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Abstract: Although various superhydrophobic materials have been manufactured and effectively
used for oil–water separation, it is still highly desirable to explore materials which are eco-friendly,
low-cost, and multifunctional. In this paper, a stable copolymer solution was prepared from
the fluorine-free superhydrophobic copolymer with dual-responsiveness of temperature and pH.
The functional superhydrophobic paper was prepared by immersing paper in copolymer solution by
the dip-coating method. The surface element and structure analysis of the prepared superhydrophobic
paper shows that the dual-responsive copolymer adheres successfully to the surface of the paper
without destroying the fiber structure of the paper. At pH ≥ 7 and T > 25 ◦C, the paper has a good
superhydrophobic performance, while under the conditions of pH < 7 and T < 25 ◦C, the paper comes
into a hydrophilic state. Therefore, the dual-responsive superhydrophobic paper is more likely to
adapt to the complicated oil-water separation environment than the single-response.
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1. Introduction

The wettability of a solid surface depends on its surface chemical composition and microscopic
geometry. This is an important performance index for many processes and applications and has
aroused extensive research interest in researchers in recent decades [1–3]. In particular, a surface
with a static water contact angle larger than 150◦ and a sliding angle lower than 10◦ is called a
superhydrophobic surface [4,5]. Due to its excellent characteristics of self-cleaning [6], oil–water
separation [7], water-proof [8], anti-fouling [9], anti-icing [10] and anti-fogging [11], it has been favored
by material workers for many years, attracting a large number of researchers to study the performance
of superhydrophobic materials. At present, it has been found that superhydrophobic surfaces can
be fabricated on silicon wafers [12], glass [13], metals [14], plastics [15], textiles [16], wood [17,18],
and paper [19]. In fact, the premise of becoming a superhydrophobic material based on previous
research is that a superhydrophobic material must have both a micro-nano-composite structure and
low-surface energy chemicals [20,21].

Paper is a common and indispensable material in our lives. It has a wide range of uses.
Due to its lightweight, portability, easy transmission and communication, low price, high flexibility,
biodegradability and renewable properties, it has been favored by researchers. Research is concerned
especially with its adaption to the complex external environment and its ability to meet the special needs
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of merchants for paper. The demand for modified paper is also increasing in the market, including
that for superhydrophobic paper, which can be used for moisture-proof packaging [22], paper-based
sensors [23], oil–water separation and self-cleaning materials [24]. There are many preparation methods
for superhydrophobic paper, mainly including the dipping method, the chemical etching method,
the electrophoretic deposition method, the electrospinning method, the chemical vapor deposition
method, the plasma etching method, and the spraying method, etc. [25]. However, in these methods,
some of the reagents used in the preparation process will be harmful to the environment, and some
preparation processes and required equipment are complicated, so it is very important to choose the
appropriate reagents and preparation methods. Besides, it is necessary to broaden the application
range of superhydrophobic paper and make it have a better environmental adaptability. In recent
years, some sensitive polymers with environmental irritation have been developed by researchers to
respond to various stimuli in the external environment, including temperature, pH, light, ultrasound,
electron transfer (redox change), etc. [26–37], in which temperature and pH are the most commonly
used stimuli. Combining any two of the above stimuli can also prepare intelligent interface materials
at the air/solid interface. Compared with single stimuli, intelligent materials with double stimuli have
better environmental adaptability, and people are increasingly studying dual-responsive intelligent
polymers [38,39]. Moreover, the massive discharge of industrial oily wastewater not only poses huge
challenges to the ecological environment but also seriously harms human health [40]. Thus, for the
sake of human health and the harmony of the ecosystem, it is urgent to adopt environmentally friendly
and effective methods to treat the oil pollution in industrial wastewater. The ecologically harmless
superhydrophobic paper with dual- responsiveness offers a new way to solve the problem. Therefore,
it is necessary to conduct in-depth research on dual-responsive polymers for expanding the application
range of superhydrophobic paper so that it can better play its advantages.

In this study, N-isopropylacrylamide (NIPAm) and 2-(dimethylamino) ethyl methacrylate
(DMAEMA) were selected as fluorine-free monomers for temperature and pH-response, respectively.
The superhydrophobic copolymer with a dual-response of temperature and pH was synthesized by a
free radical solution polymerization method, and the pre-treated paper was immersed in the copolymer
solution by a simple and easy-to-operate dip-coating to prepare the functional superhydrophobic
paper. This work introduces a simple and fluorine-free superhydrophobic paper preparation method.
The paper obtained by this method can make corresponding hydrophilic/hydrophobic reactions to the
changes of temperature and pH.

2. Experimental Details

2.1. Materials

Butyl methacrylate (BMA), Hydroxyethyl methacrylate (HEMA), 2-(Dimethylamino) ethyl
methacrylate (DMAEMA) and N-isopropylacrylamide (NIPAm) were provided by Shanghai Aichun
Biological Technology Co., Ltd. (Shanghai, China). Azobisisobutyronitrile (AIBN) was purchased
from Tianjin Damao Chemical Reagent Factory (Tianjin, China). Absolute ethanol and n-hexane were
provided by Tianjin Fuyu Fine Chemical Co., Ltd. (Tianjin, China). Acetone, anhydrous toluene,
hydrochloric acid, and sodium hydroxide were provided by Tianjin Komiou Chemical Reagent Co.,
Ltd. (Tianjin, China). All reagents were analytical grade and used without other treatment.

2.2. Methods

2.2.1. Synthesis of Superhydrophobic Copolymer with Dual-Responsiveness of Temperature and pH

The synthesis of superhydrophobic copolymer with dual-responsiveness of temperature and pH
was carried out in the absence of water and oxygen by free radical polymerization, the synthetic route
as shown in Figure 1. Taking the BMA (5.68 g, 0.04 mol), HEMA (0.52 g, 0.004 mol), DMAEMA (6.28 g,
0.04 mol), NIPAm (4.52 g, 0.04 mol) and AIBN (0.16 g, 0.001 mol) respectively dissolved in 50 g of



Coatings 2020, 10, 1167 3 of 16

anhydrous toluene, after mixing, the prepared solution was poured into a three-necked round bottom
flask. Then the flask was filled with nitrogen for 40 min to perform an oxygen removal operation,
providing an oxygen-free environment for the polymerization reaction. After the deaeration with
nitrogen was completed, the flask was sealed and placed in a thermostatic water bath at 65 ◦C for
4 h to create a polymerization reaction. When the reaction was completed, the solution was left to
cool to room temperature. After most of the solvent was slowly evaporated, it was dissolved in
acetone, and then added to n-hexane under magnetic stirring to precipitate. The obtained product was
dried in vacuum at 50 ◦C for 12 h, after grinding into powder, a superhydrophobic copolymer with
dual-responsiveness of temperature and pH could be obtained.
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Figure 1. The synthesis route of PBMA-co-PHEMA-co-PDMAEMA-co-PNIPAm.

2.2.2. Fabrication of Temperature and pH Dual-Responsive Superhydrophobic Paper

First, 1 g of the temperature and pH dual-responsive copolymer prepared above was added to 20 g
of anhydrous toluene, and then dispersed and reacted under ultrasonic conditions for 30 min to form a
uniform and stable copolymer solution. Then, the spare paper (German duni wood pulp paper, size 40
× 40 cm2, gram weight about 60 g) was cut to a size of 3 × 3 cm2. Acetone, anhydrous ethanol and
deionized water were used to wash the paper under ultrasonic at 25 ◦C at room temperature and dried
at 60 ◦C. Then the clean and the dry paper was soaked in the prepared copolymer solution for 30 min
to form a superhydrophobic coating on its surface. The coated paper was put into a vacuum drying
oven, and dried for about 2 h at 80 ◦C to obtain a superhydrophobic paper with dual-responsiveness of
temperature and pH. The paper preparation process and the oil–water separation effect in response
to temperature and pH are shown in Figure 2. The lower critical solution temperature (LCST) of the
paper in the picture will be determined below.
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2.2.3. Determination of the Critical Temperature

The LCST the of temperature and pH dual-responsive copolymer was measured by a differential
scanning calorimeter (DSC) (TA Instruments, New Castle, DE, USA). The temperature at which phase
transition occurs, LCST, was measured as peak temperature causing exothermic heat change.

To determine the LCST of the prepared dual-responsive superhydrophobic paper, five identical
oil–water mixtures (20 mL oil-red O stained n-hexane and 20 mL deionized water) were prepared in the
beaker. By adjusting the temperature of the water bath, the temperature of the oil–water mixture was
adjusted to 10, 20, 35, 50, and 65 ◦C, respectively. The specific operation process is shown in Figure 3.
The sample bottles commonly used in the experiment were processed. First, a nearly round hole was
dug on the surface of the bottle cap and the bottle cap was unscrewed. The mouth of the sample bottle
was sealed with modified paper coated with a copolymer. Then the lid was closed and the sample
bottle was dipped into beakers at different water bath temperatures, making the water or oil in the
oil–water mixture in the beaker able to enter the sample bottle through the paper under the cap of
the round hole. Thus the separation was complete and the oil and water was collected. The results
of oil–water separation were observed, and the temperature gradient was gradually reduced by this
method until LCST was obtained.
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with copolymer-coated paper; (b) oil–water mixture; (c) deionized water was collected in the sample
bottle when T < LCST (d) red n-hexane was collected in the sample bottle when T > LCST.

2.3. Characterization

The surface morphologies of the original paper and the coated paper were examined by a
field emission scanning electron microscope (SEM) (SU-8010, Hitachi, Tokyo, Japan). The Fourier
Transform infrared Spectroscopy (FTIR) was recorded using an infrared spectrometer (8400S,
Shimadzu, Kyoto, Japan) at room temperature. The NIPAm monomer and the synthesized copolymer
(PBMA-co-PHEMA-co-PDMAEMA-co-PNIPAm) were prepared by a KBr tableting method, and then
the sample was measured using FTIR to observe the functional group of the product to verify the
success of the polymerization. The structure of the copolymer dissolved in C3D6O was also analyzed
by 1H nuclear magnetic resonance (1H NMR) (AVANCE III HD 600 MHz, Bruker, Billerica, MA, USA)
and all chemical shifts were recorded in ppm. The surface chemical compositions of the surface of the
raw paper and copolymer-coated paper were carefully detected by an Axis Ultpa (Kratos Analytical,
Manchester, UK) X-ray photoelectron spectroscopy (XPS). Al/Kα (1486.71 eV) was used as a ray, and it
was operated at a current of 10 mA and a voltage of 10 kV. The LCST of copolymer was measured under
a nitrogen atmo-sphere by using a differential scanning calorimeter (DSC Q20, TA Instruments, New
Castle, DE, USA). The heating rate was 1 ◦C min−1. The temperature at which phase transition occurs,
LCST, was measured as a peak temperature causing exothermic heat change. Thermogravimetric
analysis (TGA) was performed using a TA TGA-HP50 (TA Instruments, New Castle, DE, USA)
thermogravimetric analyzer under a nitrogen atmosphere, and the temperature rose (10 ◦C·min−1)
from room temperature to 700 ◦C. The original paper and the copolymer-coated paper were subjected
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to thermogravimetric analysis. The wetting angle was measured by an SDC-200 (Dongguan Shengding
Precision Instrument Co., Ltd., Dongguan, China) water contact angle measurement instrument.
The test objects were untreated raw paper, copolymer-coated paper, and modified paper treated with
different temperatures and pHs. The paper soaked in the responsive solution was processed at different
temperatures, and the water contact angle was measured. The paper soaked in pH-responsive solution
was immersed in a hydrochloric acidic solution (pH = 1), a neutral solution (hydrochloric acid and a
sodium hydroxide are not added, pH = 7), and sodium hydroxide solution (pH = 14) for 3 min, and was
then taken out in an oven at 60 ◦C under vacuum drying, and the water contact angle was measured.

3. Results and Discussion

3.1. Analysis of Paper Surface Morphology

To study the effect of copolymer PBMA-co-PHEMA-co-PDMAEMA-co-PNIPAm on the surface
morphology of paper, the surface morphology of raw paper, and modified paper soaked by copolymer
solution were observed and analyzed by using SEM images with different magnifications. Figure 4a–c
are the original paper samples. On the whole, it can be seen that the surface of the paper fiber before
the modification has only a small amount of impurities attached, and it is almost smooth and flat,
and there is no obvious rough structure similar to protrusions. Figure 4d–f are the modified paper
samples. It can be clearly seen that the surface of the paper fiber after coating with the copolymer
has raised structures and wrinkles, which are no longer flat and smooth, and has become very rough.
Compared with the relatively smooth surface of the original paper, it can be preliminarily judged that
the modified paper is obviously rough because it is coated with a temperature and pH dual-responsive
copolymer. Besides, by observing Figure 4d–f, it is found that the surface of the modified paper fiber
becomes rough only. Its structure and outline have not changed significantly, and the inherent distance
between the fibers are still maintained. It ensures that the good mechanical and air permeability
properties of the paper will not be changed. This shows that the surface coating of the original paper
will not damage the fiber structure of the paper and affect some of its properties. Conversely, the paper
can be coated with functional substances on the surface, which make it rougher and enhances the
hydrophobic properties of the paper.

In addition, the surface morphology of the original paper and modified paper treated with acid
and alkali were also observed, as shown in Figures 5 and 6. The surface of the original paper is still
relatively smooth. The modified paper also retains its rough structure. This shows that acid and alkali
treatment basically does not affect the surface morphology of paper fibers.
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3.2. Analysis of the Copolymer Structure

As shown in Figure 7, the molecular structure of the temperature and the pH dual-responsive
copolymer were characterized by 1H NMR. The –CH2 peak of PBMA was observed at 1.4 ppm.
The peaks observed at 2.23 and 2.3 ppm correspond to –N–(CH3)2 and –N–CH2 of PDMAEMA. The
groups obtained at 4.07 ppm contributed to –CH2OH and –CH2 linked to an ester group of PDMAEMA.
The peak observed at 3.68 ppm was due to –CH–(CH3)2 of PNIPAm.

FTIR was used to test and characterize the monomers used in the copolymerization reaction and
the finally synthesized copolymer with dual-responsiveness. The chemical structure of the product was
observed to further demonstrate the success of the polymerization. Figure 8 show the infrared spectra
of the monomers BMA, HEMA, DMAEMA, NIPAm and the synthesized dual-responsive copolymer
used for polymerization, respectively. In Figure 8 (green curve) the copolymer spectrum, the absorption
peak at 2958 cm−1 corresponded to the stretching vibration of –CH in the monomers of BMA, HEMA,
NIPAm and DMAEMA. The peak near 3533 cm−1 was ascribed to the stretching vibration of –OH in
the HEMA monomer. The characteristic absorption bands at 1166 and 1720 cm−1 corresponded to
the C–N and C=O tensile groups in DMAEMA, respectively. The stretching and bending vibration
peaks of N–H were clearly observed at 3298 and 1546 cm−1, which were the typical absorption bands
of NIPAm. The peak near 1668 cm−1 was attributed to the C=O stretching vibration of NIPAm [41].
Through analysis, it was found that the main characteristic peaks of these monomers existed at the
same wavelength in the spectra of the copolymer with dual-responsiveness. This phenomenon further
indicated that the copolymer has been successfully synthesized from the microscopic point of view.
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3.3. Analysis of Paper Surface Elements

The surface elements of the original paper and the copolymer-modified paper were detected
through XPS. The results were analyzed to compare the changes of the surface elements of the paper
before and after modification, which proved that the copolymer attached to the paper successfully and
played a role in the modification of the paper. As shown by the black curve in Figure 9a, the surface
of the original paper was mainly composed of a C element centered on 282.6 eV and an O element
around 530.9 eV. The red curve could be found and the modified paper surface had a new N peak at
the center of 396.8 eV. In fact, this was attributed to the amide group in the NIPAm monomer and the
tertiary amine in the DMAEMA monomer. The results of the XPS testing indicated that the copolymer
had successfully attached to the surface of the paper.

In addition, Figure 9a also showed the changes in the surface elements of the modified paper after
acid (green) and alkali (blue) treatment, which could provide a basis for the pH response mechanism.
When the modified paper was immersed in an acid solution, a Cl 2p peak appeared at 194.8 eV. The N 1s
peaks at 396.8 and 399.5 eV (Figure 9c) corresponded to the tertiary and quaternary amines, indicating
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that the PDMAEMA chain was protonated. When the modified paper was treated with alkali, an Na 1s
peak appeared at 1069.4 eV. The N 1s peak was only observed at 396.7 eV (Figure 9d), which proved
that PDMAEMA was deprotonated [42]. From the point of view of atomic content, the N atomic
content of modified paper without the acid or alkali treatment was 3.3%. After acid treatment, the
N atom content of the modified paper increased to 4.3%. This was caused by the quaternary amines
produced by the protonation of PDMAEMA. After alkali treatment, there was no significant change in
the N atomic content of the modified paper. This was because PDMAEMA was deprotonated and
corresponded to the tertiary amine in its chain segment. This result showed that the wettability of the
paper could be altered by the protonation and deprotonation processes of the PDMAEMA segment in
different pH solutions.
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3.4. Thermal Analysis of Copolymer and Paper

3.4.1. Thermal Analysis of Copolymer

The DSC curve of the temperature and pH dual-responsive copolymer was shown in Figure 10.
The phase transition temperature, LCST, was taken as the peak point at which the heat flow changes
during the heating process [43]. It can be found from the figure that the phase transition temperature
of the copolymer is approximately 26.5 ◦C. As mentioned previously, the LCST of PNIPAm is
around 32–34 ◦C. With the change in temperature, PNIPAm chains undergo reversible contraction
and expansion. Above LCST, PNIPAm exhibits hydrophobicity. Below LCST, PNIPAm exhibits
hydrophilicity. However, this value varies when PNIPAm is used in the copolymer form rather than a
homopolymer. Because the nature of the monomer copolymerized with NIPAm will affect the phase
transition temperature and temperature sensitivity. In this study, BMA and HEMA were used as
comonomers to participate in the polymerization reaction. The decrease of LCST might be attributed to
the presence of poly (HEMA) and poly (BMA) in the prepared copolymer. It could be explained by the
weakening of the hydrogen bond between the copolymer and the solvent water and the strengthening
of the hydrophobic bond between the polymer chains. The –OH of HEMA not only form hydrogen
bonds among themselves but also get hydrogen bonded with the amide group (–CONH) of NIPAm.
This consequently leads to the copolymer exhibiting more hydrophobicity than the homopolymer of
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pure PNIPAm [44]. This causes a shifting of the LCST to the lower side. Besides, studies have found
that when PNIPAm was copolymerized with a hydrophobic polymer (poly (BMA)), the LCST of the
resulting copolymer was reduced [45].
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3.4.2. Thermal Analysis of Paper

The two curves in Figure 11 show the weight loss of the original paper (black) and the modified
paper (red) as they continue to heat up from room temperature to 700 ◦C. It could be seen from the
figure that before 150 ◦C, the weight loss of the two papers accounts for about 5% of the total mass.
This was due to the weight loss caused by the desorption of the cellulose which physically adsorbed
water in the paper. After 150 ◦C, the weight loss of the original paper in the temperature range of
280–370 ◦C was caused by the pyrolysis of cellulose to produce small molecular gases and large
molecular volatile components. The weight loss was most obvious at this stage, accounting for about
75% of the total mass. The weight loss after 370 ◦C was mainly due to the slow decomposition of
residual materials. During the entire heating process, the weight of the unmodified paper dropped
from 100% to about 20%, and a total of about 80% of the weight was lost. The weight loss of the
modified paper was most obvious in the temperature range of 260–355 ◦C, accounting for 72% of
the total mass. This was mainly because of the pyrolysis of cellulose to produce small molecules of
gas and large molecules of volatile matter. The main pyrolysis temperature of the modified paper
started at 260 ◦C, which was 20 ◦C lower than the original paper. This phenomenon could be caused
by the increased surface roughness of the modified paper after the copolymer was coated. When the
temperature increased, the heating area of the modified paper was larger and more uniform than that
of the original paper, so the modified paper would lose weight first at a relatively low temperature. The
weight loss of modified paper after 355 ◦C was also because of the slow decomposition of the paper
fiber residue. It was found that under the same conditions, the final weight of paper after pyrolysis
was about 23%, which was about 3% more material than the original paper. The extra weight of the
paper was caused by the reactive copolymer coating on the paper surface. Therefore, from the thermal
weightlessness test results, it also assisted in proving the successful coating of the copolymer on the
paper surface, so that the paper was successfully modified.
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3.5. Research on Paper Temperature Response Performance

3.5.1. Determination of LCST for the Dual-Responsive Superhydrophobic Paper

According to the oil–water separation experiment between the sample bottle and the beaker device,
as shown in Figure 12, when the temperature of the oil–water mixture was 10 and 20 ◦C respectively,
deionized water was collected in the bottle, while n-hexane stained with oil red O was left in the beaker.
This indicated that the paper was hydrophilic and oleophobic after the two temperature treatments.
When the temperature of the oil–water mixture was 35, 50 and 65 ◦C respectively, red n-hexane was
collected in the sample bottle and deionized water was left in the beaker. This indicated that the paper
remained in a hydrophobic and lipophilic state at these three temperatures. Therefore, it could be
determined that the LCST range of the prepared dual-responsive superhydrophobic paper was 20 to
35 ◦C.
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Figure 12. Liquid collected by oil and water separation at different temperatures: (a,b) water: (a) 10 ◦C;
(b) 20 ◦C; (c–e) hexane: (c) 35 ◦C; (d) 50 ◦C; (e) 65 ◦C.

Next, in the temperature range of 20 to 35 ◦C, with a temperature gradient difference of 5 ◦C,
an oil–water mixture at 25 and 30 ◦C was prepared to repeat the oil–water separation experiment,
and so on. According to the experimental results, the LCST of the dual-responsive superhydrophobic
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paper in this experiment was finally obtained at 25 ◦C. This is basically consistent with the LCST value
(26.5 ◦C) of the copolymer. It further shows that the paper is modified successfully.

3.5.2. Temperature Response Testing and Analysis

After the LCST of the modified paper was determined, the temperature response of the paper
surface under different conditions could be tested by measuring the contact angle of the paper
treated at different temperatures. The specific method was as follows: two successfully modified
superhydrophobic papers were treated at two temperatures below and above the LCST, respectively.
One of them used an ice bath to treat the paper at 15 ◦C, while the other used a hot bath to treat the
paper at 55 ◦C. As shown in Figure 13a, the contact angle of the paper surface changes with time
below 55 ◦C. When the paper was above the LCST, the initial state of the paper was superhydrophobic,
and its contact angle was 161◦. After 3 h, it remained superhydrophobic, and the contact angle at
this time was still greater than 150◦, which was 157◦. As shown in Figure 13b, when the paper was
processed at 15 ◦C, the surface contact angle of the paper reached 158◦ at the beginning, which was a
superhydrophobic state. After a few seconds, the water droplets on the surface of the paper began to
slowly penetrate the paper, and the contact angle decreased gradually. Within 30 s, the water droplets
had completely penetrated the surface of the paper, and the water contact angle had reduced to 0◦.
At this time, the paper successfully transformed into hydrophilic paper. The results of the temperature
response test show that the modified superhydrophobic paper has a theoretical temperature response
performance. It is superhydrophobic paper under conditions higher than the LCST and it will transform
into superhydrophilic paper when it is below the LCST.

The temperature-responsiveness of the modified paper is due to the addition of a
temperature-responsive polymer PNIPAm. PNIPAm has been thoroughly studied [46–48]. According
to the results, PNIPAm exhibits a superhydrophobic performance when the ambient temperature
is higher than the LCST of the polymer. When the outside temperature is lower than LCST, it will
become hydrophilic.
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< LCST.

PNIPAm can realize the transition between superhydrophobic and hydrophilic states when the
temperature changes, because the hydrogen bond between the amide group of PNIPAm and the
water molecule has changed. When the temperature is lower than LCST, the C=O and N–H groups
in PNIPAm form intermolecular hydrogen bonds with water molecules. Under the action of this
hydrogen bond, the two groups above will be very closely combined with water molecules and
the polymer exhibits hydrophilic properties. In addition, the effect of hydrogen bond will lead to
hydration expansion of PNIPAm, which provides sufficient power for the PNIPAm chain segment on
the surface to cover other polymers, thus making PNIPAm dominant and contributing to hydrophilicity
on its surface. On the contrary, when the temperature reaches above the LCST, as the temperature
increases, the hydrogen bonds between the molecules will gradually weaken, making the hydrophobic
interaction between the isopropyl groups more obvious. When the temperature rises to a certain degree,
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the hydrogen bond between the C=O and N–H groups and water molecules will be broken, and an
intramolecular hydrogen bond will be formed. The PNIPAm at this time shrinks compared with the
state under the LCST, causing it to be dehydrated and collapsed. In this way, its hydrophobic groups
and other hydrophobic polymers used in polymerization reaction (such as PBMA and PDMAEMA,
etc.) are exposed, so that the surface of the prepared polymer shows superhydrophobic characteristics.
The analysis of the temperature response mechanism is shown in Figure 14.
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3.6. Study and Analysis of pH-Response

Similarly, the pH-responsive performance of the prepared superhydrophobic paper was tested
to verify whether it successfully possessed a pH-response. Figure 15a shows that the initial contact
angle of the paper was greater than 150◦ and up to 159◦ after the paper was infiltrated by an acidic
solution with pH 1. However, after a short time, the water droplets on the surface began to permeate
the paper slowly. The second picture of Figure 15a shows the state of water droplets on the surface of
the paper after 30 s. As the time continued to increase, the water droplets on the surface of the paper
disappeared completely after 1 min. The contact angle was obviously dropped to 0◦. After soaking
the modified superhydrophobic paper in a neutral solution with a pH of 7 and an alkaline solution
with a pH of 14, the original superhydrophobic state had been maintained for 3 h. The test results of
pH responsiveness show that the superhydrophobic paper prepared in this research had good pH
responsiveness. After acid treatment, the paper would gradually change from a superhydrophobic
state to a hydrophilic state. But under neutral and alkaline conditions, its superhydrophobic state could
remain unchanged and had a good stability. This shows that the superhydrophobic paper can flexibly
switch between superhydrophobic and superhydrophilic states when the external pH value changes.

Among many external stimuli, due to the simple operation when responding to pH stimuli,
no special facilities are needed. pH stimulation is more advantageous and attractive in applied research.
In theory, most reactive materials that can respond to external pH stimuli have ionizable groups,
such as sulfonates, carboxylic acids, pyridines and amines, which respond to changes in the pH of
each repeating unit.
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In this study, poly (2-dimethylamino) ethyl methacrylate (PDMAEMA) was selected as the
pH-responsive polymer. It is a sensitive polymer material with pH response. PDMAEMA has ionizable
tertiary amine groups. This allows it to undergo a protonation or deprotonation transition when the
external pH value changes, so as to react accordingly [49,50]. When the prepared copolymer is under
an acidic environment, the tertiary amine group in PDMAEMA will be protonated to form a positively
charged ammonium group (QA+). The molecular hydrogen bonds between the groups will combine
with the surrounding water molecules to form a layer of water molecules on the surface, which increases
the surface energy of the material and makes the material exhibit hydrophilic properties. At the same
time, this layer of water molecules can block the entry of oil and make the material exhibit oleophobic
properties. When the material is in a neutral and alkaline environment, the hydroxyl group in the
solution attacks the nitrogen atom of N+–H and releases a proton at the same time. The chloride ion in
the quaternary ammonium salt is removed, and the ionizing group can be deprolongated. At this time,
the surface wettability of tertiary amine groups is dominated by hydrophobic groups, and hydrophobic
interaction becomes the major force. This leads to the superhydrophobicity of the copolymer. In other
words, the protonation and deprotonation reactions of PDMAEMA cause a significant change in the
wettability of the material surface. The analysis of the pH-response mechanism is shown in Figure 16.
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4. Conclusions

In this study, we used the dip-coating method to immerse the pretreated paper in the copolymer
solution to prepare a superhydrophobic paper with dual-responsiveness of temperature and pH.
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Analysis such as 1H NMR, FTIR and SEM found that the copolymer had successfully synthesized
and was uniformly coated on the paper. Static water contact angle and oil–water separation tests
showed that the functionalized paper could make corresponding hydrophilic/hydrophobic reactions
to temperature and pH changes. When the paper was in the conditions of pH ≥ 7 and T > 25 ◦C,
it showed good superhydrophobic performance, otherwise it would change to a hydrophilic state.
The dual-responsive superhydrophobic paper prepared in this research successfully realized the
conversion of the hydrophilic/hydrophobic state to different temperatures and pHs. This not only
extends the application range of superhydrophobic paper in moisture-proof packaging, paper-based
sensors, oil–water separation, and self-cleaning materials, but is also a good reference for the significance
of the in-depth research into the current intelligent responses to superhydrophobic paper.
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