to one. The difference between the adjusted
R2 and predicted R2 was less than 0.2. The geographical comparison between the predicted and
experimentally obtained GRG values is illustrated in Figure 5. The closeness of data points to the
line y = x also indicates their minimal divergence. Thus, the selected model for GRG is capable of
explaining the process and has good prediction accuracy.

Table 13. ANOVA for GRG.

Source Sum of
Squares

df Mean
Square

F Value p-value
Prob>F

Model 0.41 9 0.046 26.05 <0.0001 significant
PR 0.092 1 0.092 51.91 <0.0001
LP 0.15 1 0.150 86.22 <0.0001
DD 0.011 1 0.011 6.12 0.0224
OR 0.041 1 0.041 23.29 0.0001

(PR)(LP) 0.036 1 0.036 20.36 0.0002
(LP)(DD) 0.014 1 0.014 7.66 0.0119

PR2 0.019 1 0.019 10.78 0.0037
DD2 0.052 1 0.052 29.66 <0.0001
OR2 0.011 1 0.011 6.16 0.0221

Residual 0.035 20 1.769×10−3

Lack of Fit 0.024 15 1.589×10−3 0.69 0.7378 not sig.
Pure Error 0.012 5 2.310×10−3

Cor Total 0.45 29

R2 0.9214 Predicted R2 0.7750
Adjusted R2 0.8860 Adequate Precision 17.469
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Figure 5. Actual and predicted GRG values.

Figure 6 depicts the distribution of GRG residuals. In the figure, the residuals are relatively
uniformly distributed along the straight line, which suggests that the residuals are in normal
distribution and not caused by systematic errors. The GRG value, as further suggested by Table 13,
is affected by all the factors: PR, LP, DD, and OR. GRG is also affected by the interactions of PR and
LP, and LP and DD, and the second order terms of PR, DD ,and OR. The individual effects of each
factor on the GRG value are depicted in Figure 7. The GRG is positively proportional to LP, but
concave functions of PR, DD, and OR. GRG decreases with increasing weight fraction of TiC and/or
overlapping ratio.

Figure 6. Normal plot of GRG residuals.
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.
Figure 7. Effects of significant factors on GRG.

Figure 8 illustrates the effects of powder ratio and laser power on GRG. The figure shows that the
GRG value decreased as the TiC weight fraction increased and laser power decreased. This occurred
because more laser energy was required for melting the increased amount of TiC powder. Less powder
was then cladded on the substrate, resulting in narrower cladding layers of equal passes. The addition
of more TiC powder improved the viscosity of the melt liquid. Flattening of the melt cladding powder
was thus prohibited with a rougher surface obtained. The interaction between PR and LP can be
explained by the shadowing effect [32,33]. As more TiC is mixed in the cladding powder, a much
larger amount of laser energy is required due to the absorption and shadowing by TiC particles. Less
melted powder would, conversely, inhibit the energy circulation within the cladding powder.

(a) 2D contour plot for PR and LP (b) 3D response surface for PR and LP

Figure 8. Response of GRG to PR and LP.

The two-dimensional (2D) contour plot and 3D response surface of GRG with respect to laser
power and defocusing distance are illustrated in Figure 9. The GRG value also increased with increasing
of LP and decreasing absolute value of DD. This occurred because the increased laser energy melted
much more cladding powder to produce wider cladding passes. In contrast, departure of the laser
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focus from the substrate also scattered the energy into a wider spot, which cladded less powder
onto the substrate with resultingnarrow passes. The flatness of multi-pass cladding layer was not
significantly affected by LP or DD.

(a) 2D contour plot for LP and DD (b) 3D response surface for LP and DD

Figure 9. Response of GRG to LP and DD.

4.5. Validation of GRG Model

In the previous section, the correlation between GRG values and processing parameters was
established as a quadratic regression model. A further experiment was conducted to validate the
feasibility and achievability of the optimal conditions. Table 14 shows the optimization criteria and
parameter limits for the model optimization. The GRG was set to be a maximum objective and
influencing factors ranged between −1 and 1.

The experimental and predicted results for the optimal condition are compared in Table 15. The
table shows that the relative errors of the predicted GRG and sub-responses (W, F, and Anf) were
less than 6.8%, which indicates the effectiveness of the established GRG response model. Figure 10
demonstrates that little fluctuation occurred at the top surface of the corresponding cladding and a
small amount of non-fused zone was detected for the third and fourth passes. Therefore, multi-pass
laser cladding can be optimized to have a maximum GRG of 0.739 with desirable characteristics.

Table 14. Objectives and constraints for response surface models.

Name PR LP DD OR GRG

Goal in range in range in range in range maximize
Lower Limit 35 1.4 −2 20 0.358
Upper Limit 45 1.8 2 40 0.739

Table 15. Verification results of proposed response surface models.

Result PR
(%)

LP
(kW)

DD
(mm)

OR
(%)

W
(mm)

F Anf
(mm2)

GRG

Optimal 35.28 1.77 −0.44 24.06 14.37 0.909 0.104 0.7470
Actual 35.30 1.77 0 24.10 13.55 0.882 0.111 0.7834
Error 5.73% 2.97% 6.73% 4.87%
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Figure 10. Macrograph of optimized cross sectional multi-pass clad layer.

4.6. Mechanical Properties

In this section, the mechanical properties of the cladding layer produced under the optimized
process conditions were investigated. Figure 11 illustrates the distribution of microhardness alongside
the cladding layer, both longitudinally and laterally. Figure 11a shows that the microhardness decreases
stepwise with increasing depth of clad layer. It is suggested that the hardest area occurs in the
sub-surface zone of clad layer, probably due to the low temperature and large solidification rate,
leading to refined grain size and increased hardness [34].

The microhardness in the lateral direction was measured every 0.5 mm at a distance of 0.6 mm
outward from the substrate, as depicted in Figure 11b. The microhardness along clad passes fluctuated
slightly about 60 HRC, except for two points at the clad edges. In addition, the overlapped area
was softer than other areas in the cladding layer due to coarser grain produced due to the remelting
effect [35].
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(b) Lateral direction

Figure 11. Microhardness of cladding layer.

Figure 12 shows the microstructure of the optimized clad layer. The microstructure of the clad
area was mainly comprised of dendrite and cellular TiC, as demonstrated in Figure 12a, whereas
petal shaped cellular grain was found in the overlapped area (Figure 12b). This occurred due to
the heating effect of the former pass and remelting of the overlapped area, which facilitated grain
growth. The EDS results at points A–D, as shown in Figure 13, suggest element dispersion during
laser cladding compared with the chemical composition of cladding powder.

When conducting overlapping cladding, the overlapped area of the solidified pass participates
in the following pass cladding. It deflects the energy input into the forming melt pool, thus affecting
the thermal gradient distribution and heat transfer of the melt pool. The differences in composition,
viscosity, and density between the deposited and solidifying pass also influence the convection of melt
material, thereby leading to composition segregation in the cladding layer [36,37].
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(a) Cladded area (b) Overlapped area

Figure 12. Microstructure of cladding layer.

(a) Point A (b) Point B

(c) Point C (d) Point D

Figure 13. EDSresults at interested points of clad layer.

Figure 14 compares the wear resistance results of the substrate and cladding layer with the
optimized process parameters in the test configuration as illustrated in Table 16. The coefficient of
friction reduced from 0.72 to 0.38 by adding the cladding powder. The worn surfaces of the substrate
and the optimized cladding layer are macroscopically compared in Figure 15. The worn surfaces of
both samples had similar profiles with sloughing scratches parallel to the sliding direction. The profile
width of the substrate was larger than that of the optimized clad laye, mainly due to the reinforcement
addition of hard phase TiC, which has better wear resistance than the α-Fe. 3D profile of worn surfaces,
as depicted in Figure 16, suggesting that the substrate was also deeper than that of the optimized clad
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layer. The wear volume of both samples were computed to be 4573.68×10−6 mm3 and 562.13×10−6

mm3, respectively. Therefore, the wear resistance of the substrate can be improved by about 8.14 times
by applying the clad layer under the optimal process conditions.

0 4 0 8 0 1 2 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8
CO

F

t / m i n

 O p t i m i z e d
 S u b s t r a t e

Figure 14. Coefficient of friction.

Table 16. Friction and wear test parameters.

Parameter Unit Value

Abrasive pair mm Tungsten steel-φ6
Loading force N 30
Sliding speed mm/s 5

Distance per stroke mm 4
Wear time min 120

Sliding mode - Reciprocating
Wear temperature - Room temperature

(a) Substrate (b) Optimized

Figure 15. Comparison of 2D worn morphologies of substrate and optimized clad layer.
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μm
26.2

-15.1

(a) Substrate
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5.2

(b) Optimized

Figure 16. Comparison of 3D worn morphologies of substrate and optimized clad layer.

5. Conclusions

To produce multi-pass laser claddings with good surface quality under multiple evaluation criteria,
a serial of experimental runs, proposed by composite central design (CCD), were conducted to establish
the regression model of the grey relational grade (GRG) and process parameters. Grey relational
analysis (GRA) was applied to combine three process responses—clad width, flatness, and non-fusion
area—into one objective. These findings provide useful guidance for process optimization of laser
cladding of complex parts with multiple objectives considered. Based on the results, the following
conclusions were drawn:

• Principal component analysis is capable of objectively deciding the contribution of the three
responses to the integrated GRG, i.e., 48.88%, 11.27%, and 39.85%, respectively. The GRG value is
mainly affected by the clad width and non-fusion area.

• The GRG value of the three variables (clad width, flatness, and non-fusion area) is exponentially
determined by the second-order model of the process parameters. The GRG response model has
excellent goodness of fit and predictive capacity.

• The GRG value is relevant to all four investigated parameters. The surface quality of multi-pass
laser claddings can be improved by increasing laser power, decreasing weight fraction of TiC and
overlapping ratio, and/or focusing the laser spot on the surface.

• By integrating SNRs with GRA, the multi-response laser cladding process can be transformed into
single objective problem and thus viably optimized for individual optimum objectives (maximized
clad width and flatness, and minimized non-fusion area).

• The hardness of AISI 1045 substrate can be improved from 20 to 60 HRC and the wear resistance
becomes 8.14 times better (wear volume reduced by about 87.7%) by adding Fe50/TiC powder
under the optimal process conditions.
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