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Abstract: Polypyrrole (PPy) is a promising conducting polymer in bone regeneration; however, due to
the biological inertia of the PPy surface, it has poor cell affinity and bioactivity. Based on the excellent
adhesion capacity, biocompatibility, and bioactivity of polydopamine (PDA), the PDA is used as a
functional coating in tissue repair and regeneration. Herein, we used a two-step method to construct
a functional conductive coating of polypyrrole/polydopamine (PPy/PDA) nanocomposite for bone
regeneration. PPy nanowires (NWs) are used as the morphologic support layer, and a layer of highly
bioactive PDA is introduced on the surface of PPy NWs by solution oxidation. By controlling the
depositing time of PDA within 5 h, the damage of nano morphology and conductivity of the PPy
NWs caused by the coverage of PDA deposition layer can be effectively avoided, and the thin PDA
layer also significantly improve the hydrophilicity, adhesion, and biological activity of PPy NWs
coating. The PPy/PDA NWs coating performs better biocombaitibility and bioactivity than pure PPy
NWs and PDA, and has benefits for the adhesion, proliferation, and osteogenic differentiation of
MC3T3-E1 cells cultured on the surface. In addition, PPy/PDA NWs can significantly promote the
osteogenesis of MC3T3-E1 in combination with micro galvanostatic electrical stimulation (ES).

Keywords: PPy/PDA nanocomposite; nanowires; polydopamine; electrical stimulation

1. Introduction

Conducting polymers (CPs) especially polypyrrole (PPy) with excellent conductivity, long-term
stability and biocompatibility have been widely applied in many fields [1–3]. In particular, the conductivity
of CPs enables their use as sensors [4], controlled drug release [5,6], and functional tissue repair
materials [7,8]. Moreover, CPs with nano morphology, which mimics the natural morphology of the
extracellular matrix (ECM), can be easily fabricated via electrochemical and chemical polymerization
on various substrates, and makes it an outstanding coating used in the biomedical field [9,10]. Actually,
many studies confirmed that the PPy applied with electrical stimulation (ES) could promote the
expression of proliferation and differentiation for tissue regeneration such as bone and nerves [11–13].
However, PPy does not display functional groups to help it adhere to surfaces [14]; therefore, generating
composite materials with PPy and other adhesive polymers can effectively enhance the functionality of
PPy-containing coatings.

Polydopamine (PDA) could be synthesized by the self-oxidative polymerization of dopamine
(DA), which is the most abundant catecholamine neurotransmitter in the brain. PDA has excellent
biocompatibility and biological activity [15]. The rich functional groups, especially the catechol
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compounds, offers PDA astonishing adhesive ability on a variety of materials [16,17]. Many studies
focusing on the use of PDA as a surface functional modification material to improve the biocompatibility
and surface modifiability of other materials were reported [18]. However, the PDA has poor conductivity
without electrical signal response. Moreover, the inescapable fact is that the oxidative polymerization
of dopamine (DA) is uncontrollable, which means it is very difficult to control the morphology [19,20],
and the condition for preparing the PDA coating with nano morphology is quite harsh.

At present, many researchers are attentive to the preparation of PPy/PDA composites, which can
solve the drawbacks of the above-mentioned materials. This kind of composites can be fabricated via
one-pot or two-step method to avoid the disadvantages of pure PPy and PDA [21–24]. By controlling
reaction conditions, the pyrrole (PY) and DA composite material has both good morphology,
conductivity, and bioactivity. Zhao et al. have demonstrated that the copolymer of DA-PPy performs
improved water dispersibility, improved electrical conductivity and film adhesion than pure PPy [17,25].
Electrochemical method has more advantages than chemical polymerization in the preparation of
nanostructured conducting coatings with better controllability and uniformity of thickness and
morphology. By precise regulating the concentration of PY and DA, PDA/PPy composite coatings
with nanowires and vesicular structure morphology with enhanced conductivity, adhesion and cell
affinity have been successfully prepared via a one-pot electrochemical polymerization [26–28]. In the
one-pot reaction system of PY and DA, the concentration of PY and DA both have obvious effects
on the morphology and conductivity of the copolymer. The concentration of dopamine and the
polymerization potential need to be precisely controlled in order to obtain the copolymer with nano
morphology. Compared with the co-polymerization of PPy/PDA, the reaction condition for preparing
PPy/PDA composite coatings by a two-step method is relatively simple, as for the reaction condition
of preparation pure PPy coating with various nano structure and size morphology can be controlled
more easily and precisely by electrochemical deposition [29,30]. However, in order to better control the
morphology and conductivity of the products, the most reported study on preparation of PPy/PDA
composites via a two-step method is always setting fabrication of PPy layer as the final step to ensure
the excellent conductivity [23,31]. Taking the PDA as the outer layer is more beneficial to improve the
biocompatibility of PPy/PDA composites, and the key point is to precisely control the thickness of
PDA deposition. The best result is that the deposition of PDA on the surface of PPy NWs will not
significantly change the nano morphology of the first layer, nor reduce the conductivity.

In this study, the PDA modified PPy/PDA nanowire (NW) coating is synthesized by a two-step
reaction (Figure 1). The first layer is preparation PPy NWs coating by electrochemical polymerization
as the template, and the PDA layer is following deposited on each PPy NWs surface by solution
oxidation. By regulating the deposition time of PDA, the influence of different PDA depositing
time on the conductivity of PPY/PDA NWs coating is studied, and the optimal PDA deposition
time is determined. The morphology, chemical structure, hydrophilicity, adhesiveness are further
characterized. The cell affinity and bioactivity of the PPy/PDA NWs coating on MC3T3-E1 cell are
further evaluated. The PPy/PDA NWs coating provides enhanced hydrophilicity and adhesiveness.
The introduced PDA layer indeed improves the cell adhesion, proliferation, and differentiation of
MC3T3-E1. Combined with ES, the PPy/PDA NWs coating shows better osteogenic activity to accelerate
maturation of MC3T3-E1 cells.
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Figure 1. Illustration of preparation of PPy/PDA NWs coating and the synergistic effect with 
electrical stimulation on MC3T3-E1. 

2. Materials and Methods 
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Pyrrole (PY, 98%) and sodium p-toluenesulfonate were purchased from J & K Chemical Ltd. 
(Beijing, China) Dopamine hydrochloride (98%), Vitamin C and β-glycerophosphate were bought 
from Sigma-Aldrich (Shanghai, China). Tris(dydroxymethyl) aminomethane (Tris-HCl, 99%) was 
purchased from Sangon Biotech Co. Ltd. (Shanghai, China). Other used inorganic salt reagents such 
as sodium chloride (NaCl), potassium chloride (KCl), disodium hydrogen phosphate (Na2HPO4), 
sodium dihydrogen phosphate (NaH2PO4), hydrochloric acid (HCl) were bought from 
SINOPHARM (Beijing, China). Monocrystal silicon wafer (p-type, 0.5 mm) was taken from Xiamen 
Zhongli Technology Co. Ltd. (Xiamen, China) 

Before used, pyrrole need to be purified by distillation under the protection of N2 gas and 
stored in the refrigerator at −20 °C for future use. Other reagents can be used directly without 
additional treatment. The water used in experiments was ultrapure water (18.2 MΩ). 

Monocrystal silicon wafers were first cleaned via boiled in Piranha solution (H2SO4:H2O2 = 4:1) 
for 15 min and washed in hot water, then dried by nitrogen for further use. Next, a 500 nm thick of 
oxide layer was formed on the silicon surface by thermal diffusion oxidation. Finally, 50 nm titanium 
and 100 nm gold layer were fabricated in the silicon wafer surface via magnetron sputter. The 
Au/Ti/Si wafer was diced for further experiment. 

2.2. Synthesis of PPy/PDA Nanowires (NWs) Coating 

The PPy/PDA NWs coating was fabricated via a two-step method. In brief, the first step was the 
polymerization of PPy NWs layer by electrochemical deposition, and the second step was the 
deposition of PDA layer on the surfaces of PPy NWs via solution oxidation. 

First, Pyrrole monomers could be polymerized with proper oxidation potential to form PPy. In 
this manuscript, the PPy NWs coating was directly fabricated by electrochemical polymerized on the 
Au/Ti/Si wafer under a potential at 0.8 V for 200 s with CHI660D electrochemical workstation (Chen 

Figure 1. Illustration of preparation of PPy/PDA NWs coating and the synergistic effect with electrical
stimulation on MC3T3-E1.

2. Materials and Methods

2.1. Materials

Pyrrole (PY, 98%) and sodium p-toluenesulfonate were purchased from J & K Chemical Ltd.
(Beijing, China) Dopamine hydrochloride (98%), Vitamin C and β-glycerophosphate were bought
from Sigma-Aldrich (Shanghai, China). Tris(dydroxymethyl) aminomethane (Tris-HCl, 99%) was
purchased from Sangon Biotech Co. Ltd. (Shanghai, China). Other used inorganic salt reagents such as
sodium chloride (NaCl), potassium chloride (KCl), disodium hydrogen phosphate (Na2HPO4), sodium
dihydrogen phosphate (NaH2PO4), hydrochloric acid (HCl) were bought from SINOPHARM (Beijing,
China). Monocrystal silicon wafer (p-type, 0.5 mm) was taken from Xiamen Zhongli Technology
Co. Ltd. (Xiamen, China).

Before used, pyrrole need to be purified by distillation under the protection of N2 gas and stored
in the refrigerator at −20 ◦C for future use. Other reagents can be used directly without additional
treatment. The water used in experiments was ultrapure water (18.2 MΩ).

Monocrystal silicon wafers were first cleaned via boiled in Piranha solution (H2SO4:H2O2 = 4:1)
for 15 min and washed in hot water, then dried by nitrogen for further use. Next, a 500 nm thick of
oxide layer was formed on the silicon surface by thermal diffusion oxidation. Finally, 50 nm titanium
and 100 nm gold layer were fabricated in the silicon wafer surface via magnetron sputter. The Au/Ti/Si
wafer was diced for further experiment.

2.2. Synthesis of PPy/PDA Nanowires (NWs) Coating

The PPy/PDA NWs coating was fabricated via a two-step method. In brief, the first step was
the polymerization of PPy NWs layer by electrochemical deposition, and the second step was the
deposition of PDA layer on the surfaces of PPy NWs via solution oxidation.
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First, Pyrrole monomers could be polymerized with proper oxidation potential to form PPy.
In this manuscript, the PPy NWs coating was directly fabricated by electrochemical polymerized on
the Au/Ti/Si wafer under a potential at 0.8 V for 200 s with CHI660D electrochemical workstation
(Chen Hua Instrument Company, Shanghai, China). The electropolymerization process of pyrrole
was carried out in a traditional three-electrode system, in which the Au/Ti/Si wafer was the working
electrode, a platinum wire was the counter electrode and a saturated calomel electrode (SCE, INESA
Scientific Instrument Co. Ltd., Shanghai, China) was the reference electrode. The pyrrole monomer
was dissolved in the electrolyte of 0.2 M PBS solution (pH = 7.4) containing 0.14 M of pyrrole and
0.085 M sodium p-toluenesulfonate. After 200 s, a uniform layer of PPy NWs can be deposited on the
surface of the Au/Ti/Si substrate.

Second, the PDA layer was directly deposited on the PPy NWs by immersing the PPy NWs
substrate into the fresh 2 mg/mL DA alkaline Tris-HCl solution (10 mM, pH = 8.50). The whole reaction
vessel was opened and standing at room temperature for 5 h. Finally, the PPy/PDA NWs coated
substrate was fished out and cleaned with distilled water.

The pure PPy NWs coating was fabricated by electrochemical polymerized the same as the first
step. The Pure PDA coating was obtained on Au/Ti/Si substrate by direct immersing the bare Au/Ti/Si
substrate in the fresh 2 mg/mL DA alkaline Tris-HCl solution (10 mM, pH = 8.50) for 5 h. The fabricated
PPy/PDA NWs, PPy NWs, and PDA coatings were carefully washed with distilled water and dried in
vacuum at 50 ◦C for further use.

2.3. Characterization

The morphologies of PPy NWs and PPy/PDA NWs were observed by scanning electron microscopy
(SEM, SU-70, Hitachi, Tokyo, Japan) at an accelerating voltage of 10.0 kV and transmission electron
microscopy (TEM, JME-2100, JEOL, Tokyo, Japan) under 200 kV accelerating voltage. The chemical
composition of pure PDA, PPy, and PPy/PDA were characterized by Fourier transform infrared
spectroscopy (FTIR, Nicolet IN10, Thermo Scientific, Waltham, MA, USA) with potassium bromide
(KBr) tablet method. The static contact angle of different coating samples was measured by a contact
angle meter (JC2000A, Shanghai Zhongchen digital technic apparatus Co. Ltd, Shanghai, China) with
2 µL water dropped at five different positions for each sample. Each sample randomly tested three
parallel specimen. The electrical conductivity of the PPy and PPy/PDA NWs coatings was evaluated by
a four-point probe apparatus (SZ83, Suzhou Baishen Technology Co. Ltd, Suzhou, China). Adhesion
ability of PPy NWs and PPy/PDA NWs coating with the substrate was tested with ScotchTM MagicTM
Tape 810 (3M, Saint Paul, MN, USA) and each sample was repeated three times in the same direction.
Cyclic voltammetry (CV) was conducted in the 0.9% NaCl solution with a CHI660D electrochemical
workstation. The voltage test ranging from −0.9–0.5 V at the scan rate of 10 mV/s.

2.4. Cell Culture

The mouse embryonic osteoblast precursor cells (MC3T3-E1) was bought at the Wuhan Cell
Bank of Chinese Academy of Sciences Basic Science Cell Center. MC3T3-E1 cells were cultured in the
alpha-modified minimum essential medium (α-MEM, Gibco, Waltham, MA, USA) supplemented with
10% FBS (Gibco, Waltham, MA, USA) and 1% penicillin and streptomycin (Hyclone, Chicago, IL, USA)
in the saturated humidity incubator with 5% CO2 at 37 ◦C. During the normal subculture of cells, the
medium was changed every two days.

2.5. Effect of Surface Morphology on MC3T3-E1 Adhesion and Proliferation and Differentiation

Three different morphology substrates including PPy NWs, PDA and PPy/PDA NWs coatings on
Au/Ti/Si wafers and bare Au/Ti/Si wafers were first sterilized by soaking in 75% ethanol for 24 h and
following immersing in distilled water for another 24 h. The bare Au/Ti/Si wafer was the control group.
Before the experiment, all substrates were further irradiated under UV radiation for another 2 h.
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The sterilized substrates with different morphology were placed in the 24-well plate and washed
with PBS. Then 1 mL of MC3T3-E1 (2 × 104 cells/mL) suspension was seeded to each well and then
cultured in cell incubator (5% CO2, 37 ◦C).

2.5.1. MTT Test

To test the adhesion and proliferation ability of MC3T3-E1 cell on different substrates, the MTT
assay was used to evaluate the cell viability after cells were seeded and cultured for 4, 6, 8, 12, 24,
and 48 h, respectively. In brief, at the tested time point, the cell culture was carefully removed and
washed with PBS twice. 500 µL fresh culture medium containing 10% MTT working solution (5 mg/mL)
was added to each well and continued to incubate for another 4 h. Next, the working solution was
completely removed and incubated with 500 µL DMSO to dissolve the formazan crystal under 37 ◦C.
Finally, the optical density was tested at 570 nm using a Microplate reader (Infinity 200 pro, Tecan,
Männedorf, Switzerland). Each sample was set four-parallel experiments.

2.5.2. Cell Morphology

The cell morphology of adhesion and proliferation was observed via Fluorescence microscope
(Leica DM2500, Leica Camera, Wetzlar, Germany). By staining the filamentous actin (F-actin) of the
MC3T3-E1 cytoskeleton, the cell spreading morphology on substrates could be observed. Generally,
after MC3T3-E1 cells were cultured for 12 and 24 h, cells were rinsed with PBS and then fixed with 4%
paraformaldehyde solution for 15 min. After washed with PBS, cells were continued treated with 0.1%
TritonX-100 solution to enhance the permeability of cell membrane. Next, the cell was incubated in 1%
BSA solution for 20 min and washed with PBS. Followed above treatments, cells were finally stained
with 5 U/mL Alexa Fluor 568 phalloidin solution for 30 min in the dark environment. Samples were
observed by using a fluorescence microscope.

The morphology of MC3T3-E1 cell on different substrates was further watched with SEM.
After cultured for 12 h, cells were fixed and dehydrated with gradient ethanol successively. After drying,
samples were sputter-coated with gold before SEM testing.

2.5.3. Total Protein Content and Alkaline Phosphatase Activity

The MC3T3-E1 cell proliferation and differentiation activities were further measured by testing
the total protein content and alkaline phosphatase (ALP) activity in the period of cell proliferation
and differentiation. After MC3T3-E1 cell was seeded and cultured on different substrates for 24 h,
the culture medium was changed to induced medium, which additionally added 1% Vitamin C
(5 mg/mL) and β-glycerophosphate (1 M). The cells were cultured normally and the fresh induced
medium was changed every 2 days.

The total protein content and ALP activity were tested at 3, 7 and 14 d. At each time point,
cells in each group were washed with PBS and lysed on ice by incubation with 0.1% TritonX-100-PMSF
pyrolysis liquid for 3 min, then centrifuged at 4 ◦C for 10 min. The supernatant was collected for
further protein content and ALP activity detections. Total protein content measured by using a
commercial BCA protein Assay Reagen Kit (Beyotime Institute of Biotechnology, Shanghai, China)
and tested absorption signal at 562 nm. The ALP activity was tested using the commercial ALP Assay
Kit (Beyotime Institute of Biotechnology, Shanghai, China), and measured the absorption intensity at
405 nm. Each sample was set four-parallel experiments.

2.6. Effect of Electrical Stimulation on MC3T3-E1 Adhesion and Proliferation and Differentiation

Micro constant current electrical stimulation signal (10 µA) was directly applied on the surface of
different substrates (PPy NWs and PPy/PDA NWs) via an electrochemical workstation. ES was applied
from the 12 h after cells inoculation and lasted for 2 h per day for 14 days. The cell proliferation and
mineralization activity detection were the same as described in the above part.
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2.7. Statistical Analysis

Quantitative results were presented as mean ± standard deviation. Statistical differences among
groups were analyzed by ANOVA followed by Turkey’s posttest. p < 0.05 was considered a significant
difference and represented by *, and p < 0.01 was considered a highly significant difference and
represented by #.

3. Results and Discussion

3.1. Characterization of PPy/PDA NWs

The PPy/PDA NWs was fabricated via a two-step method. First, PPy NWs coating was
electrochemical polymerized on the surface of Au/Ti/Si wafer. Under the constant voltage of 0.8 V,
after 200 s, the gold electrode surface could be covered with a layer of black PPy coating completely
without revealing the color of the substrate, which mean the PPy coating could effectively cover the
substrate with sufficient thickness. SEM images further showed the detailed morphology of obtained
PPy NWs (Figure 2a). The PPy coating had nanowire morphology. PPy NWs were slender and uniform,
and tightly wound with each other. The high magnification SEM and TEM images (Figure 2c,e) detailed
showed the structure of PPy NWs, the surface of PPy NWs was smooth with a diameter of about
40–60 nm. Next, after immersing PPy NWs coating into the fresh dopamine (DA) alkaline solution for
several hours, a layer of PDA could be formed on PPy NWs. The PDA coated PPy NWs composites
retained the former nanowire morphology with uniform size (Figure 2b,d). While compared with pure
PPy NWs, the surface roughness of PPy/PDA nanowires increased, and the PDA protrusion structure
adhered to the surface of PPy nanowire could be observed clearly by TEM image (Figure 2f). At the
same time, the diameter of PPy/PDA NWs also increased to about 80–100 nm, indicating that PDA
could be successfully polymerized on the surface of each single PPy nanowire, and the PPy/PDA had
core-shell structure.

PPy has excellent electrical conductivity and electrochemical activity. Many studies were conducted
to prepare responsive coatings with electrical conductivity based on the electrical conductivity of PPy.
As a bioactive material, PDA can significantly improve the bioactivity of the composite. However,
PDA has poor conductivity. In alkaline solution, the thickness of PDA increases with the reaction,
and after reacted for 24 h, the thickness of PDA could reach above 50 nm [32]. In addition, an excessively
thick layer of PDA deposition covered on PPy NWs not only concealed the nano-scale morphology
of PPy/PDA composite, but also significantly reduced the conductivity of the material. Therefore,
it was very important to control the depositing thickness of PDA effectively on PPy NWs surface in
order to ensure the maximum retention of excellent nano morphology and conductivity. As Figure 3
indicated, by controlling the PDA depositing time, the morphology and conductivity of the PPy/PDA
nanocomposite performed regular changes. Within 5 h of PDA polymerization, the morphology of
the PPy NWs could be well maintained and no obvious PDA aggregates were observed. With the
prolongation of deposition time, a large number of PDA random aggregates were adhered on the
surface of PPy NWs. When the deposition time prolonged to 15 h, PDA particles even filled into the
gap of PPy NWs, and the nanostructure morphology was gradually disappeared. At 20 h, PDA almost
completely covered the whole PPy NWs coating (Figure 3a). At the same time, the conductivity change
of PPy/PDA coating also displayed cliff fall after deposition time above 5 h (Figure 3b). Therefore,
the deposition time of PDA was chosen at 5 h. Under this condition, the PPy/PDA nanocomposite
coating could retain both good nanowire morphology and conductivity (about 1 S·cm−1).
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Comparing the FTIR spectra of pure PDA, PPy and PPy/PDA nanocomposite, it could be seen that
the PPy/PDA nanocomposite possessed characteristic peaks of both pure PDA and PPy (Figure 4a):
the broad peak around 3400 cm−1 was belonging to the N–H and O–H stretching vibrations, where PDA
and PPy both have a broad peak. The peak at 1544 cm−1 was the characteristic peak of PPy attributed
to the symmetric stretching vibrations of pyrrole ring [33]; and the characteristic peaks of PDA at 1615
and 1488 cm−1 ascribing to C=C and C=N/N–H stretching vibrations in aromatic amine species were
also appeared [34,35], which further indicated the PDA was successfully deposited on the surface of
PPy NWs to form a composite structure. Furthermore, the change of element proportion could also
prove the successful modification of PDA by XPS analysis (Figure 4b). PY and DA monomers have
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the same elemental composition, but there is a significant difference in the N/C ratio between PY and
DA. PY (1:4) has higher theoretical N/C ratio than that of DA (1:8). After polymerization, it could
be seen that the N/C ratio of PPy NWs coating (0.164) was higher than that of pure PDA coating
(0.094). In addition, after PDA deposited, the N/C ratio in PPy/PDA NWs coating decreased to 0.14,
which further demonstrated that PDA was successfully deposited on the surface of PPy NWs.

PDA had better hydrophilicity than PPy due to rich hydrophilic groups. The contact angle
measurement displayed the change of surface hydrophilicity after PDA deposition (Figure 4c). For the
bare Au surface, it had large hydrophobicity, which the average contact angle was more than 90◦.
After the Au surface was covered by PPy NWs or pure PDA, the water contact angle decreased
more than 30◦, and nanowire morphology was more conducive to the decrease of contact angle.
The PPy/PDA NWs coating had the minimum water contact angle, which was only 16◦. The excellent
hydrophilicity of PPy/PDA composite mainly came from both the rough porous nanostructure and a
large number of exposed hydrophilic groups such as ammonia hydroxyl groups on the surface of PDA.

PDA have astonishing adhesion ability, which can adhere to a variety of materials. We used the
3M tape to test the adhesion ability of different coatings with the substrate by tear test (Figure 4d).
The result demonstrated that the deposited layer of PDA could even enhance the adhesion property of
the PPy/PDA NWs coating with the Au surface compared with pure PPy NWs. After several instances
of the tear test, PPy/PDA NWs coating still adhered to the substrate firmly with almost no material
loss. Therefore, the enhancement of surface hydrophilicity and the increase of adhesion stability with
substrates made PPY/PDA NWs a better coating material than pure PPy NWs.

The PPy/PDA NWs had good conductivity. The electrochemical property was measured by cyclic
voltammetry in 0.9% NaCl solution (Figure 4e). Pure PDA was hardly conductive and had no obvious
electrochemical activity. After PDA deposited, compared with pure PPy NWs, the electrochemical
activity of PPy/PDA NWs did not decrease significantly. However, compared with pure PPy NWs,
the redox peak of PPy/PDA NWs was slightly shifted, indicating that PDA was not only successfully
modified on the surface of PPy, but also interacted with PPy.
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substrates. (d) The adhesion test of pure PPy NWs and PPy/PDA NWs. (e) Cyclic voltammogramms of
different materials in 0.9% NaCl solution at the scan rate of 10 mV/s.

The above experiments demonstrated that via a two-step method, the PPy/PDA NWs
nanocomposite coating was obtained. Compared with pure PPy NWs, PPy/PDA can effectively
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increase the hydrophilicity of the coating and the firmness of adhesion with the substrate materials
while retaining the excellent nanostructure, conductivity, and electrochemical activity. PDA has
excellent biocompatibility and bioactivity. It has been confirmed that PDA can promote osteoblast cell
adhesion and biomineralization [14]. We speculated that this nano-structured PPy/PDA NWs might
have excellent promoting effect on osteogenesis than pure PDA and PPy.

3.2. Effect of PPy/PDA NWs Coating on MC3T3-E1 Activity

When contacting with materials, in the beginning 8–12 h, the main behavior of cells is to interact
with the material and then adhere to the surface of material. The morphology, structure and chemical
microenvironment of the materials all have significant effects on anchorage-dependent cell adhesion.
SEM images showed that at the initial 12 h after cells were seeded, MC3T3-E1 cell could adhere and
spread well on pure PPy NWs, PDA and PPy/PDA NWs coatings (Figure 5a). MTT test indicated that
compared with bare Au, all modified coatings including pure PPy NWs, PDA and PPy/PDA NWs
could promote the adhesion and proliferation of MC3T3-E1 cells, and the PPy/PDA NWs coating
performed most effective facilitation (Figure 5b). SEM and fluorescence images detailed showed the
morphology of MC3T3-E1 cells adhesion and spreading on the surface of different materials (Figure 5a).
After 12 h, most cells on PPy NWs coating performed spindle and fibrous shape with some pseudo
feet anchored on near PPy NWs. On the other hand, cells on the surface of PDA were flat and full
spreading, and there were lots of pseudopods linked cells with each other, which proved that PDA can
promote cell spreading better than PPy NWs, while MC3T3-E1 cells grew on PPy/PDA NWs coating
were well spreading than pure PPy NWs. Most cells on PPy/PDA NWs surface were spreading flat,
and pseudopodia filaments of cells were dispersed into surrounding nanowires and adhered closely
to the substrate. Moreover, MC3T3-E1 cells were interconnected with each other through a large
number of pseudopods. After 12 h of inoculation, the adherent cells entered the fast proliferative phase
(Figure 5a,b). MC3T3-E1 cells on all substrates were grew well, and cells on PPy/PDA NWs coating had
the fastest growth rate, which ensured that the PPy/PDA NWs coating had excellent biocompatibility
and bioactivity and was more benefit for cell adhesion and proliferation than pure PPy NWs and PDA.

For the PPy/PDA NWs nanocomposite, the PDA deposition introduced abundant active functional
groups on the inert surface of PPy, which facilitated early cell recognition and anchoring adhesion
process. Moreover, the morphology of nanowires was closer to the natural extracellular matrix (ECM)
morphology and the primary growth environment of osteoblasts, which significantly promoted the
adhesion and proliferation of MC3T3-E1 cells on the surface. Therefore, the PPy/PDA NWs coating
took the advantages of both nano morphology came from PPy NWs and excellent biological active
inherited from PDA, and had the best value for cell adhesion and proliferation than pure PPy NWs
and PDA.

In the procedure of culture osteoblasts for 14 days, it can be divided into three stages [36]. First,
the adhesion between cells and matrix was mainly carried out within 12 h after cells were seeded.
After 2–3 days, the cells entered the rapid proliferation stage. In this stage, large amounts of protein
and DNA were synthesized. Finally, after 6–9 days, the cell proliferation basically stopped and began
to enter the mineralization stage. At this stage, the metabolic activity of cells was still vigorous, and the
activity of osteoblast markers represented by alkaline phosphatase (ALP) increased significantly, and
osteoblasts began to enter differentiating and mature process.

The content of total protein in cells could be used to describe the proliferation and metabolic
activity of cells. By testing the total protein content of MC3T3-E1 that cells grew on different coatings
(Figure 5c), it could be found that the proliferation and metabolism activity of MC3T3-E1 cells growing
on the surface of PPy NWs, PDA and PPy/PDA NWs coatings were all more vigorous than that of the
control group (bare Au), and the cell on the PPy/PDA NWs coating maintained the highest protein
content during the 14 days throughout, which indicated the PPy/PDA NWs coating could promote the
cell rapid proliferation and metabolism activity than pure PPy NWs and PDA.
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Figure 5. (a) SEM and fluorescence images of MC3T3-E1 cells on PPy NWs, PDA and PPy/PDA NWs
cultured for 12 h and 24 h. (b) Proliferation of MC3T3-E1 cells on different coatings. (c) The protein
content of MC3T3-E1 cells cultured on different coatings. (d) The ALP activity of MC3T3-E1 cells
cultured on different coatings. * p < 0.05, and # p < 0.01.

The ALP activity, the early marker of osteogenic differentiation, could evaluate the osteogenic
activity of MC3T3-E1 cells cultured on different coatings. As the result indicated (Figure 5d), at the
initial stage of three days, the ALP activity of cells grown on four kind of coatings were all at low level
without obvious difference. At this time, t cells were mainly in the rapid proliferation phase with low
osteogenic activity. After 7 days, cells gradually entered the mineralization stage and the ALP activity
in all group increased, and the PPy/PDA NWs group had the highest ALP activity. After 14 days,
the advantage of ALP activity in PPy/PDA NWs group continued to expand, indicating that PDA/PPy
NWs could significantly promote the mineralization and osteogenesis of MC3T3-E1 cells.

Above results demonstrated that the PPy/PDA NWs nanocomposite coating was not only helpful
to the rapid adhesion of cells on the surface of materials, but also conducive the osteogenic activity for
new bone formation.

3.3. Synergistic Effect of PPy/PDA NWs Coating with Electrical Stimulation on MC3T3-E1 Activity

In the process of bone formation and bone remodeling, electrical microenvironment around the
bone cells occurs. Many studies confirmed that a small amount of electrical stimulation (ES) can
significantly promote the proliferation and differentiation of osteoblasts at the cellular and tissue
level [37,38]. PPy has good conductivity, and could be fabricated as a conductive coating to apply
ES on cells sensitive to electrical signals. Our previous study have demonstrated that MC3T3-E1
cells shows better osteogenic activity on the surface of PPy coating with ES [39]. The PPy/PDA NWs
was well maintained the excellent conductivity of PPy NWs layer, and performed better osteogenic
differentiation activity than pure PPy NWs. Next, we used a self-made device to apply a constant
current electrical stimulation (10 µA) to MC3T3-E1 cells through the PPy/PDA coating, and to study
the synergistic effect of PPy/PDA NWs and ES working together on MC3T3-E1 cells.

After 12 h of the MC3T3-E1 cell culture, the constant ES was applied on cells for 2 h a day until
14 days. It could be seen that continuous ES can significantly increase the adhesion and proliferation
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of MC3T3-E1 cell (Figure 6a), the number of MC3T3-E1 cells on PPy/PDA NWs coatings was almost
doubled higher after ES was applied. Additionally, the total protein content and ALP activity tests
relating to the proliferation and osteogenesis activity of MC3T3-E1 cells both revealed that the ES could
promote the osteogenic differentiation of MC3T3-E1 cells (Figure 6b,c). It was noticeable that the total
protein content and ALP activity value of MC3T3-E1 cells with ES at 7 days was very close to that
of the cells without ES at 14 days, which proved that the PPy/PDA NWs coating together with ES
addition could accelerate the cells entering the mature stage of osteogenic differentiation.
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4. Conclusions

We successfully fabricated the PPy/PDA NWs coating via a simple two-step method. By well
controlling the depositing time of PDA within 5 h, the PPy/PDA NWs nanocomposite retained the
nano morphology, conductivity, and electrochemical activity from the PPy NWs layer. Moreover,
the introduction of the PDA deposition layer significantly improved the hydrophilicity and bioactivity
of the material surface. In vitro experiments further proved that the PPy/PDA NWs composite
coating had better biocompatibility and osteogenic differentiation ability than pure PPy NWs and
PDA. MC3T3-E1 cells could quickly adhere and anchor on the surface of PPy/PDA NWs coating,
and enter the proliferation and differentiation process. Furthermore, external applied ES with PPy/PDA
NWs coating had the synergistic effect in stimulating the osteogenesis of MC3T3-E1 cell. Therefore,
the PPy/PDA NWs composite is a potential coating with enhanced biocompatibility and biological
activity in bone regeneration and repairing.

Author Contributions: L.D., Y.H., W.S. and D.G. designed the experiments; L.D. and Y.H. undertook the most
experiments; Y.H. and L.D. completed the data and imaging preparation and edition; Y.H. wrote the manuscript;
D.G., W.S., X.Z. and Y.S. gave valuable suggestions and revised the manuscript. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by the National Nature Foundation of China (31870986), the National Nature
Science Foundation of China (31271009, 81271689), the Fundamental Research Funds for the Central Universities
(2011121001), the Natural Science Foundation of Fujian Province (2011J01331), the Program for New Century
Excellent Talents in University, and the Program for New Century Excellent Talents in Fujian Province University.

Acknowledgments: We acknowledge the analysis and testing center of Xiamen University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wu, J.-G.; Chen, J.-H.; Liu, K.-T.; Luo, S.-C. Engineering antifouling conducting polymers for modern
biomedical applications. ACS Appl. Mater. Interfaces 2019, 11, 21294–21307. [CrossRef] [PubMed]

2. Hackett, A.J.; Malmström, J.; Travas-Sejdic, J. Functionalization of conducting polymers for biointerface
applications. Prog. Polym. Sci. 2017, 70, 18–33. [CrossRef]

3. Hardy, J.G.; Lee, J.Y.; Schmidt, C.E. Biomimetic conducting polymer-based tissue scaffolds.
Curr. Opin. Biotechnol. 2013, 24, 847–854. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/acsami.9b04924
http://www.ncbi.nlm.nih.gov/pubmed/31120722
http://dx.doi.org/10.1016/j.progpolymsci.2017.03.004
http://dx.doi.org/10.1016/j.copbio.2013.03.011
http://www.ncbi.nlm.nih.gov/pubmed/23578463


Coatings 2020, 10, 1189 12 of 13

4. Xia, L.; Wei, Z.; Wan, M. Conducting polymer nanostructures and their application in biosensors.
J. Colloid Interface Sci. 2010, 341, 1–11. [CrossRef]

5. Boehler, C.; Oberueber, F.; Asplund, M. Tuning drug delivery from conducting polymer films for accurately
controlled release of charged molecules. J. Control Release 2019, 304, 173–180. [CrossRef]

6. Jiang, S.; Sun, Y.; Cui, X.; Huang, X.; He, Y.; Ji, S.; Shi, W.; Ge, D. Enhanced drug loading capacity of
polypyrrole nanowire network for controlled drug release. Synth. Met. 2013, 163, 19–23. [CrossRef]

7. Mihardja, S.S.; Sievers, R.E.; Lee, R.J. The effect of polypyrrole on arteriogenesis in an acute rat infarct model.
Biomaterials 2008, 29, 4205–4210. [CrossRef]

8. Bu, Y.; Xu, H.; Li, X.; Xu, W.; Yin, Y.-X.; Dai, H.; Wang, X.-B.; Huang, Z.-J.; Xu, P.-H. A conductive sodium
alginate and carboxymethyl chitosan hydrogel doped with polypyrrole for peripheral nerve regeneration.
RSC Adv. 2018, 8, 10806–10817. [CrossRef]

9. Lee, J.Y.; Bashur, C.A.; Goldstein, A.S.; Schmidt, C.E. Polypyrrole-coated electrospun PLGA nanofibers for
neural tissue applications. Biomaterials 2009, 30, 4325–4335. [CrossRef]

10. Harjo, M.; Torop, J.; Järvekülg, M.; Tamm, T.; Kiefer, R. Electrochemomechanical behavior of polypyrrole-
coated nanofiber scaffolds in cell culture medium. Polymers 2019, 11, 1043. [CrossRef]

11. Hu, W.-W.; Hsu, Y.-T.; Cheng, Y.-C.; Li, C.; Ruaan, R.-C.; Chien, C.-C.; Chung, C.-A.; Tsao, C.-W. Electrical
stimulation to promote osteogenesis using conductive polypyrrole films. Mater. Sci. Eng. C 2014, 37, 28–36.
[CrossRef] [PubMed]

12. Zhou, Z.; Chen, J.; Zhou, L.; Tu, L.; Fan, L.; Zhang, F.; Dai, C.; Liu, Y.; Ning, C.; Du, J.; et al. Polypyrrole
nanocones and dynamic piezoelectric stimulation-induced stem cell osteogenic differentiation. ACS Biomater.
Sci. Eng. 2019, 5, 4386–4392. [CrossRef]

13. Hardy, J.G.; Sukhavasi, R.C.; Aguilar, D.; Villancio-Wolter, M.K.; Mouser, D.J.; Geissler, S.A.; Nguy, L.;
Chow, J.K.; Kaplan, D.L.; Schmidt, C.E. Electrical stimulation of human mesenchymal stem cells
on biomineralized conducting polymers enhances their differentiation towards osteogenic outcomes.
J. Mater. Chem. B 2015, 3, 8059–8064. [CrossRef]

14. Zhou, T.; Yan, L.; Xie, C.; Li, P.; Jiang, L.; Fang, J.; Zhao, C.; Ren, F.; Wang, K.; Wang, Y.; et al. A mussel-inspired
persistent ROS-scavenging, electroactive, and osteoinductive scaffold based on electrochemical-driven in
situ nanoassembly. Small 2019, 15, 1805440. [CrossRef] [PubMed]

15. Cheng, S.; Wang, D.; Ke, J.; Ma, L.; Zhou, J.; Shao, H.; Zhu, H.; Liu, L.; Zhang, Y.; Peng, F.; et al. Improved
in vitro angiogenic behavior of human umbilical vein endothelial cells with oxidized polydopamine coating.
Colloids Surf. B 2020, 194, 111176. [CrossRef]

16. Waite, J.H. The adhesive proteins secreted by mussels are the inspiration behind a versatile approach to
the surface modification of a wide range of inorganic and organic materials, resulting in the fabrication of
multifunctional coatings for a variety of applications. Nat. Mater. 2008, 7, 8–9. [CrossRef]

17. Zhang, W.; Pan, Z.; Yang, F.K.; Zhao, B. A facile in situ approach to polypyrrole functionalization through
bioinspired catechols. Adv. Funct. Mater. 2015, 25, 1588–1597. [CrossRef]

18. Zeng, X.; Luo, M.; Liu, G.; Wang, X.; Tao, W.; Lin, Y.; Ji, X.; Nie, L.; Mei, L. Polydopamine-modified black
phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal
treatments. Adv. Sci. 2018, 5, 1800510. [CrossRef]

19. Zhang, P.-B.; Hu, W.; Wu, M.; Gong, L.; Tang, A.; Xiang, L.; Zhu, B.; Zhu, L.-P.; Zeng, H. Cost-effective strategy
for surface modification via complexation of disassembled polydopamine with Fe(III) ions. Langmuir 2019,
35, 4101–4109. [CrossRef]

20. Ponzio, F.; Bertani, P.; Ball, V. Role of surfactants in the control of dopamine–eumelanin particle size and
in the inhibition of film deposition at solid–liquid interfaces. J. Colloid Interface Sci. 2014, 431, 176–179.
[CrossRef]

21. Zhang, W.; Yang, F.K.; Pan, Z.; Zhang, J.; Zhao, B. Bio-inspired dopamine functionalization of polypyrrole for
improved adhesion and conductivity. Macromol. Rapid Commun. 2014, 35, 350–354. [CrossRef] [PubMed]

22. Kim, S.; Jang, L.K.; Park, H.S.; Lee, J.Y. Electrochemical deposition of conductive and adhesive
polypyrrole-dopamine films. Sci. Rep. 2016, 6, 30475. [CrossRef] [PubMed]

23. Pan, J.; Yang, M.; Luo, L.; Xu, A.; Tang, B.; Cheng, D.; Cai, G.; Wang, X. Stretchable and highly sensitive
braided composite yarn@polydopamine@polypyrrole for wearable applications. ACS Appl. Mater. Interfaces
2019, 11, 7338–7348. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jcis.2009.09.029
http://dx.doi.org/10.1016/j.jconrel.2019.05.017
http://dx.doi.org/10.1016/j.synthmet.2012.12.010
http://dx.doi.org/10.1016/j.biomaterials.2008.07.021
http://dx.doi.org/10.1039/C8RA01059E
http://dx.doi.org/10.1016/j.biomaterials.2009.04.042
http://dx.doi.org/10.3390/polym11061043
http://dx.doi.org/10.1016/j.msec.2013.12.019
http://www.ncbi.nlm.nih.gov/pubmed/24582219
http://dx.doi.org/10.1021/acsbiomaterials.9b00812
http://dx.doi.org/10.1039/C5TB00714C
http://dx.doi.org/10.1002/smll.201805440
http://www.ncbi.nlm.nih.gov/pubmed/31106983
http://dx.doi.org/10.1016/j.colsurfb.2020.111176
http://dx.doi.org/10.1038/nmat2087
http://dx.doi.org/10.1002/adfm.201403115
http://dx.doi.org/10.1002/advs.201800510
http://dx.doi.org/10.1021/acs.langmuir.9b00245
http://dx.doi.org/10.1016/j.jcis.2014.06.025
http://dx.doi.org/10.1002/marc.201300761
http://www.ncbi.nlm.nih.gov/pubmed/24338801
http://dx.doi.org/10.1038/srep30475
http://www.ncbi.nlm.nih.gov/pubmed/27459901
http://dx.doi.org/10.1021/acsami.8b18823
http://www.ncbi.nlm.nih.gov/pubmed/30673211


Coatings 2020, 10, 1189 13 of 13

24. Kim, S.; Jang, L.K.; Jang, M.; Lee, S.; Hardy, J.G.; Lee, J.Y. Electrically conductive polydopamine-polypyrrole
as high performance biomaterials for cell stimulation in vitro and electrical signal recording in vivo.
ACS Appl. Mater. Interfaces 2018, 10, 33032–33042. [CrossRef] [PubMed]

25. Zhang, W.; Zhou, Y.; Feng, K.; Trinidad, J.; Yu, A.; Zhao, B. Morphologically controlled bioinspired
dopamine-polypyrrole nanostructures with tunable electrical properties. Adv. Electron. Mater. 2015, 1, 1500205.
[CrossRef]

26. Xie, C.; Li, P.; Han, L.; Wang, Z.; Zhou, T.; Deng, W.; Wang, K.; Lu, X. Electroresponsive and cell-affinitive
polydopamine/polypyrrole composite microcapsules with a dual-function of on-demand drug delivery and
cell stimulation for electrical therapy. NPG Asia Mater. 2017, 9, 358. [CrossRef]

27. Wang, Z.; Zhou, L.; Yu, P.; Liu, Y.; Chen, J.; Liao, J.; Li, W.; Chen, W.; Zhou, W.; Yi, X.; et al.
Polydopamine-assisted electrochemical fabrication of polypyrrole nanofibers on bone implants to improve
bioactivity. Macromol. Mater. Eng. 2016, 301, 1288–1294. [CrossRef]

28. Tan, J.; Zhang, Z.; He, Y.; Yue, Q.; Xie, Z.; Ji, H.; Sun, Y.; Shi, W.; Ge, D. Electrochemical synthesis of
conductive. superhydrophobic and adhesive polypyrrole-polydopamine nanowires. Synth. Met. 2017,
234, 86–94. [CrossRef]

29. Huang, J.; Wang, K.; Wei, Z. Conducting polymernanowire arrays with enhanced electrochemical performance.
J. Mater. Chem. 2010, 20, 1117–1121. [CrossRef]

30. Debiemme-Chouvy, C. Template-free one-step electrochemical formation of polypyrrole nanowire array.
Electrochem. Commun. 2009, 11, 298–301. [CrossRef]

31. Ma, F.-F.; Zhang, D.; Zhang, N.; Huang, T.; Wang, Y. Polydopamine-assisted deposition of polypyrrole
on electrospun poly(vinylidene fluoride) nanofibers for bidirectional removal of cation and anion dyes.
Chem. Eng. J. 2018, 354, 432–444. [CrossRef]

32. Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-inspired surface chemistry for multifunctional
coatings. Science 2007, 318, 426–430. [CrossRef] [PubMed]

33. Liu, S.; Pan, T.; Wang, R.; Yue, Y.; Shen, J. Anti-corrosion and conductivity of the electrodeposited
graphene/polypyrrole composite coating for metallic bipolar plates. Prog. Org. Coat 2019, 136, 105237.
[CrossRef]

34. Luo, R.; Tang, L.; Wang, J.; Zhao, Y.; Tu, Q.; Weng, Y.; Shen, R.; Huang, N. Improved immobilization of
biomolecules to quinone-rich polydopamine for efficient surface functionalization. Colloids Surf. B 2013,
106, 66–73. [CrossRef] [PubMed]

35. Zangmeister, R.A.; Morris, T.A.; Tarlov, M.J. Characterization of polydopamine thin films deposited at short
times by autoxidation of dopamine. Langmuir 2013, 29, 8619–8628. [CrossRef]

36. Qqarles, L.D.; Yohay, D.A.; Lever, L.W.; Caton, R.; Wenstrup, R.J. Distinct proliferative and differentiated
stages of murine MC3T3-El cells in culture: An in vitro model of osteoblast development. J. Bone Miner. Res.
1992, 7, 683–692. [CrossRef]

37. Lirani-Galvão, A.P.R.; Chavassieux, P.; Portero-Muzy, N.; Bergamaschi, C.T.; Silva, O.L.; Carvalho, A.B.;
Lazaretti-Castro, M.; Delmas, P.D. Low-intensity electrical stimulation counteracts the effects of ovariectomy
on bone tissue of rats: Effects on bone microarchitecture, viability of osteocytes, and nitric oxide expression.
Calcif. Tissue Int. 2009, 84, 502–509. [CrossRef]

38. Lirani-Galvão, A.P.R.; Lazaretti-Castro, M.; Portero-Muzy, N.; Bergamaschi, C.T.; Silva, O.L.; Carvalho, A.B.;
Delmas, P.D.; Chavassieux, P. Is nitric oxide a mediator of the effects of low-intensity electrical stimulation
on bone in ovariectomized rats? Calcif. Tissue Int. 2010, 87, 52–59. [CrossRef]

39. He, Y.; Wang, S.; Mu, J.; Dai, L.; Zhang, Z.; Sun, Y.; Shi, W.; Ge, D. Synthesis of polypyrrole nanowires with
positive effect on MC3T3-E1 cell functions through electrical stimulation. Mater. Sci. Eng. C 2017, 71, 43–50.
[CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/acsami.8b11546
http://www.ncbi.nlm.nih.gov/pubmed/30192136
http://dx.doi.org/10.1002/aelm.201500205
http://dx.doi.org/10.1038/am.2017.16
http://dx.doi.org/10.1002/mame.201600285
http://dx.doi.org/10.1016/j.synthmet.2017.10.012
http://dx.doi.org/10.1039/B919928D
http://dx.doi.org/10.1016/j.elecom.2008.11.030
http://dx.doi.org/10.1016/j.cej.2018.08.048
http://dx.doi.org/10.1126/science.1147241
http://www.ncbi.nlm.nih.gov/pubmed/17947576
http://dx.doi.org/10.1016/j.porgcoat.2019.105237
http://dx.doi.org/10.1016/j.colsurfb.2013.01.033
http://www.ncbi.nlm.nih.gov/pubmed/23434693
http://dx.doi.org/10.1021/la400587j
http://dx.doi.org/10.1002/jbmr.5650070613
http://dx.doi.org/10.1007/s00223-009-9227-9
http://dx.doi.org/10.1007/s00223-010-9357-0
http://dx.doi.org/10.1016/j.msec.2016.09.067
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Materials 
	Synthesis of PPy/PDA Nanowires (NWs) Coating 
	Characterization 
	Cell Culture 
	Effect of Surface Morphology on MC3T3-E1 Adhesion and Proliferation and Differentiation 
	MTT Test 
	Cell Morphology 
	Total Protein Content and Alkaline Phosphatase Activity 

	Effect of Electrical Stimulation on MC3T3-E1 Adhesion and Proliferation and Differentiation 
	Statistical Analysis 

	Results and Discussion 
	Characterization of PPy/PDA NWs 
	Effect of PPy/PDA NWs Coating on MC3T3-E1 Activity 
	Synergistic Effect of PPy/PDA NWs Coating with Electrical Stimulation on MC3T3-E1 Activity 

	Conclusions 
	References

