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Abstract: The generation of a natural protective coating in alumina-forming alloys was analyzed
using a ternary chloride molten salt as a thermal energy storage material for concentrated solar
power (CSP) technology. The formation of the protective layer was monitored using electrochemical
impedance spectroscopy (EIS). A protective layer model for the OCT alloy and a localized corrosion
model for the OCI and OC4 alloys were obtained after 5 h of immersion. The corrosion rates calculated
using the linear polarization technique (LPR), were 8.03, 21.55, and 7.61 mm/year for OC4, OCI,
and OCT alloys, respectively. These results were confirmed by scanning electron microscopy and
X-ray diffraction. Our analysis showed that MgAl2O4 was the main protective coating generated by
the alumina-forming alloys.

Keywords: concentrated solar power; thermal energy storage; corrosion mitigation; chloride molten
salt; alumina-forming alloys; anodic protection

1. Introduction

In the last years, an opportunity to obtain higher power generation efficiencies has been identified
by integrating the supercritical CO2 (sCO2) Brayton power cycle. To achieve this integration, storage
temperatures in concentrated solar power (CSP) plants must be high (up 550 ◦C). In order to raise the
storage temperature, a molten salt with suitable chemistry is needed. Some of the main challenges
of using high-temperature molten salts are that they must be compatible with the commercial alloys
that will be in contact with the storage materials and that alloy requirements and costs should be
balanced [1].

Due to their low cost and high decomposition temperature, molten chlorides are considered to be
good candidates. The high operation temperatures require the study of corrosion mitigation strategies
to reduce the corrosion rate of the containment materials to around 20 µm/year, since their life cycle
needs to be at least of 30 years [2–4]. One of the corrosion mitigation strategies is thermal purification
development in chloride salt before the start of the corrosion process. This approach, previously
analyzed by Fernandez and Cabeza [5], achieved a corrosion rate reduction of around 68%.

On the other hand, the use of coatings as protective barriers on the surface of steel is a second
possibility, although it could increase the system’s cost. For example, the use of alumina-forming alloys
has been studied, since alumina scales (generated on the surface of steel) were reported to be more
protective than chromia scales, which usually form on conventional stainless steel [6].

The generation of anodic protection layers in chloride molten salts has been developed by different
authors. Indacochea et al. [7] analyzed the corrosion resistance of several ferrous alloys and tantalum
specimens in lithium chloride salt, obtaining higher corrosion resistance under reducing conditions.
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A second approach to achieve corrosion mitigation consists in the addition of a sacrificial anode
to the molten salt. Garcia-Diaz [8] and Ding [9] reported a reduction of the corrosion rates when a
metal of Mg in a chloride molten salt was used as cathodic protection. Specifically, the addition of
1.15 wt.% of Mg reduced the corrosion rate of Haynes 230 at 850 ◦C by 35 times, reaching a value of
less than 15 µm/year, when compared to the baseline rate measured without the addition of Mg. A key
consequence of this effect was the deposition of MgO on the cathode, which led to the passivation
of this electrode, causing a significant reduction of the electrolysis current [9]. These strategies for
corrosion mitigation were also summarized in a recent review by Ding et al. [10].

In summary, the aim of this paper was to analyze the corrosion resistance of different
alumina-forming alloys in contact with a ternary chloride molten salt, proposed as an anodic
protection strategy.

2. Anodic Protection in Chloride Molten Salts

Anodic protection is a corrosion mitigation strategy that controls the corrosion rate of the surface
to be protected by making it the anode of an electrochemical cell. The initial reaction of the anode is
usually accompanied by surface passivation which hinders the reaction and, hence, corrosion. Before
applying these anodic protection strategies, some purification treatments in chloride molten salts,
aiming to reduce corrosive impurities, have been suggested [4]. One of the most studied mixtures
consisted of MgCl2-NaCl-KCl (60-20-20 mol%), which has a melting point of ~400 ◦C and a thermal
stability up to 800 ◦C. Water molecules in MgCl2 (hexahydrate) need to be removed, since MgOHCl
was identified by some authors [11–14] as the main corrosive impurity that is formed through the
following reaction at ~167 ◦C [15]:

MgCl2 · 2H2O→MgOHCl + HCl + H2O

The dehydration of the monohydrate occurs at ~235 ◦C and also produces MgOHCl:

MgCl2 · H2O→MgOHCl + HCl

Ding et al. reported a thermal decomposition of MgOHCl between ~415 ◦C and ~555 ◦C [16]
producing MgO and HCl:

MgOHCl→MgO + HCl

The strategy of using coatings as anodic protection has been proposed recently, especially for
specific components inside the CSP plant, i.e., turbine blades [17]. Coatings could be a suitable option
in order to decrease corrosive attacks by molten salts and to reduce the cost of container materials used
in storage tanks and pipelines. Some coatings tested in the literature are composed of MCrAlX (M:
Ni, and/or Co; X: Y, Hf, Si, and/or Ta) [17] and form an adherent alumina layer on the alloy surface
providing high-temperature corrosion resistance in chloride molten salt.

The resistance of aluminum coatings as slurries or alumina-forming alloys has been widely tested,
resulting acceptable in harsh environments. Audigie et al. [18] evaluated the corrosion resistance of
an Al coating slurry immersed in 60% NaNO3 + 40% KNO3 molten salt at 580 ◦C, obtaining a better
resistance compared with that of uncoated steel (P92).

These results have raised a significant interest in alumina-forming alloys (AFAs) as storage
container material with good corrosion-resistance. AFAs, consisting of alumina protective layers,
have been proposed as substitutes of chromia layers, which has been normally formed in commercial
stainless steel [19,20].

Gomez-Vidal evaluated AFAs exposed to molten MgCl2–64.41 wt.% KCl at 700 ◦C in a flowing
Ar atmosphere [2]. In this research, Inconel 702 (IN702), Haynes 224 (HR224), and Kanthal APMT
(APMT) were pre-oxidized at different temperatures, for different dwelling times, and in different
atmospheres to produce the protective layers. Electrochemical tests and conventional long-term
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tests based on weight changes were both used to down-select the best-performing alloy and surface
pre-oxidation conditions.

Linear sweep voltammetry (LSV) measurement and sample characterization showed that the
IN702 alloy presented the best corrosion-resistant properties due to the formation of a stable α-Al2O3

coating. It is important to highlight that this alloy was pre-oxidized in zero air (ZA) at 1050 ◦C for 4 h.
On the other hand, another pre-oxidation method was carried out with this alloy, using Ar instead ZA,
forming α-(Al0.9Cr0.1)2O3. This coating showed reduced protective properties due to the presence of
the less stable Cr. Since this pre-oxidation process would increase the material’s cost, in this research,
alumina-forming alloys are proposed as a protective coating in the corrosive environment of the
operation conditions.

3. Materials and Methods

The molten salt tested was a eutectic mixture composed of 20.4 wt.% KCl + 55.1 wt.%
MgCl2 + 24.5 wt.% NaCl (Sigma Aldrich, St. Louis, MO, USA, with 99% purity), at 720 ◦C under inert
atmosphere (N2).

Three electrodes, composed of a working electrode (WE, alloy tested 10x10x2 mm), a reference
electrode (RE, Pt wire), and a counter electrode (CE, Pt mesh), were used. The lectrodes were immersed
in the molten salt, acting as an electrolyte, and the open circuit potential (OCP) was measured using a
potentiostat (Gamry 1010E, Gamry, Warminster, PA, USA). The experimental apparatus is shown in
Figure 1.
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Figure 1. Experimental apparatus designed for corrosion tests in controlled atmosphere. 1: furnace, 2:
molten salt reactor, 3: counter electrode, 4: thermocouple, 5: working electrode, 6: reference electrode,
7: gas inlet, 9: molten salt, 10: carrier gas, 8: off-gas system (which consisted of 11: MgO trap for
chlorine, 12: moisture removal, 13: 1 M NaOH scrubber to neutralize H+, and 14: gas exhaust).

Electrochemical impedance spectroscopy tests were carried out after 1, 3, and 5 h of immersion to
monitor the corrosion mechanism. After 8 h of immersion, linear polarization resistance tests were
performed from a potential of -0.6 to 0.4 V, using a scanning range of 0.005 V/s (0.00244 V at each step).



Coatings 2020, 10, 138 4 of 12

Thermal treatment was performed as previously reported [5], in order to reduce the corrosive
impurities present in commercial chloride molten salts, especially in MgCl2, following different
isothermal steps (according to the vapor–pressure curve of hydrated MgCl2) and dwelling times: 70 ◦C
(2 h)–117 ◦C (2 h)–145 ◦C (4 h)–190 ◦C (4 h)–227 ◦C (4 h)–300 ◦C (4 h)–450 ◦C (3 h)–600 ◦C (1 h)–720 ◦C.

The chemical composition of the commercial salt used in this research are shown in Table 1.

Table 1. Chemical composition of the ternary chloride salt tested.

K (%) Mg (%) Na (%) Mn (ppm) SO4 (ppm) Cl (%) H2O (%)

20.6 11.9 3.4 1.8 162 60 5

The use of an inert atmosphere (N2) is key to avoid a catastrophic corrosion caused by contact
with the chloride molten salts. Also, it is important to highlight the formation of the alumina protective
layers in the tested alloy with low oxygen content in the molten salt (Table 1).

Anodic protection tests were carried out after thermal purification in three different alloys, whose
chemical composition is shown in Table 2.

Table 2. Chemical composition of the tested alloys.

Alloy wt.%

Zr Mn Cr Nb Cu Ti Ni Al Mo Fe

OC4 - - 14 2.5 0.5 - 25 3.5 2 Balance
OCT 0.3 - 14 3 - 2 35 3 - Balance
OCI - 5 14 1 3 - 12 2.5 - Balance

Electrochemical techniques were used to monitor the corrosion mechanism in the tested materials.
For this purpose, an electrochemical impedance test was carried out using equivalent circuits on the
basis of the corrosion mechanism model of the Randles circuit [21].

Nyquist plots were used to represent the real part of the impedance on the abscissa axis and
the imaginary part on the ordinate axis, both at different frequencies [22]. The obtained semicircle
represented the total impedance (Z) of the Randles circuit, given by Equation (1):

Z = RS +
1

1
Rct

+ jωCdl
(1)

where Rs is the resistance of the solution, Rct is the resistance to charge transfer, jω is the imaginary
radial frequency, and Cdl is the capacitance of the double layer.

Several authors [22–28] have proposed that equivalent circuits are appropriate to study the main
corrosion processes occurring during a molten salt corrosion attack, providing different models, i.e.,
a localized corrosion model, a porous layer model, or a protective layer model.

After the electrochemical impedance spectroscopy (EIS) tests, a linear polarization resistance
(LPR) test was carried out. In this case, it was important to quantify the polarization resistance Rp and
the corrosion current density icorr, given by Equation (2):

icorr =
B
Rp

(2)

where B is an electrochemical constant calculated theoretically according to the Equation (3):

B =
βα·βc

2.3·(βα + βc)
(3)

where βc and βα are the cathodic and anodic Tafel slope, respectively.
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The corrosion rate (CR) could be estimated through the Butler–Volmer equation shown in
Equation (4):

CR =
icorr·K

ρalloy·
∑(

fi·ni
MWi

) (4)

where K is a correlation constant that defines the units of CR (3272 for CR in mm/year), ρalloy is the
alloy density (g/cm3), fi is the mole fraction of element i in the alloy, ni is the number of electrons that
are transferred in element i, and MWi is the atomic weight of element i.

4. Results and Discussion

Nyquist plots obtained for alloy OC4 are shown in Figure 2. The results were fitted to a protective
layer model after 1 and 3 h of immersion; the corrosion mechanism evolved to a localized layer model
after 5 h of immersion. An example of the fitting analysis carried out after 1 h of immersion is shown
in Figure 3.
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Table 3. Electrochemical parameters obtained from electrochemical impedance spectroscopy (EIS) tests
of OC4.

Element R3 (Ohm) Q1 (F/s) R5 (Ohm) Q2 (F/s) R7 (Ohm) Error (%) Equivalent Circuit

1 h 1.71 0.66 26.68 0.17 7.49 0.52
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Figure 4. Micrographs showing a top view (left) and a cross section (right) of OC4 immersed in ternary
chloride molten salt for 8 h at 720 ◦C; Energy dispersive X-ray (EDX) analysis on top.

The scale formed during the corrosion process seemed to be protective and contained
Fe-Al-Cr-Ni-O. Nevertheless, pitting corrosion in the grain boundaries was observed at the end
of the corrosion test. This effect was detected by electrochemical impedance spectroscopy and
suggested a localized corrosion model.

Nyquist plots for alloy OCI are shown in Figure 5. The equivalent circuit obtained after 1 h (blue
line) of immersion indicated a protective corrosion model; however, after 3 and 5 h of immersion,
porous corrosion was detected. The results for the equivalent circuit elements are shown in Table 4.
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A severe corrosion process with a corrosion layer thickness of 370 microns was observed, and these
results were confirmed by SEM (Figure 6).
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In this case, the alloy did not generate an alumina coating on the steel surface, and the formation
of a porous corrosion layer was confirmed by electrochemical and scanning electron microscopy
techniques. The best results were obtained for alloy OCT, as it provided a protective corrosion model
during the immersion test. Nyquist plots and equivalent circuit elements for OCT are shown in Figure 7
and Table 5. The corrosion mechanisms observed at the end of the immersion test were confirmed by
SEM (Figure 8). In this case, a protective layer of 7.25 µm, containing Fe-Ni-Cr-O-Ti-Al, was detected.

Table 5. Electrochemical parameters obtained from EIS tests of OCT alloy.

Element R3 (Ohm) Q1 (F/s) R5 (Ohm) Q2 (F/s) R7 (Ohm) Error (%) Equivalent Circuit

1 h 1.44 0.15 0.47e-9 0.26 44.38 0.45
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In order to confirm the corrosion layer composition obtained on the materials’ surface, an X-ray
diffraction (XRD) analysis was carried out for all the materials tested (Figure 9). The chemical
compounds obtained in the alloys immersed in chloride molten salts are shown in Table 6. Protective
layers were obtained for OCT, confirming the better corrosion resistance obtained for this material in
contact with chloride molten salt. This was confirmed by the corrosion mechanism detected using EIS.
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Table 6. Corrosion products identified by XRD analysis on OC4, OCI, and OCT after immersion in
chloride molten salt at 720 ◦C for 8 h.

Salt Mixture Material Corrosion Products Reference Pattern

MgCl2/NaCl/KCl (55.1 wt.%–24.5
wt.%–20.4 wt.%)

OC4 FeCr2O4
MgAl2O4

00-024-0511
00-033-0853

OCI
Fe2O3

MgOHCl
MgO

01-089-0597
00-012-0120
01-087-0651

OCT
MgAl2O4

NiO
Fe3O4

00-033-0853
03-065-6920
01-086-1353

OCI showed porous corrosion, detected by EIS, and this was confirmed by the formation of
non-protective compounds such as Fe2O3, MgO, and MgOHCl on the alloy’s surface. These corrosion
products were confirmed by XRD (Table 6). The Tafel curves obtained for the AFA alloys are shown in
Figure 10. The screening test results for the materials are shown in Table 7.

The linear polarization resistance technique was applied on the materials at 720 ◦C after
8 h of immersion, obtaining a corrosion rate of 8.03, 21.55, and 7.61 mm/year for OC4, OCI,
and OCT, respectively.

The best corrosion resistance was obtained for OCT in accordance with the EIS results (protective
layer model) and the XRD/SEM results, which indicated that a protective layer consisting of MgAl2O4

and NiO formed on the surface of the steel. This internal layer formed in the OCT alloy acted as a
thermal diffusion barrier, avoiding the oxidation of constitutional elements in the tested alloy.
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Table 7. Electrochemical parameters and corrosion rates obtained from the linear polarization resistance
(LPR) test for the tested materials.

Alloys Ecorr (mV) Icorr (mA) βc (mV) βa (mV) A (cm2) CR (mm/year)

OC4 −140.79 4258.75 322.1 651 4.46 8.03 ± 0.64
OCI −52.59 11429.4 398.9 524.9 4.53 21.55 ± 0.89
OCT −131.86 3837.05 407 902.2 4.41 7.61 ± 0.55

The Tafel curves, shown in Figure 10, confirmed the corrosion rates obtained in Table 7, since the
following anodic current order was determined: OCI > OC4 > OCT. The anodic current order was
directly related to the corrosion rate.

5. Conclusions

Alumina-forming alloys are a suitable option to generate protective coatings in a severe corrosion
environment. In this study, AFA alloys were examined after immersion in a ternary chloride molten
salt proposed as thermal energy storage (TES) material for CSP plants.

The linear polarization resistance technique was successfully applied to the tested materials, and a
down selection of AFA alloys was completed. The lower corrosion rate was obtained for the OCT alloy
using electrochemical impedance spectroscopy and was confirmed by SEM and XRD analyses. It is also
important to highlight that, by our XRD analysis, this alloy showed internal oxidation characterized
by the presence of a high amount of aluminum, which formed a protective barrier composed of
MgAl2O4. In a future research, previously oxidized OCT alloy will be subjected to longer exposure
times. The generation of alumina scales during the thermal cycles will be also analyzed, since the
coating formed on the CSP plant components needs to be stable during operation.
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