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Abstract: Chitosan/peptide films were prepared by incorporating peptides (0.4%, w/v) from soy,
corn and caseins into chitosan films. The presence of peptides significantly affected the physical,
antibacterial and antioxidative properties of chitosan films. Among these films, those containing corn
peptide showed the best water vapor barrier properties, and the tensile strength and elongation at
break increased to 24.80 Mpa and 23.94%, respectively. Characterization of surface hydrophobicity
and thermal stability suggested the strongest intermolecular interactions between corn peptides and
chitosan. Moreover, films containing casein peptides showed the highest antibacterial activity and
radical scavenging activity. The DPPH scavenging rate of films containing casein peptides reached
46.11%, and ABTS scavenging rate reached 66.79%. These results indicate the chitosan/peptide films
may be promising food packaging materials.
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1. Introduction

The plastic packaging materials, as a result of their persistent residues in the environment
and unexpected interaction with food (heavy metals residues from packaging, e.g., cadmium or
mercury), have become a threat to both environment and human health [1]. In recent years, the
food packaging industry has been more inclined to develop biodegradable or edible films for food
safety and environmental protection. Polysaccharides, such as cellulose, starch, chitosan, pullulan
and alginate, are a class of suitable biopolymers in edible coatings and films formulation. Despite
the hydrophilic nature of polysaccharides coatings and films, they are nontoxic, colorless, and have
selective permeability for oxygen, and thus could be used in fruits, vegetables, seafood, and meat
products [2,3].

Chitosan-based films, among other polysaccharides films, have been widely explored due to
their natural antimicrobial characteristics, great mechanical and gas barrier properties [4–6]. Through
chemical modification and/or loaded with nanoparticles, chitosan-based films were able to act as
excellent wound dressings, multifunctional textiles, as well as antibacterial fabrics. Hence, there has
been increasingly research interest in applying them in food, biomedical and chemical industry [7–11].
However, its extensive application in food industry is still limited due to the poor water barrier
property and lack of antioxidant ability [12]. Many studies have prepared chitosan films by blending
into active ingredients, such as polyphenols, cinnamaldehyde, essential oils, and natural extracts from
plants [13–18] to promote its free radical scavenging activity. These natural substances have been
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proved effective and can act as alternative antioxidants in the films; however, it is still necessary to
discover highly active compounds to prevent oxidation damage and improve food quality.

Bioactive peptides, due to its ability to reduce the formation of oxidative products, can be explored
as natural new antioxidant food ingredients [19]. Some peptides have also been incorporated into edible
films to improve its physiochemical properties. Giménez et al. incorporated gelation hydrolysates into
squid skin gelation films, which gave rise to the antioxidant properties of films, but led to detriment of
mechanical properties and water vapor barrier properties [20]. Zhang et al. discovered that by mixing
rapeseed protein hydrolysate into chitosan films, the mechanical and water vapor barrier properties
were enhanced, along with the antimicrobial properties improvement when the added hydrolysate
possessed the highest degree of hydrolysis (12%) [21]. Furthermore, some studies grafted peptide onto
chitosan, and the resulting films showed strong antioxidant activity, making them excellent for use in
wound healing materials [22,23]. However, the number of studies about applying peptide to edible
films or coatings is still limited, and comparisons of the effects of different peptides on film properties
are also deficient.

Soy and corn are the leading corps cultivated in China; therefore, peptides from soy and corn
are both abundant and cost-effective [24]. As major protein fractions in milk protein, caseins are also
excellent precursors of antioxidant peptides. In this study, peptides from soy, corn and caseins were
individually incorporated into chitosan films. The aim was to evaluate the effects of different peptides
on physical, antioxidant and antimicrobial properties of the films, as well as to explore their potentiality
to be used as active ingredient in food packaging.

2. Materials and Methods

2.1. Materials and Chemicals

Chitosan (90% deacetylation, molecular weight = 200–300 KDa), casein peptides, strains of
Escherichia coli (CMCC 44102) and Bacillus subtilis (CMCC 63501) were purchased from Shanghai
Yuanye biotechnology Co., Ltd. (Shanghai, China). The molecular weights of peptides were measured
according to our previous study [25], and the molecular mass distributions of peptides are provided in
Figure S1. The molecular mass of main fractions for three peptides was in the range of 5.0–0.6 KDa.
Glycerol was purchased from Macklin Biochemical Co., Ltd. (Shanghai, China). Soy and corn peptides
were purchased from Shandong Tianmei biotechnology Co., Ltd. (Shandong, China).

2.2. Preparation of Film-Forming Solution

The film-forming solution was prepared following the procedure described by Zhang et al. with
slight modifications [21]. Chitosan (1.6 g) and glycerol (0.4 g) was dispersed in 80 mL acetic acid
(1%, w/v) by stirring for at least 12 h (4 ◦C). The soy/corn/casein peptides (0.4 g) were dissolved in
20 mL distilled water by stirring for at least 2 h (4 ◦C). Then the peptide solution was added into the
chitosan solution and stirred for an additional 1 h. The film-forming solution (2% chitosan, w/v) that
did not contain peptides was used as the control.

2.3. Preparation of Films

The films were prepared according to our previously published method [26]. An amount of
60 g of each solution described in Section 2.2 was casted on leveled polytetrafluoroethylene plates
(42 × 42 cm2) and then dried at 30 ◦C and 43% relative humidity using a ventilated chamber (KBF720,
Binder, Germany) for 18 h.
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2.4. Characterization of Films

2.4.1. Measurement of Color, Thickness, Light Transmission, Swelling Ability, Water Vapor
Permeability and Mechanical Properties

The color parameters, i.e., L (lightness), a* (redness and greenness) and b* (yellowness and blueness)
of films were measured using a Hunter-Lab colorimeter (Reston, VA, USA). The whiteness index and
∆E were calculated according to a previous study [27]. The thickness of the films was measured with
a micrometer with the accuracy of 1 µm. The light transmission of films was measured according
to Rubilar’s method using a microplate spectrophotometer (Spark 10M, Tecan, Switzerland) [27].
The water vapor permeability (WVP) of films was measured by using a ASTM E96/E96M gravimetric
method [28]. Films were placed in well-sealed permeation cells containing silica gel and kept in
ventilated chamber at 25 ◦C and 75%. Tensile strength (TS) and elongation at break (EB) of the films
were measured using a TA-XT2i texture analyzer (Stable Microsystems, London, UK). The initial
distance of separation and cross-head speed were fixed at 50 mm and 1 mm/s, respectively [29].

2.4.2. Contact Angle

Contact angle of film was measured using a goniometer (OCA15EC, DataPhysics Instruments,
Stuttgart, Germany). Deionized water (10 µL) was placed on the films and the image was recorded
after 5 s. The contact angle was defined as the angle between baseline and the tangent to the drop
boundary. Five measurements were performed on each film.

2.4.3. Acquiring Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometry (XRD),
Differential Scanning Calorimetry (DSC) and Thermogravimetric (TG) Curves of Films

Films were dried in a desiccator with silica gel for 7 days before FTIR analysis. The dried films
were then cut into 1.5 cm × 1.5 cm and scanned using FTIR-7600 spectroscope (Lambda, Miami, FL,
USA) with a horizontal ATR. The spectra were recorded in the wavenumber range of 4000–400 cm−1 at
4 cm−1 resolution. X-ray diffraction patterns were performed by Smartlab-3 kw X-ray diffractometer
(Rigaku, Tokyo, Japan) with Cu Kα radiation at 40 kV and 30 mA at a scan rate 10◦ min−1 and the
patterns were recorded in the range of 2θ from 5◦ to 55◦. The DSC tests were performed using a thermal
analyzer (TA Instruments, New Castle, DE, USA). Film (3–6 mg) was sealed in aluminum pan and
heated at a rate 10 ◦C·min−1 from 25 to 250 ◦C under N2 atmosphere. Thermal gravimetric analysis
was performed by using Q500 thermal analyzer (TA Instruments, New Castle, DE, USA). Film samples
(5 mg) were heated from 35 to 800 ◦C at a heating rate of 10 ◦C·min−1 under N2 atmosphere.

2.4.4. Observation of Surface Morphology

The surface morphology of the films was acquired using a scanning electron microscope (SEM)
system (MERLIN SEM, ZEISS, Oberkochen, Germany). The film surfaces exposed to air during film
forming process were sputter coated with gold-palladium before acquiring the SEM micrographs.
To observe the microstructure of the cross-section, the films were fractured by immersing in liquid
nitrogen and scanned using the same SEM. The voltage used was 5 kV, and the magnifications for
surface and cross-section morphology were 1000× and 1200×, respectively.

2.5. Antibacterial and Antioxidant Activities of Films

Antibacterial activity tests of films were carried out according to our previous study [26].
Luria-Bertani medium (25 mL) was poured into petri dishes, which had been previously seeded with
0.1 mL of inoculum containing about 106 CFU/mL cells of indicator bacterium (Escherichia coli or Bacillus
subtilis). The films (0.6 cm diameter) were placed on the plates and then incubated at 37 ◦C for 24 h.
The diameter of inhibitory zone surrounding film disc as well as the contact area of the film with agar
surface were measured and recorded.
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The antioxidant capacity of film was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and
diammonium 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonate (ABTS) radical scavenging assay
according to our previous study [26]. Briefly, film was mixed with DPPH (0.10 mM) solution
or ABTS (7 mM) to obtain a final concentration of 0.1 mg/mL. After incubation, the absorbance of
200 µL sample was measured using spectrophotometer and scavenging rate was calculated.

2.6. Statistical Analysis

All the tests were performed in triplicate and the data obtained were analyzed by one-way analysis
of variance using Statistical Product and Service Solutions (SPSS) for Windows version 17.0. Values are
expressed as means ± standard deviation. Duncan’s multiple range test was used to identify significant
differences (p < 0.05) between any two mean values.

3. Results and Discussion

3.1. Physical Properties of Films

3.1.1. Color, Thickness, Water Vapor Permeability, Mechanical Properties and Light Transmission

As shown in Figure 1, the addition of peptides significantly decreased the values of lightness
(L) and the white index (WI). This decrease can be attributed to the colored substances present in
peptides. On the other hand, Maillard reaction between chitosan and peptides might occur during the
film-forming process [30], which could also result in the brown color of films. The ∆E value indicates
the total color difference of the standard color plate. The ∆E value of the peptides films was much
higher than control, indicated that the color of peptides films was relatively deep and less opaque than
control. Furthermore, the type of peptides significantly affected the color of films, the color of film
incorporated with corn peptides was much deeper than others.
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Figure 1. Color parameters (L, a*, b*) of chitosan (control) and peptide−containing films. CSP: films
from chitosan and soy protein peptides; CCP: films from chitosan and corn protein peptides; CCAP:
films from chitosan and casein peptides. Results having different letters (a–c) in same pattern are
significantly different (p < 0.05).

It is well known that the thickness has an important influence on the physical properties of films,
such as transparency, barrier properties and mechanical properties. As shown in Table 1, the thickness
of films was neither affected by the addition of peptides nor type of peptides. In fact, the thickness
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of films is correlated with the non-solvent total mass in the film forming solution. Therefore, no
significant (p < 0.05) difference in thickness observed could be attributed to the same solid content
in the film-forming solution [31]. Previous research has also proved that the thickness of the film is
related to the concentration of constituents in the film-forming solution [32].

Table 1. Thickness, water vapor permeability (WVP), tensile strength (TS) and elongation at break (EB)
of chitosan films and films containing peptides.

Sample Thickness (µm) WVP g/(m·s·Pa) × 10−8 TS (MPa) EB (%)

Control 19.8 ± 5.8 a 1.85 ± 0.08 c 9.81 ± 0.17 b 16.02 ± 1.31 b

CSP 26.7 ± 4.7 a 2.96 ± 0.14 d 6.13 ± 0.51 a 14.54 ± 0.97 ab

CCP 28.6 ± 3.9 a 0.83 ± 0.07 a 24.80 ± 1.92 d 23.94 ± 1.07 c

CCAP 24.4 ± 3.4 a 1.08 ± 0.16 b 20.32 ± 0.64 c 13.40 ± 1.48 a

CSP: films from chitosan and soy protein peptides; CCP: films from chitosan and corn protein peptides; CCAP: films
from chitosan and casein peptides. Results having different letters (a–d) within a column are significantly different
(p < 0.05).

As shown in Table 1, incorporation of peptides significantly (p < 0.05) affected the water vapor
barrier ability of films. As compared with the control, the addition of corn and casein peptides was
able to decrease the WVP values of films. The improvement of water vapor barrier ability can be
attributed to the decrease in the concentration of chitosan. It is well known that chitosan is a hydrophilic
polymer and has poor water resistance [33]. When the chitosan concentration was lower, the moisture
permeability of the composite film was lower. Similar research results have been reported indicting that
the water vapor transmission of the composite film increases with the increase of chitosan ratio [21].
On the other hand, with the addition of the corn or casein peptides, the peptides and chitosan might be
fully integrated in the form of non-covalent or covalent bonds and filled in the respective network
structure, making the composite film structure closer. Previous studies have proved that water vapor
barrier ability of film could be improved by both enhancement of network [34] and reinforcement of
structure [35]. Furthermore, the films with the addition of corn peptides exhibited the lowest value of
WVP. This is probably due to the high level of non-polar amino acids in corn peptides, which led to
the corn protein-based films having high water barrier performance [36,37]. However, the addition
of soy peptides led to the increase in WVP. This result indicated that incorporation of soy peptides
could disrupt the intermolecular interactions of film, which might result in the less compact structure.
Previous study has also proved that weakened intermolecular interactions and loose structure in film
lead to a decrease in vapor barrier ability [26].

As shown in Table 1, the addition of peptides significantly (p < 0.05) affected the mechanical
properties of films. As compared with control, the addition of corn or casein peptides significantly
(p < 0.05) increased the tensile strength of films. This is probably due to the formation of chemical
bonds between the hydroxyl group in chitosan and amino group or carboxyl group in peptides.
Previous study has also shown that the chemical bonds formed between proteins and polysaccharides
lead to an increase in the tensile strength of the composite films [38]. However, the addition of soy
peptides decreases the tensile strength of films. One of the explanations is that the existence of soy
peptides disrupted the intermolecular force in chitosan, resulting in the decrease in TS of the composite
films. Previous study has also shown that the addition of protein hydrolysates can break down the
covalent bond and hydrogen bond in chitosan films, thus decreasing the TS of the composite films [21].
Furthermore, the addition of corn peptides significantly (p < 0.05) increased the EB of films compared to
control. This result is inconsistent with previous study suggesting that the increase in tensile strength
usually leads to a decrease in flexibility of the films [26]. The increase in flexibility could be attributed
to the high level of non-polar amino acids in corn peptides, which might lead to the increasing of
distance between biopolymer chains [39]. The improvement of flexibility of chitosan films by the
addition of protein hydrolysate has also been proved by previous study [21].
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As shown in Figure 2, the addition of peptides decreased the light transmission of chitosan films
in the range of 380–1000 nm. This result indicated that peptides might affect the light scattering and
transparency of films. However, the increase of light transmission in the 300–380 nm range of soy
peptide films was observed. Usually, the addition of peptides could decrease the penetration of UV
light due to the fact that aromatic amino acids (e.g., tryptophan, tyrosine) in peptides absorb UV light
below 380 nm [40]. The opposite result for CSP indicated that absorption of aromatic amino acids
might be disrupted due to the incompatibility between the chitosan and soy peptides. On the other
hand, the opposite result could also be attributed to the fact that light transmission of chitosan-based
films in the 300–380 nm range is irregular, which was also found by Liu et al. in their report [41].
Furthermore, the light transmission of the films was also affected by the type of peptides used and that
the lowest light transmission was observed in film loaded with corn peptides. This is probably due to
the fact that ability of corn peptides to scatter and absorb light might be better than others or films
loaded with corn peptides might possessed more compact structure. Previous study has shown that
the films that possess a more compact structure have less transparent ability [42,43].
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3.1.2. Surface Hydrophobicity

Water contact angle is widely used as an indicator of the wettability of a film surface and moisture
transport through it. As shown in Figure 3, the contact angle of the control films, CSP, CCP and CCAP
were 92.7◦ ± 0.23◦, 86.8◦ ± 0.97◦, 95.0◦ ± 0.37◦ and 94.2◦ ± 0.24◦, respectively. The contact angle of were
chitosan films was affected by the addition of peptides. The films containing corn peptides exhibited
the highest contact angle among other films. This can be attributed to the higher hydrophobic nature,
due to the high level of non-polar amino acids in corn peptides [30]. Furthermore, this highest contact
angle also further explains why the films loaded with corn peptides showed the lowest water vapor
permeability [26,44].
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3.1.3. Fourier Transform Infrared Spectroscopy (FTIR)

Fourier transform infrared spectroscopy can be used to evaluate the interactions between chitosan
and peptides molecules and changes in the functional groups. In chitosan films (as shown in Figure 4),
the broad absorption bands at 3230, 2920 and 1027 cm−1 represented the stretching vibration of hydrogen
bonding groups, C–H of methyl and the C–O–C groups (glycosidic linkage) [21,30], respectively. For
the films with the peptides, the broad bands of amide-A associated with N–H and O–H stretching
vibrations shifted gradually to higher wavenumber, suggesting that the hydrogen bonds in chitosan
films might be broken down by the addition of peptides. This is probably due to the formation of
electrostatic interaction between the cationic groups of chitosan and the anionic groups of peptides [35].
Furthermore, the appearance of a new peak at 1250 cm−1 was observed in films with corn peptides,
which could be attributed to the occurrence of Maillard reaction between OH group (chitosan) and
amino groups (corn peptides) [45]. Therefore, electrostatic interaction and conjugation between
chitosan and corn peptides might contribute to the strong interactions among components, which
might lead to the formation of more compact structure. This result also helps to explain why films
with corn peptides exhibited better vapor barrier ability, tensile strength and less transparent ability.
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3.1.4. X-ray Diffraction (XRD) Patterns

As shown in Figure 5, chitosan films exhibited two obvious diffraction peaks at 11◦ and
22◦. Obviously, the diffraction peak of film at 22◦ corresponding to the regular crystal lattice of
chitosan [30] became flatter after incorporation of peptides, indicating the better compatibility among
components [46]. The peak at 11◦ of 2θ was assigned to the hydrated crystals due to the integration of
water molecules in the crystal lattice. Furthermore, the type of peptides also affected the diffraction
peak of film and the lowest intensity of peak was observed in film containing corn peptides. This is
probably due to the formation of new intermolecular interactions between chitosan and corn peptides,
which destroyed the original crystalline domains of chitosan [30]. This result was consistent with the
conclusion from FTIR analysis and in agreement with the improvement in physical properties of film
containing corn peptides.
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3.1.5. Thermal Properties

As shown in Figure 6, three steps of transformations corresponding to the main stages of mass
loss were observed from DTG curves, which is similar to the reported chitosan-based edible films [47].
The first step observed from 30 to 130 ◦C was attributed to the loss of small molecular substances
including water and acetic acid, which is similar with previous study [13]. In this stage, the mass loss
is lower in the films containing corn or casein peptides as compared to the control films. However,
for the soy peptides films, the weight loss is higher than control. This result indicated that corn or
casein peptide-containing films possess higher water or acetic acid and the soy peptide-containing
films present lower water or acetic acid content. Combined with DSC (as shown in Figure 7), the
peak of the endothermic value of films containing corn or casein peptides shifted to the direction of
high temperature, while films containing soy peptides shifted in the direction of low temperature as
compared to the control films. A second mass loss was observed from 130 to 220 ◦C, which is related
to the evaporation of entrapped water through hydrogen bonds or glycerol [48,49]. In this stage, the
mass loss of corn peptide-containing films is not as obvious as others, which indicated a change in
the structure of films [47]. The third step was observed from 220 to 400 ◦C, which corresponds to the
degradation or the decomposition of chitosan chains [50]. In this stage, temperature of maximum
degradation (Tmax) could be obtained from curve. The Tmax of CCP (307 ◦C) were higher than others,
which indicated better thermal resistance in corn peptide-containing films due to the generation of new
interactions between chitosan and peptides. Combined with DSC (as shown in Figure 7), exothermic
peaks at 250 to 300 ◦C were observed in CSP, CCAP and control films, which can be attributed to the
decomposition of chitosan chains [41]. However, no exothermic peak was observed in CCP. This result
further confirmed the CCP possessed better thermal stability. Moreover, the residual mass for CCP and
CCAP at 800 ◦C was higher than others, indicating a more thermally stable matrix in CCP and CCAP.
Previous study also attributed the higher residual mass of chitosan-based films into more thermally
stable matrix [47].
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3.1.6. Microstructure of Films

As shown in Figure 8, the surface of chitosan films appeared to be smoother and more uniform
than the films containing peptides. The films seemed to be more fragmented with the addition of soy
peptides, which suggested that the structural rearrangement of molecules occurred in the film matrix
in the presence of soy peptides. This result further explains why the film containing soy peptides
showed the lowest water barrier properties, tensile strength and thermal stability. The surface of
films with the addition of corn and casein peptides appeared to be rougher than that of the control,
which further explains why the film containing corn and casein peptides possessed the higher surface
hydrophobicity. Furthermore, the films with the addition of corn and casein peptides exhibited a
more compact cross-section than the control. This is probably due to the strong interaction and better
compatibility between chitosan and peptides. The more compacted structure also helps to understand
why films with the addition of corn and casein peptides showed an improvement in the water barrier
properties, tensile strength and thermal stability.

Coatings 2020, 10, x FOR PEER REVIEW 10 of 15 

 

 
Figure 7. DSC curves of chitosan (control) and peptide−containing films. CSP: films from chitosan and 
soy protein peptides; CCP: films from chitosan and corn protein peptides; CCAP: films from chitosan 
and casein peptides. 

3.1.6. Microstructure of Films 

As shown in Figure 8, the surface of chitosan films appeared to be smoother and more uniform 
than the films containing peptides. The films seemed to be more fragmented with the addition of soy 
peptides, which suggested that the structural rearrangement of molecules occurred in the film matrix 
in the presence of soy peptides. This result further explains why the film containing soy peptides 
showed the lowest water barrier properties, tensile strength and thermal stability. The surface of films 
with the addition of corn and casein peptides appeared to be rougher than that of the control, which 
further explains why the film containing corn and casein peptides possessed the higher surface 
hydrophobicity. Furthermore, the films with the addition of corn and casein peptides exhibited a 
more compact cross-section than the control. This is probably due to the strong interaction and better 
compatibility between chitosan and peptides. The more compacted structure also helps to 
understand why films with the addition of corn and casein peptides showed an improvement in the 
water barrier properties, tensile strength and thermal stability. 

 
Figure 8. SEM images of the surface and cross-section of chitosan (control) and peptide−containing 
films. CSP: films from chitosan and soy protein peptides; CCP: films from chitosan and corn protein 
peptides; CCAP: films from chitosan and casein peptides. 

3.2. Antibacterial and Antioxidant Activity 

Figure 8. SEM images of the surface and cross-section of chitosan (control) and peptide−containing
films. CSP: films from chitosan and soy protein peptides; CCP: films from chitosan and corn protein
peptides; CCAP: films from chitosan and casein peptides.



Coatings 2020, 10, 1193 11 of 16

3.2. Antibacterial and Antioxidant Activity

As shown in Figure 9, all films exhibited antibacterial activity, due to the presence of chitosan.
It is well known that chitosan is a kind of natural polymer that is abundant in the shell of shrimp
and crab [51]. Chitosan not only has good film-forming properties [52], but also exhibits excellent
antibacterial properties due to the many reactive amino side groups in chitosan structure, which could
lead to the leakage of the intracellular constituents of the microorganisms [53]. Furthermore, the
antibacterial activity of films was not significantly improved with the addition of soy or corn peptides.
However, the addition of casein peptides enhanced the antibacterial activity of films. The diameter
of inhabitation zone of CCAP for Escherichia coli and Bacillus subtilis increased by 28.9% and 21.6%,
respectively. This is probably due to the fact that caseins are known to be an important source of
antimicrobial peptides [54]. The casecidins identified from hydrolysates of caseins exhibited activity
against bacteria [55]. Hayes et al. identified three peptides from bovine casein exerting antibacterial
activity against pathogenic strains of Cronobacter sakazakii [56]. Two peptides, corresponding to f (21–29)
and f (30–37), were also obtained from bovine caseins and exhibited strong activity against Enterobacter
sakazakii [57]. Another cationic peptide derived from the casein has shown a broad spectrum of activity
against Gram-positive and -negative bacteria [58]. Therefore, the addition of casein peptides makes
chitosan-based films as a potential active packaging film to inhibit the growth of microorganism
in food.
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The antioxidant capacity of protein-derived peptides has been reported in a growing number of
studies [19]. Proteins from animals, plants and microorganisms have been considered as the source
of antioxidant peptides, which not only strengthen treatment of oxidation-related diseases but also
delay the oxidation of food [59]. Although some antioxidant peptides, such as soy peptides, corn
peptides and casein peptides have been commercialized. However, comparative studies concerning
the antioxidant activity of active packaging films based on those peptides have been rarely conducted.
As shown in Figure 10, the incorporation of soy, corn and casein peptides could significantly improve
the scavenging capacity of chitosan films due to the antioxidant activity of peptides. The DPPH
scavenging rates of CSP, CCP and CCAP were 3.7, 3.3 and 8.9 times higher than that of chitosan films.
The ABTS scavenging rates of CSP, CCP and CCAP were 3.4, 3.3 and 3.6 times higher than that of
chitosan films. Previous studies have proved that soy, corn and caseins are good sources of antioxidant
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peptides [60–62]. Furthermore, the antioxidant activity of films was different depending on the type of
peptides used. CCAP exhibited the highest radical scavenging capacity, with DPPH scavenging rate
reaching 46.11% and ABTS scavenging rate reaching 66.79%, which might make it a potential active
packaging film for preventing oxidation of food.
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4. Conclusions

Peptides (0.4%, w/v) from soy, corn and caseins were incorporated into chitosan films to form
chitosan/peptide films. It was found that the type of peptides affected the physical, structural,
antibacterial and antioxidant properties of peptide-containing films. The formation of chemical bonds
between corn peptides and chitosan enhanced the inter-molecular interaction among the components,
leading to the improvement of water barrier properties, mechanical properties and thermal stability.
The addition of casein peptides exhibited the highest radical scavenging activity among all films,
with DPPH scavenging rate reaching 46.11% and ABTS scavenging rate reaching 66.79%. The film
containing casein peptides also exhibited inhibitory effect against Escherichia coli and Bacillussubtilis.
Therefore, the chitosan-based films containing corn or casein peptides could be applied as promising
materials for food packaging.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6412/10/12/1193/s1,
Figure S1: Molecular mass distributions of peptides.
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