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Abstract: Reduction of graphene oxide is one of the most promising strategies for obtaining bulk
quantities of graphene-like materials. In this study, graphene oxide was deposited on SiO2 and
reduced by annealing at 500 K under vacuum conditions (5 × 10−1 Pa). Here, graphene oxide films
as well as their chemical changes upon heating were characterized in depth by X-ray photoelectron
spectroscopy, Raman spectroscopy, and scanning electron and atomic force microscopies. From the
chemical point of view, the as prepared graphene oxide films presented a large quantity of oxidized
functional groups that were reduced to a large extent upon heating. Moreover, residual oxidized
sulfur species that originated during the synthesis of graphene oxide (GO) were almost completely
removed by heating while nitrogen traces were integrated into the carbon framework. On the other
hand, regarding structural considerations, reduced graphene oxide films showed more homogeneity
and lower roughness than graphene oxide films.

Keywords: graphene oxide; reduced graphene oxide; thermal reduction; XPS

1. Introduction

Graphene and related materials have a promising future due to their possible applications in a
wide range of fields such as photovoltaics, transistors, and (bio)sensors [1,2]. Among the family of
graphene materials, graphene oxide (GO) as well as reduced graphene oxide (rGO) seem to be better
positioned than pristine graphene for industrial applications. This is because of some of their chemical
methods are well established for synthesizing bulk quantities of GO [3–5] and rGO [5–7], while it is
much more complex to obtain pristine graphene [8–11].

Thereby, the chemical exfoliation of graphite, the so-called Hummers’ method, and their modified
protocols [5], are the main synthetic routes for obtaining bulk quantities of GO flakes. Nevertheless,
these methods have several drawbacks that limit the potential applications of the obtained material.
The GO flakes produced by these methods usually have uneven shapes, with a thickness of a few layers
and a maximum lateral size of few microns [5–12]. The preparation of thin films or paper-like GO by
stacking GO flakes [13–16] is a good approach for partially overtaking the above-mentioned limitations.

However, with an eye on their use in electronic applications, the main handicap to overcome is
the low electrical conductivity of GO, as well as GO films. A way to improve the electrical conductivity
of GO is by reduction. It can be chemically reduced by using hydrazine hydrate [17], sodium
borohydride [18], or other reducing agents [19,20]. Nevertheless, these chemical procedures used to
introduce contaminants such as sodium in the rGO films. In addition to carbon and oxygen, GO usually
contains small quantities of sulfur and nitrogen, depending on the methodology of the synthesis,
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and thus rGO has these elements together with the contaminants introduced during its chemical
reduction. Accordingly, other reduction methods are preferred to avoid chemical contaminants during
the reduction of GO. Thereby, reduction under a hydrogen plasma [21], heating [22,23], or irradiation
by high energy electrons [7] also reduce GO but without introducing chemical contaminants during
the treatment. The motivation of the present work is to promote the reduction of GO thin films,
without introducing contaminants, through a thermal treatment under vacuum conditions. Herein, the
chemical environment of carbon, oxygen, sulfur, and nitrogen atoms, of GO, as well as their evolution
induced by thermal treatment were characterized by high resolution X-ray photoelectron spectroscopy
(XPS). Moreover, both GO and rGO films obtained by our method were characterized by Raman
spectroscopy and scanning electron (SEM) and atomic force (AFM) microscopies.

2. Materials and Methods

SiO2 templates were cleaned in sequence by acetone, ethanol, and mq water in ultrasonic during
10 min. This process was repeated until all contaminants were completely removed from the surface.
The clean SiO2 surface was checked by XPS.

A solution of commercial GO (graphenea) (0.05%) in mq water was deposited on fresh SiO2

templates by drop coating and naturally dried. To heat the samples, these templates were introduced
in a chemical vapor deposition (CVD) furnace and heated at the desired temperature during 40 min.
The temperature was ramped at a velocity of 10 K/min, and the pressure during the whole process was
5 × 10−1 Pa. In parallel, the samples were also heated in an ultra-high vacuum (UHV) system for in
situ and real-time monitoring of the key chemical changes by XPS.

XPS spectra were acquired in an UHV system with a base pressure of 2 × 10−8 Pa. The system
was equipped with a hemispherical electron energy analyzer (SPECS Phoibos 150, Berlin, Germany), a
delay-line detector, and a monochromatic AlKα (1486.74 eV) X-ray source. High-resolution spectra
were recorded at normal emission take-off angle and with a pass-energy of 20 eV, which provided an
overall instrumental peak broadening of 0.5 eV. SEM micrographs were obtained on a TM4000Plus
microscope (Hitachi, Tokyo, Japan). The micrographs were acquired by a backscatter electrons detector
for high contrast. AFM measurements were carried out using a Veeco AFM Multimode Nanoscope
(IV) MMAFM-2, Veeco microscopy. A conductive Si cantilever (nanosensors, nominal force constant of
42 N/m, and resonant frequency of 330 kHz) was used. AFM scanning in tapping mode was performed
on various regions of the films, which produced reproducible images similar to those displayed in this
work. Micro-Raman spectroscopy was performed using a Jobin Yvon (HORIBA, Kyoto, Japan) HR800
instrument, using a 530 nm laser wavelength as excitation source (Kimmon, IK series, Tokyo, Japan)
and x100 objective (NA = 0.9, Olympus, Tokyo, Japan).

3. Results and Discussion

XPS is a well established technique for detecting surface elements as well as characterizing the
chemical state of different molecular species. Moreover, the chemical changes induced by annealing
can be followed in situ and in real time.

Figure 1a,c show C 1s and O 1s core levels as a function of the temperature of the sample. In these
figures, the intensity of the XPS peaks is color-coded. In both figures, the spectra obtained at room
temperature (RT) remained stable until reaching a critical temperature of around 430 K, temperature
that was in good agreement with previously reported values for the thermal reduction of GO by
following other methods [22]. On the other hand, the analysis of the high-resolution spectra of C 1s and
O 1s showed in Figure 1b,d, respectively, offered more detailed information about the chemistry of the
samples. At RT, C 1s showed two main peaks followed by a widening at higher binding energies (BEs).
The spectra can be deconvoluted into four components (Figure 1b, bottom spectra). The first peak,
centered at 284.5 eV, was ascribed to carbon atoms in a C–C/C=C chemical environment, while the three
extra components centered at 286.5 eV, 287.6 eV, and 288.7 eV were ascribed to a diversity of oxidized
functional groups containing C–O, C=O, and O=C–O bonds, respectively [7,22,24]. Furthermore, O 1s
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core level showed a single peak, centered at 532.3 eV, with a slight asymmetry at lower BEs, as it is
shown in Figure 1d (bottom spectra). The main contribution to this peak was related to C-O bonds
in functional groups such as epoxy, ether, or hydroxyl, while the asymmetry was ascribed to C=O
interactions [25]. It is worth mentioning there was a small contribution from oxidized sulfur species, in
agreement with the analysis by XPS of the S 2p region (shown later).
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Figure 1. X-ray photoelectron spectroscopy (XPS) spectra of graphene oxide (GO) obtained at RT and
their evolution upon annealing. (a) C 1s spectra as a function of the temperature of the sample. (b)
High-resolution C 1s obtained at RT and 500 K. (c) O 1s spectra as a function of the temperature of
the sample. (d) High-resolution O 1s obtained at RT and 500 K. In (b,d), the intensities of the spectra
were normalized.



Coatings 2020, 10, 113 4 of 9

On the other hand, a completely different scenario appeared after annealing the samples at 500 K,
a temperature higher than the critical temperature (430 K). C 1s and O 1s core levels are shown in
Figure 1b,d (top spectra), respectively. We notice that the spectra resulting from the samples reduced at
low vacuum in a chemical vapor deposition system were equivalent to the ones annealed under UHV
conditions (data not shown). C 1s showed a main peak followed by a structured tail at higher BEs. The
best fit was obtained by using an asymmetric function for the main peak, C sp2 at 284.5 eV, typical
of graphene-like conductive carbon frameworks, and three extra components that are associated to
divers oxidized groups. These three components were centered at 286.1 eV, 287.5 eV, and 288.8 eV, and
ascribed to C–O, C=O, O=C–O, respectively [7,22,24]. Moreover, an extra component at 291.1 eV was
included in the fitting and ascribed to a π−π* transition [26]. Complementary, the O 1s core level was
fitted by two components at BEs of 531.2 eV and 533.2 eV and assigned to C-O and C=O [25].

Therefore, by comparing XPS spectra before and after annealing, it is clear that GO samples were
strongly reduced. The intensity of the components ascribed to oxidized carbon greatly diminished,
while the components ascribed to C–C/C=C increased. Furthermore, the C/O atomic ratio of 0.76
obtained for GO strongly increased to 5.85 for rGO. These XPS experiments indicated that the loss of
oxygen atoms from C–O were the main route activated by the under vacuum thermal reduction of
graphene oxide.

On the other hand, besides C and O, minor amounts of S and N were detected by XPS in the GO
films. The atomic percentage of these elements obtained by XPS were around 2.5 at. % and 0.8 at. %,
respectively. Figure 2a shows a series of high-resolution XPS spectra of sulfur region at different
annealing temperatures. S 2p spectra acquired at RT (Figure 2a, top spectra) showed a peak with a
S 2p3/2 component at 168.3 eV, indicating the presence of oxidized sulfur species (SOx) in GO [27].
The absence of signal from any metal in the survey spectra point to organic sulfur species, in good
agreement with Eigler et al. [28], who investigated the presence of organic sulfates in GO. This species
readily left the sample by annealing, and at 500 K the sulfur signal almost disappeared, although a
small peak was detected at lower BE (163.6 eV, lower spectra), compatible with C–S species [27]. This
fact was confirmed by analyzing a sample annealed in a CVD furnace at 800 K, where only this small S
peak at 163.6 eV appeared, indicating that only a very small percentage of the original oxidized sulfur
was reduced, while most of it was removed from the sample by the annealing.
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The last element detected in GO films was N. Figure 2b shows the evolution of N 1s XPS spectra
as a function of the temperature. At RT (Figure 2b, top spectra), a single symmetric peak appeared at
401.5 eV, an energy ascribed to positively charged nitrogen [29]. As the temperature increased, the
peak widened to lower BEs (399.9 eV), and when approaching 500 K became an asymmetric peak
with its highest intensity at 398.3 eV, declining towards higher BE. This shape denoted nitrogen in
different chemical environments, commonly assigned in the literature to pyridinic (398.3 eV), pyrrolic
(399.9 eV), and quaternary (401.5 eV) nitrogen, in increasing order of BEs, as it is marked by lines in
Figure 2b [26,30]. The low decrease of the area of the N peak with the temperature indicated that most
of the nitrogen remained in the rGO films, integrated in the carbon structure, unlike sulfur, which was
almost completely removed upon heating.

Further characterization was done by Raman spectroscopy, a well-established technique for
characterizing graphene samples. Figure 3 shows the spectra obtained at three different points of the
sample, together with the optical images of the GO (Figure 3a) and rGO (Figure 3b) films. The red, blue,
and black spectra were acquired at the respective points indicated in the optical images. In the case of
GO, Raman spectra showed two main peaks ascribed to the G-band at 1600 cm−1 (FWHM = 78 cm−1)
and D-band at 1352 cm−1 (FWHM = 103 cm−1), values which were in good agreement with previous
reported values for GO [31,32]. The G-band was related with the E2g phonon of graphene, while the
D-band was related to their defects. Moreover, and extra feature appeared at wave numbers ranging
from 2500 cm−1 to 3250 cm−1. This feature presented a modulated bump shape, as had been previously
observed [31] and ascribed to the 2D-band. After the samples were heated, Raman spectra of rGO were
quite similar to them. The G-band appeared at 1595 cm−1 (FWHM = 100 cm−1), while the D-band was
centered at 1350 cm−1 (FWHM = 135 cm−1). The most significant difference observed by Raman was in
the background of the spectra. In the case of rGO (Figure 3b), the Raman spectra did not depend on
the measuring position, while in the case of GO (Figure 3a), the background strongly depended on the
acquiring position. Accordingly, the optical image of GO showed three different regions characterized
by its green, yellow, and red colors (see photo of Figure 3a), and consequently Raman spectra were
acquired at these three different positions. This inhomogeneity through the samples disappeared by
the annealing; both the optical image as well as the Raman spectra (Figure 3b) obtained at different
positions indicated a much more homogeneous sample.
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Figure 3. As measured Raman spectra obtained at different points of the GO (a) and rGO (b) films. The
insets show the optical images of the samples, while the red, blue, and black dots indicate the position
in which the respective Raman spectra were acquired.

Complementary to the XPS and Raman characterization, the topography of the samples was
characterized by SEM and AFM. Figure 4a–d show representative SEM images of GO and rGO
films, respectively.
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Figure 4. SEM images of GO (a,b) and reduced graphene oxide (rGO) (c,d) films.

SEM images show that GO as well as rGO films completely covered the SiO2 templates. Moreover,
several large wrinkles and bubbles were detected all around the sample, as in previous works of GO
films prepared by other methods [23,33,34]. Furthermore, the topology of the samples did not change
upon heating, and thus the main change produced in the samples was their chemical reduction, as
indicated by XPS.

Besides SEM characterization, AFM is a better technique to characterize the topography of the
samples at a lower scale. Figure 5 shows two representative AFM images obtained for GO (Figure 5a)
and rGO (Figure 5b) films. As in the case of SEM, AFM indicated that both samples completely covered
the SiO2 template. Both GO and rGO accommodated on the surface by forming wrinkles and bubbles.
The most significant change detected by AFM upon heating was a reduction of the roughness. As
an example, the height profiles showed in Figure 5c clearly indicated that the roughness of rGO was
significantly lower than the roughness of GO, as it was recently reported for GO and rGO obtained by
other methods [35]. In this figure, the black (GO) and red (rGO) height profiles were obtained from the
lines plotted in Figure 5a,b, respectively. Furthermore, the root mean square average (RMS) of the
roughness obtained through full AFM images is a better parameter for characterizing the roughness of
the surfaces. In the present case, the RMS of the roughness obtained from several AFM images of GO
films was 46 nm, while in the case of rGO it diminished to 38 nm. As it was recently reported, the
diminution of the roughness upon reduction of GO is ascribed to the elimination of the oxygenated
functional groups of GO [35] and adsorbed water, in good agreement with the XPS results discussed in
Figure 1.
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4. Conclusions

In summary, GO deposited by drop coating completely covered the surface of SiO2 templates and
formed a film. Besides carbon and oxygen, small quantities of sulfur and nitrogen were detected by
XPS. Upon heating at temperatures higher than 430 K, GO drastically reduced to rGO. XPS spectra of
rGO showed that upon heating, mainly functional groups related to C–O bonds such as epoxy, alcohol,
or ether leaved the sample. Moreover, unlike chemical procedures for reducing GO, in the case of our
method almost all the sulfur atoms desorbed, while most of the nitrogen atoms remained in the sample
and changed their chemical environment. Furthermore, the annealing also increased the homogeneity
of the films. Thus, rGO films were more homogeneous and less rough than GO films. The results
showed in this work indicated that the thermal treatment under vacuum conditions is a quite good
method for reducing graphene oxide without using other reducing chemicals.
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