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Abstract: Perovskite solar cell efficiency is not only related with material properties, but also affected
by the interface engineering that used in perovskite solar cells. The perovskite film/electrode interface
properties play important roles in charge carrier extraction, transport, and recombination. To achieve
better interface contact for the device operation, proper interlayers or surface treatment should
be applied. In this study, we applied a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)
(PEDOT:PSS) interlayer with a solvent/solution washing treatment as the hole transport layer.
It showed that by the solvent/solution treatment, the PEDOT:PSS film conductivity was significantly
enhanced, and hence, the charge carrier transfer efficiency was efficiently improved, and the device
short-circuit current density was enlarged. Finally, the device efficiency significantly increased from
14.8% to 16.2%.
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1. Introduction

The perovskite solar cell (PSC) has received significant attention because of their unique properties
such as high power conversion efficiency, simple solution processibility, high balanced charge carrier
mobility, and intense light absorption [1–9]. In the past few years, the highest device power conversion
efficiency (PCE) has been rapidly increased from 3.8% up to over 24% [10–14], and this PCE can be
further improved by applying proper interface engineering, solvent engineering and composition
engineering approaches [5,15–28].

Commonly, in planar PSCs with p-i-n structure, the [6,6]-phenyl-C61-butyric acid
methyl ester (PCBM) layer is mostly used as the electron transport layer (ETL), and the
poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) layer was mostly employed as
the hole transport layer (HTL). Moreover, the device based on this structure has achieved considerable
performance [18,29,30]. Even so, ascribed to the acidic and hydrophilic nature of PEDOT:PSS interlayer,
poor stability and inefficient charge extraction/collection have become the challenging issues. Hence,
proper methods to enhance the PEDOT:PSS conductivity and hydrophobic properties or using inorganic
NiO HTL to replace PEDOT:PSS film become more important [23,25,26,31–34].
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Previously, in organic solar cells and perovskite solar cells, some polar solvents including
ethylene glycol (EG), dimethyl sulfoxide (DMSO), dopamine, F4-TCNQ, dimethyl formamide (DMF),
imidazole, etc. have been used as additives to enhance the PEDOT:PSS conductivity and tune the
work-function [35–38]. Among them, DMSO exhibits superior advantages due to its good dielectric
constant, dipolar moment, and relatively higher boiling point. Hence, between PEDOT:PSS and
DMSO molecules, strong dipole-dipole or dipolar-charge interactions can be easily formed, which
can enhance the film conductivity and charge carrier mobility. Previously, some studies have been
performed to investigate the PEDOT:PSS work-function and morphology effects on the perovskite
thin film morphologies and corresponding device performance [32,33,39,40]. Even though the DMSO
has been widely used in perovskite solution precursor or as an additive in PEDOT:PSS solution, there
are few researches about direct solvent treatment on PEDOT:PSS film to optimize film quality and
device performance.

In this study, we studied the solvent/solution dripping effects on the PEDOT:PSS and perovskite
film properties. By employing the solvent/solution washing treated PEDOT:PSS as HTL, high
performance perovskite solar cell devices were achieved. The PCE was enhanced to 16.2% which
was much higher than that of the device with pristine PEDOT:PSS film (14.8%). After a series of
characterization measurements, it was found that the significantly increased device short circuit current
density (Jsc) was due to the improved conductivity of the PEDOT:PSS film.

2. Results and Discussion

By spin coating the PEDOT:PSS precursors with different coating speeds, the pristine PEDOT:PSS
films with different thicknesses were formed. It was surprised that the PEDOT:PSS thickness has
a significant effect on the final device performance. From Figure 1 and Table 1, it can be found
that the device open circuit voltage (Voc) and Jsc significantly increased upon increasing the coating
speed of PEDOT:PSS HTL. Hence, the efficiency of solar cell devices was enhanced. It is clear to
see that the Jsc gradually increased upon increasing the coating speed, indicating that the enhanced
shunt resistance/series resistance (Rsh/Rs) ratio and/or decreased device resistance upon decreasing
the PEDOT:PSS layer thickness (Table 1). To further increase the device performance, enhancing the
PEDOT:PSS layer conductivity is necessary, and moreover, to enable a large thickness range of the
interlayer is beneficial for printed devices.
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Figure 1. Current density–voltage (J–V) characteristics of perovskite solar cell (PSC) devices based on 
poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) hole transport layer (HTL) 
with different coating speeds. 

  

Figure 1. Current density–voltage (J–V) characteristics of perovskite solar cell (PSC) devices based
on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) hole transport layer (HTL)
with different coating speeds.
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Table 1. Average device parameters of twelve PSCs based on different PEDOT:PSS coating conditions.

rpm PEDOT:PSS Thickness Voc (V) Jsc (mA/cm2) FF PCE (%)

2000 62–68 nm 0.90 ± 0.02 15.40 ± 0.32 0.73 ± 0.03 10.1 ± 0.04
4000 46–49 nm 0.91 ± 0.02 17.16 ± 0.25 0.74 ± 0.03 11.6 ± 0.5
6000 34–38 nm 0.96 ± 0.01 18.82 ± 0.23 0.75 ± 0.02 13.5 ± 0.4
7000 26–30 nm 0.98 ± 0.01 19.80 ± 0.18 0.74 ± 0.02 14.4 ± 0.4
8000 24–28 nm 0.97 ± 0.01 19.64 ± 0.16 0.75 ± 0.02 14.3 ± 0.3

To improve the conductivity of PEDOT:PSS HTLs, a DMSO solvent treatment was taken during
the PEDOT:PSS spin coating step. For the as-prepared PEDOT:PSS film (~30 nm) without solvent
washing treatment, the conductivity was about 1.7 × 10−3 S cm−1 [34]. For the PEDOT:PSS film with
DMSO solvent washing treatment, the conductivity increased to 0.7 S cm−1, which is similar with the
literature reported that the polar organic solvents could improve the PEDOT:PSS conductivity [32].
The conductivity enhancement mechanism has been reported previously [32]. Some PSS chains
could be washed away from PEDOT:PSS films by DMSO solvent. Therefore, the ratio of PEDOT was
increased, leading to higher conductivity.

With the DMSO solvent washing treatment, the PSS chains could be removed from PEDOT:PSS,
which could be confirmed by XPS spectra (Escalab 250Xi, Thermo Scientific, Waltham, MA, USA).
The S 2p has two states: one is from S in PSS (166–172 eV), and another one is from S atoms in PEDOT
(162–166 eV). The ratio of S sp XPS intensity in PEDOT to that in PSS is significantly enhanced after
treating with DMSO solvent (Figure 2) [41]. The relatively increased PEDOT ratio is contributed to the
increased conductivity.
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Figure 2. S 2p XPS spectra of PEDOT:PSS films without and with solvent washing treatment. 

The effect of PSS chain removal from PEDOT:PSS on PEDOT:PSS film surface morphologies 
was investigated by atomic force microscopy (AFM) techniques (Dimension Icon AFM, Bruker, 
Billerica, MA, USA). Figure 3 shows the topography images of a 2 × 2 µm2 area of pristine and 
DMSO solvent treated PEDOT:PSS films. The root mean square (RMS) roughness of pristine 
PEDOT:PSS thin film was 1.21 nm, indicating a quite smooth surface. After DMSO solvent washing 
treatment, crystal grains became clearer and the film surface became rougher, resulting in an 
increased root mean square (RMS) roughness of 2.92 nm. The increased RMS is mainly induced by 
the PSS chains removal and PEDOT chains aggregation. The increased conducting PEDOT-rich 
regions lead to superior charge-transport pathways for the treated films. Thus, the PEDOT:PSS film 
with solvent washing treatment exhibited higher conductivity. 

Figure 2. S 2p XPS spectra of PEDOT:PSS films without and with solvent washing treatment.

The effect of PSS chain removal from PEDOT:PSS on PEDOT:PSS film surface morphologies was
investigated by atomic force microscopy (AFM) techniques (Dimension Icon AFM, Bruker, Billerica,
MA, USA). Figure 3 shows the topography images of a 2 × 2 µm2 area of pristine and DMSO solvent
treated PEDOT:PSS films. The root mean square (RMS) roughness of pristine PEDOT:PSS thin film was
1.21 nm, indicating a quite smooth surface. After DMSO solvent washing treatment, crystal grains
became clearer and the film surface became rougher, resulting in an increased root mean square (RMS)
roughness of 2.92 nm. The increased RMS is mainly induced by the PSS chains removal and PEDOT
chains aggregation. The increased conducting PEDOT-rich regions lead to superior charge-transport
pathways for the treated films. Thus, the PEDOT:PSS film with solvent washing treatment exhibited
higher conductivity.
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Figure 3. Atomic force microscopy (AFM) images of PEDOT:PSS films (a) without and (b) with DMSO
solvent washing treatment.

The perovskite thin films deposited on pristine and DMSO solvent washing treated PEDOT:PSS
were studied by scanning electron microscopy (SEM, JSM-7800F SEM, Japan). As exhibited in Figure 4,
the perovskite film based on solvent washing treated PEDOT:PSS had similar crystal morphology with
that of the perovskite film based on pristine PEDOT:PSS. All the perovskite films are uniform with
large regular crystallites, and they fully cover the underlying layer. The favorable thin film uniformity
and coverage indicate a homogenous nucleation of the perovskites on the substrates. The crystal size
increased possibly due to the relatively hydrophobic nature of solvent washing treated PEDOT:PSS,
which is beneficial for device performance [42]. In order to illustrate the effect of solvent treatment,
we have measured the X-ray diffraction (XRD, Bruker D8 Advance XRD instrument, Billerica, MA,
USA) and UV-Vis of the perovskites without or with solvent treatment. Figure 5a presents the UV-vis
absorption spectra of perovskites and showed that the film with solvent washing treated PEDOT:PSS
exhibited higher light absorption than pristine film. The thin film crystallinity was investigated by
XRD, and the XRD patterns of perovskite films with/without solvent treatment are shown in Figure 5b.
The diffraction peaks around 14.21◦, 28.51◦, and 31.88◦ are assigned to the (110), (220), and (310) crystal
planes, respectively, which indicates that the perovskite film is formed with good quality. Meanwhile,
the PbI2 peak around 12.6◦ appeared, and the exceed PbI2 could efficiently passivate the perovskite
grain boundaries and reduce trap density as reported [16,43]. Moreover, the solvent washing treated
PEDOT:PSS produced higher crystallinity of treated film than that of pristine film. This improved film
crystallinity has positive effect on charge transport and charge extraction.
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Figure 5. UV-vis and XRD spectra of (a) pristine and (b) DMSO solvent washing treated PEDOT:PSS
based perovskite films.

The photoluminescence (PL) spectra of perovskite films based on pristine and solvent washing
treated PEDOT:PSS were also studied (Figure 6a). Compared to pristine PEDOT:PSS based perovskite
film, the solvent washing treated PEDOT:PSS based perovskite film exhibited more efficient PL
quenching, indicating that charge transfer between solvent washing treated PEDOT:PSS and perovskite
is more efficient. This is beneficial for efficient charge transfer and charge extraction. Time-resolved
PL (TR-PL) measurement was also carried out to investigate the charge carrier dynamic behavior
regarding to the solvent washing treatment. It can be seen that the average PL lifetime decreased from
47.4 ns to 36.7 ns (Table 2). The decreased PL lifetime indicates that an efficient charge transfer induced
quenching process occurred based on solvent treatment.
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Figure 6. (a) Steady-state photoluminescence (PL) and (b) TR-PL spectra for perovskite films based on
pristine and DMSO solvent washing treated PEDOT:PSS layers.

Table 2. Fitted decay times of perovskite films based on pristine and solvent washing treated
PEDOT:PSS layers.

Conditions A1 τ1 (ns) A2 τ2 (ns) τave (ns)

Pristine 0.18 2.9 0.82 47.9 47.4
Solvent treated 0.23 2.1 0.77 37.3 36.7

The solvent washing treatment effect on perovskite solar cell performance was also studied as
well. The device adopted a configuration of ITO/PEDOT:PSS/Perovskite/PCBM/BCP/Ag, and the
perovskite layer was composed by MAI, PbI2, and PbCl2 (The details can be seen in Supplementary
Materials) [44]. Table 3 summarizes the parameters of the devices, and Figure 7 exhibits the
device current density–voltage (J–V) characteristics. The pristine PEDOT:PSS layer exhibited a
Jsc of 19.8 mA/cm2, a Voc of 0.98 V, a fill factor (FF) of 0.76, and an overall PCE of 14.8%. After DMSO
solvent washing treatment, the Jsc significantly increased to 22.6 mA/cm2, Voc had almost no change,
and FF slightly decreased to 0.73. Hence, the overall PCE was enhanced to 16.2%. The performance
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enhancement is mainly resulting from Jsc increment. The increased film conductivity and perovskite
film absorption all contributed to the Jsc enhancement. This can be further confirmed by incident
photon-to-electron conversion efficiency (IPCE) measurements. The DMSO solvent washing treated
PEDOT:PSS based device showed improvement in IPCE spectra from 350 nm to 750 nm. This method
is also applied to other solvent system like DMF. As shown in Table 1, the DMF dripping treatment
improved the device PCE to 15.5% with an increased Jsc of 20.9 mA/cm2.

Table 3. Average device parameters of twenty-four perovskite solar cells based on pristine and solvent
washing treated PEDOT:PSS layers.

Interlayer Voc (V) Jsc (mA/cm2) FF PCE (%) Rs (Ω cm2) Rsh (kΩ cm2)

Pristine 0.98 ± 0.01 19.8 ± 0.2 0.76 ± 0.02 14.8 ± 0.2 4.2 1.5
DMSO dripping 0.98 ± 0.01 22.6 ± 0.4 0.73 ± 0.03 16.2 ± 0.3 2.1 1.1
DMF dripping 0.99 ± 0.01 20.9 ± 0.3 0.75 ± 0.02 15.5 ± 0.2 2.7 1.4
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Figure 7. (a) J–V characteristics and (b) IPCE spectra of perovskite solar cells based on pristine and
DMSO solvent washing treated PEDOT:PSS layers.

The device Rs and Rsh were extracted from the J–V curves to further understand the solvent
washing treatment effects. As can be seen from Table 3, the device with pristine PEDOT:PSS had a Rs

value of 4.2 Ω cm2 and a Rsh value of 1.5 kΩ cm2. After solvent washing treatment, Rs decreased to
2.1 Ω cm2, while Rsh also decreased to 1.1 kΩ cm2. The decrease in Rs is ascribed to the PEDOT:PSS
conductivity enhancement [45]. While decreased Rsh is because of the rougher surface of PEDOT:PSS,
which might increase the leakage current.

Hysteresis behaviors of different devices were also performed by measuring the J–V characteristics
in both forward and reverse directions, as shown in Figure 8. Compared to pristine PEDOT:PSS based
device, solvent washing treated device exhibited slightly larger hysteresis behavior which may be
due to its rough surface caused by PEDOT chains aggregation and/or trapping/detrapping of charge
carriers due to interface defects [32].
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Figure 8. Hysteresis characteristics of perovskite solar cells based on pristine and DMSO solvent
washing treated PEDOT:PSS layers.
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3. Conclusions

In conclusion, we have studied the DMSO solvent washing treatment effect on the PEDOT:PSS
film properties, perovskite film quality, and corresponding perovskite device performance. The results
exhibited that the DMSO solvent washing treatment could significantly enhance the film conductivity,
charge carrier transfer efficiency, and the quality of perovskite. Hence, devices with the treated
PEDOT:PSS layer exhibited improved Jsc and PCE.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6412/10/2/127/s1.
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