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Abstract: Titanium-copper (Ti–Cu) coatings have attracted extensive attention in the surface
modification of industrial and biomedical materials due to their excellent physical and chemical
properties and biocompatibility. Here, Ti–Cu coatings are fabricated using a combination of
high-power pulsed magnetron sputtering (HPPMS; also known as high power impulse magnetron
sputtering (HiPIMS)) and DC magnetron sputtering followed by vacuum annealing at varied
temperatures (300, 400, and 500 ◦C). X-ray diffraction (XRD), transmission electron microscopy (TEM),
and X-ray photoelectron spectroscopy (XPS) data showed that Ti, Cu, and CuTi3 are mainly formed in
the coatings before annealing, while Ti3O, Cu2O, and CuTi3 are the main compounds present in the
annealed coatings. The cross-sectional TEM micrographs and corresponding EDS results provided
evidence that Ti is mainly present on the surface and interfaces of the silicon substrate and the Ti–Cu
coatings annealed at 500 ◦C, while the bulk of the coatings is enriched with Cu. The resistivity of
the coatings decreased with increasing the annealing temperature from 300 to 500 ◦C. Based on
self-corrosion current density data, the Ti–Cu coating annealed at 300 ◦C showed similar corrosion
performance compared to the as-deposited Ti–Cu coating, while the corrosion rate increased for
the Ti–Cu coatings annealed at 400 and 500 ◦C. Stable release of copper ions in PBS (cumulative
released concentration of 0.8–1.0 µM) for up to 30 days was achieved for all the annealed coatings.
Altogether, the results demonstrate that vacuum annealing is a simple and viable approach to tune the
Cu diffusion and microstructure of the Ti–Cu coatings, thereby modulating their electrical resistivity,
corrosion performance, and Cu ion release behavior.
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1. Introduction

Titanium and titanium-based alloys have been widely used in industries such as chemical
and biomedical engineering due to their corrosion resistance, mechanical properties, elasticity,
excellent thermal and chemical stability, as well as biocompatibility [1–4]. Copper is used as a
conductor of heat and electricity [5], antimicrobial material [6], building material [7], and constituent
of various metal alloys [8–10]. Titanium combined with copper in the form of thin Ti–Cu coatings has
potential applications in surface engineering of devices to modify their mechanical, anticorrosion and
antibacterial properties, as well as biocompatibility [11–15]. Ti–Cu coatings show improved corrosion
resistance compared to stainless steels (SS) substrates [14,16,17]. Copper ions can be released from the
Cu-containing materials such as Cu, Cu alloys, Cu nanoparticles, CuS nanodots, copper(II)-chitosan
complexes, copper phosphate cement, and Ti–Cu coatings, and therefore influence the antimicrobial
functionality or cell behaviors [18–22].

Vacuum annealing is a common method to change the microstructure, corrosion behavior,
resistivity, mechanical properties and biocompatibility of materials [23,24]. It has been reported that
annealing of Ti–Cu coatings with Ti concentration of 1.3 and 2.9 at.% in an argon atmosphere results in
the segregation of the top and bottom of the coating, forming a supersaturated Ti layer suitable for
self-forming barrier layers in integrated circuits [25].

There is limited knowledge available in the literature on the effect of vacuum annealing on
corrosion performance and Cu ion release behavior of Ti–Cu coatings. The microstructure evaluated
by high-resolution transmission electron microscopy (HRTEM) and selective area electron diffraction
(SAED) is also rarely reported for annealed Ti–Cu coatings. In the present paper, Ti–Cu coatings
were prepared using a combination of HiPIMS and DCMS sputtering techniques. The sputtering
material is highly ionized in the HiPIMS process; therefore, facilitating the fabrication of high density,
homogenous, and smooth coatings with superior substrate–coating adhesion [26–30]. Following the
deposition of the coatings, they were vacuum annealed at various temperatures ranging from 300 to
500 ◦C. The effect of vacuum annealing on elemental composition and distribution; chemical state;
microstructure; as well as the resistivity, corrosion properties, and Cu ion release profiles of Ti–Cu
coatings was evaluated.

2. Materials and Methods

Ti–Cu coatings were fabricated on silicon and 316L SS by co-sputtering using high power pulsed
magnetron sputtering (HPPMS) and DC magnetron sputtering (DCMS) according to our previous
paper [16]. Silicon (100) wafers with arithmetical mean roughness (Ra) of approximately 0.5 nm were
purchased from Emei Semiconductor (Leshan, China). 316L SS substrates were polished to a mirror-like
surface. Copper and titanium targets with the dimensions of 170 mm × 135 mm × 10 mm (99.9 at.%
purity) were sputtered using DC (sputtering current: 2 A) and HiPIMS power supplies (voltage:
−600 V; frequency: 100 Hz; pulse width: 50 µs), respectively. The base pressure in the chamber was
approximately 2.0 × 10−3 Pa. Before deposition, the copper and titanium targets were pre-sputtered
using a 2 A DC power supply for 10 min to etch the targets’ surface oxide layer. The silicon (100) and
316L SS substrates were cleaned using argon ion sputtering with a negative bias voltage of 1500 V
at 3 Pa for 15 min. The distance between the substrate and target of Ti and Cu was 140 and 180 mm,
respectively. The substrates were not heated during the deposition runs. A bias voltage of −50 V was
applied to the substrate holder. The pressure of argon gas was 0.6 Pa and deposition time was 10 min.
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The deposited Ti–Cu coatings were vacuum annealed using MFAD500 magnetic filter metal arc
deposition equipment. The samples were placed in the vacuum chamber at the temperatures of 300, 400,
and 500 ◦C for 30 min. The base pressure was less than 1.0 × 10−3 Pa. The samples in the chamber were
cooled to room temperature in a consistent manner. The Ti–Cu coatings annealed at the temperatures
of 300, 400, and 500 ◦C are named as Ti–Cu-300 ◦C, Ti–Cu-400 ◦C, and Ti–Cu-500 ◦C, respectively.

The surface morphology of the as-deposited and annealed Ti–Cu coatings was evaluated using
scanning electron microscopy (JSM-7800F, JEOL, Tokyo, Japan) equipped with energy dispersive
X-ray spectroscopy (EDS, OXFORD, Abingdon, UK). The phase structure of the deposited and
annealed Ti–Cu coatings was investigated via X-ray diffraction equipment (Philips X’pert, Amsterdam,
Holland) equipped with Cu Kα radiation (λ = 1.5406 Å) at 30 mA and 30 kV in the 2θ range of
30–50◦. The microstructure of Ti–Cu coatings before and after annealing was further characterized
by transmission electron microscopy (FEI Titan G2 60-300 (AC-TEM), Hillsboro, OR, USA) at the
acceleration voltage of 300 kV. X-ray Photoelectron Spectroscopy (Escalab 250Xi, Waltham, MA, USA)
measurements were carried out to determine the chemistry of the Ti–Cu coatings before and after Ar+

ion sputtering. The X-ray source (Al Kα, 1486.86 eV) was operating at 12.5 kV and 16 mA. The surfaces
were etched using an Ar+ ion source with an etching rate of approximately 1 nm/s. The ion gun current
was 10 A and the etching angle was 30◦.

The electrical resistivity of the Ti–Cu coatings before and after annealing was calculated at room
temperature using a four-point probe (SZ-82, Suzhou, China). The size of the samples was 1 × 3 cm2,
and 5 positions on the surfaces of the sample were tested to calculate the average values of the resistivity.

The electrochemical corrosion properties of the Ti–Cu coatings before and after annealing were
evaluated using an electrochemical workstation (IM6, Zahner, Kronach, Germany). The phosphate
buffer solution (PBS) with pH of 7.4 was employed as the electrolyte solution. The scanning range was
from −0.8 to 0.8 V and the scanning rate was 1 mV/s. A scanning electron microscope (JSM-7000 1F)
was used to evaluate the surface morphology of the samples after the electrochemical corrosion tests.

The concentration of Cu ions released from the Ti–Cu coatings before and after annealing was
measured using an inductively coupled plasma mass spectrometry (ICP-MS, Agilent 7700, Santa Clara,
CA, USA) with an accuracy of 0.005 mg/L. The coatings were soaked in 10 mL of PBS (pH = 7.4) for
30 min, 1 d, 3 d, 7 d, 15 d and 30 d at 37 ◦C in a thermostat water bath, and then the concentration of
Cu ions was measured.

3. Results and Discussion

3.1. Surface Chemistry and Structural Analyses of Ti–Cu Coatings

The copper contents of Ti–Cu coatings deposited on silicon substrates before and after annealing
treatment were evaluated through EDS mapping. The ratio of Cu/(Cu + Ti) atomic concentrations
obtained from EDS analysis are listed in Table 1, and the surface elemental distribution on the Ti–Cu
coatings evaluated by EDS mapping (Ti: red points; Cu: green points) are shown in Figure 1b,e,h,k.
As observed, the distribution of Cu is relatively uniform for the Ti–Cu coatings for both before and
after annealing conditions. The sampling depth of EDS is in the range of micrometers [31,32], which is
much larger than the thickness of the Ti–Cu coatings that was approximately 250 nm, as evaluated
by cross-sectional TEM images. Therefore, these results reflect the Cu contents of the entire Ti–Cu
coatings. The results listed in Table 1 show that the Cu/(Cu + Ti) values evaluated by EDS mapping
are in the range of 12.1 to 19.5 at.% for all the Ti–Cu samples. The relative error in quantitative EDS
analysis is approximately 12% [33]. Thus, the entire Cu contents evaluated by EDS mapping on the
surfaces of the Ti–Cu coatings annealed at 300, 400, and 500 ◦C show no significant changes compared
to that of the as-deposited Ti–Cu coatings with no annealing treatment.
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Table 1. Cu contents evaluated by EDS for the deposited and annealed Ti–Cu coatings.

Samples As–Deposited Ti-Cu Ti–Cu-300 ◦C Ti–Cu-400 ◦C Ti–Cu-500 ◦C

Cu/(Cu + Ti) values
(at.%) 12.1 14.9 19.5 15.4

Figure 1. (a,d,g,j) Surface morphology evaluated by SEM, (b,e,h,k) the distribution of Cu and Ti
elements evaluated by energy dispersive X-ray spectroscopy (EDS) mapping corresponded to SEM
images, and (c,f,i,l) the EDS spectra corresponded to SEM images for the Ti–Cu coatings deposited on
silicon substrates. The images are obtained from samples before (as-deposited) and after annealing at
various temperatures of 300, 400, and 500 ◦C (red points for Ti, and green points for Cu for the EDS
mapping).

Figure 2 shows the X-ray diffraction (XRD) patterns of as-deposited and annealed Ti–Cu coatings
deposited on silicon substrates compared with pure Ti and Cu coatings. The as-deposited Ti–Cu
coatings exhibit a strong preferential Ti (002) peak according to the PDF card 00-001-1197. The diffraction
envelope peaks of Ti, Ti3O or CuTi3 are observed after annealing at 300 ◦C. The Ti–Cu coatings annealed
at 400 and 500 ◦C exhibit Ti3O or CuTi3 peaks. The peaks of Ti3O or CuTi3 are consistent with the PDF
cards 01-073-1583 and 00-025-1144. The full width at half maximum (FWHM) of Ti3O (011) or CuTi3
(111) decreases when increasing the annealed temperature from 300 to 500 ◦C, indicating the growth of
the crystalline grains and enhancement of crystallinity.
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Figure 2. X-ray diffraction (XRD) patterns of Ti, Cu, and Ti–Cu coatings deposited on silicon substrates
before and after annealing at temperatures of 300 ◦C, 400 ◦C, and 500 ◦C.

Figure 3. Cross-sectional transmission electron microscopy (TEM) results obtained for the as-deposited
Ti–Cu coatings on silicon substrates: (a) low magnification field image; (b) selective area electron
diffraction (SAED) image; (c,d) high-resolution transmission electron microscopy (HRTEM) images;
(e) EDS line scans showing the distributions of elements (Pt, Ti, Si, Cu, O) in the high-angle annular
dark-field (HADDF) image; (f) corresponding EDS mappings showing the distribution of elements
(Pt, Ti, Si, Cu) in the HADDF image.
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Figure 4. Cross-sectional transmission electron microscopy (TEM) results obtained for the Ti–Cu
coatings annealed at the temperature of 500 ◦C on silicon substrates: (a) low magnification field image;
(b,c) corresponding HRTEM images; (d) corresponding selective area electron diffraction (SAED) image;
(e) corresponding HRTEM images; (f) EDS line scans showing the distributions of the elements (Pt, Ti,
Si, Cu, O) in the high-angle annular dark-field (HADDF) image; (g) corresponding EDS mappings of
the distribution of elements (Pt, Ti, Si, Cu) in the HADDF image.

The TEM results obtained from the Ti–Cu coatings annealed at 500 ◦C are presented in Figure 4.
Figure 4a shows the cross-sectional TEM image of the coatings and Figure 4b–d shows the corresponding
HRTEM results and selected area electron diffraction pattern (SAED) in the varied cross section areas
of the Ti–Cu coatings. The obvious lattice fringes labeled as n1, n2, n3, n4, n5, and n6 are shown in
Figure 4b,c. The SAED results from Figure 4d show that the varied diffraction rings correspond to
Ti3O, Cu2O, and CuTi3 phase. The interplanar spacings of 0.247, 0.229, and 0.155 nm in Figure 4b
are the characteristic d spacings of Ti3O, Ti2O, and/or Cu2O according to the PDF cards 01-073-1583,
01-073-1582, and 00-001-1142. The interplanar spacings of 0.236, 0.264, and 0.232 nm in Figure 4c are
the characteristic d spacings of Ti3O according to the PDF card 01-073-1583. Figure 4f,g shows the
HADDF images, corresponding EDS line scans, and EDS mapping for elemental analysis. These results
indicate an uneven distribution of Cu and Ti elements in the cross section of the coatings. The Cu
element is enriched in the middle of the coatings, while Ti is more concentrated close to the surfaces
and interfaces of the coatings and silicon substrates. The high-HADDF images in Figure 4f,g show
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obvious growth of columnar structures for the annealed coatings than that for the deposited coatings
in Figure 3e,f, which is consistent with the XRD results (Figure 2).

Using kinetic calculations, it has previously been reported that the diffusion of Ti is faster than
that of Cu [34]. Tsukimoto et al. reported that the Ti atoms diffused to the coating-SiO2 interfaces
and surface of Cu (Ti) coatings form a self-formed supersaturated Ti diffusion barrier after aging
treatment at 400 ◦C [25]. By annealing, Ti atoms are likely to diffuse up to the surface and down to
the coating–substrate interface along the short-range diffusion lengths such as grain boundaries or
dislocations, while pushing the Cu atoms to the center of the Ti–Cu coatings. This mechanism can
explain the uneven distribution of elements observed in the cross section of the coatings.

XPS was used to further evaluate the surface chemistry of the Ti–Cu coatings after vacuum
annealing. Figure 5a–d shows the curve fitted Ti2p spectra of the Ti–Cu coatings annealed at 500 ◦C
before and after Ar+ ion etching for 20, 60, and 180 s with etching speed of approximately 1 nm/s.
The Ti2p3/2 peaks at approximately 458.8, 457.4, and 455.5 eV correspond to TiO2, Ti2O3, and TiO,
respectively [35]. Figure 5e shows the area percentages of TiO2 (Ti4+), Ti2O3 (Ti3+), and TiO (Ti2+)
components calculated from curve fitted Ti2p spectra of the Ti–Cu coatings annealed at 500 ◦C before
and after argon etching for 20–240 s. These results show that TiO2 (Ti4+) is mainly formed on the
surfaces, and it decreases rapidly after etching for 20 s for the annealed coatings. The contents of Ti2O3

(Ti3+) and TiO (Ti2+) increase sharply after etching for 20 s and then remains stable after etching for
60 s. Sputtering by argon ions can induce the reduction of titanium oxide to sub-oxides such as Ti2O3,
and TiO [36]. The reduction of titanium oxide may contribute to the increase of the Ti2O3 (Ti3+) and
TiO (Ti2+). However, XRD and TEM results show the evidence that the sub-oxides such as Ti3O and
TiO nano-crystals are formed for the annealed coatings.

Curve fitted Cu2p spectra of the annealed Ti–Cu coatings (500 ◦C) before and after argon ion
etching for 20, 60, and 180 s are shown in Figure 5f–i, respectively. The Cu2p3/2 peak at 932.8 eV is
attributed to Cu or Cu2O, and the peak observed at approximately 1.8 eV higher binding energy is
due to CuO. The presence of a shake-up satellite peak at 943 eV further supports the formation of
CuO on the coatings [37,38]. TEM (Figure 4) results confirmed the formation of Cu2O for the annealed
Ti–Cu coatings. Figure 5j shows the area percentages of CuO (Cu2+) and Cu2O (Cu+) components for
the Ti–Cu coatings annealed at 500 ◦C before and after argon etching for 20–240 s. The CuO (Cu2+)
decreases rapidly, while Cu2O (Cu+) increases sharply after etching for 60 s. The concentrations of
CuO2 (Cu+) and CuO (Cu2+) show less significant changes for etching durations longer than 60 s.
The results show that the Ti–Cu coatings annealed at 500 ◦C contain Cu2O and CuO oxides from the
surface to the depths of approximately 10–60 nm. At larger depths, Cu2O is the dominant compound.

XPS results suggested that TiO, Ti2O3, TiO2, Cu2O, and CuO oxides are formed in the bulk of
the Ti–Cu coatings after vacuum annealing at 500 ◦C, while TiO2, Cu2O, and CuO are formed on the
surface of the deposited Ti–Cu coatings. Our previously reported XPS results showed that TiO2, Cu2O,
and CuO are also formed on the surface of the deposited Ti–Cu coatings, while metallic Ti and Cu
are mainly formed in the bulk of the Ti–Cu coatings [16]. The Ti and Cu oxides in the bulk of the
annealed coatings are most likely caused by the oxidation of adsorbed oxygen inside the chamber at
high temperatures of 300–500 ◦C.
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Figure 5. (a–d) Ti2p peak fitted spectra of the Ti–Cu coatings deposited on silicon substrates and
annealed at 500 ◦C before (etching for 0 s) and after Ar+ ion etching for 20, 60, and 180 s; (e) relative
area (%) of Ti (IV), Ti (III), Ti (II)) in Ti2p spectra of the Ti–Cu coatings annealed at 500 ◦C before and
after etching; (f–i) Cu2p Peak fitted spectra of the Ti–Cu coatings deposited on silicon substrates and
annealed at 500 ◦C before (etching for 0 s) and after Ar+ ion etching for 20, 60, and 180 s; (j) relative
area (%) of Cu(II) and Cu(I) in Cu2p spectra of the Ti–Cu coatings annealed at 500 ◦C before and
after etching.
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3.2. Surface Morphology

Figure 6 shows the SEM surface morphology of as-deposited and annealed Ti–Cu coatings
prepared on Si substrates. All annealed Ti–Cu coatings show more obvious particles on their surfaces
compared to as-deposited Ti–Cu coatings. Noncontiguous hillocks or islands are probably formed at
300 ◦C, and then grow up and form continuous hillocks or islands with clear boundaries after annealing
at 400–500 ◦C. A similar phenomenon has been reported by Po Chen Lin, who found that annealing
Cu (Ti) coatings with copper content of 62 at.% at 400 ◦C results in the formation of islands followed by
their growth to form continuous Cu-rich layers [34]. Figure 7 shows the surface morphology and the
corresponding root mean squared surface roughness (Rq) for the as-deposited and annealed Ti–Cu
coatings deposited on Si substrates. The surface roughness of the Ti–Cu coatings annealed at 500 ◦C
shows no significant change compared to the as-deposited coatings.

Figure 6. SEM micrographs showing the surface morphologies of Ti–Cu coatings before (as-deposited)
and after annealing at varied temperature of 300, 400, and 500 ◦C. The coatings were deposited on
silicon substrates.

Figure 7. Surface morphology and corresponding root mean squared surface roughness (Rq) evaluated
by AFM for the Ti–Cu coatings before (as-deposited) and after annealing at 500 ◦C (Ti–Cu- 500 ◦C).
The coatings were deposited on silicon substrates.
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3.3. Electrical Resistivity of Ti–Cu Coatings

Annealing can affect the microstructure of the coatings, and thereby affecting the electrical resistivity
that is critical for many applications including those in semiconductor industry or electroactive
biomaterials [39,40]. The influence of vacuum annealing temperature on the electrical resistivity
of the Ti–Cu coatings is studied using a four-probe device and the results are shown in Figure 8.
The resistivity of the deposited Ti–Cu coatings (173.0 µΩ·cm) is higher than that of Ti coatings
(99.0 µΩ· cm) and Cu coatings (3.6 µΩ·cm). Turnow et al. reported that the Ti–Cu coatings with Cu
contents ranging from 10 to 78 at.% exhibit a higher resistivity (above 150 µΩ·cm) compared to pure
Cu coatings [41]. The addition of Cu element makes it possible for Ti–Cu coatings to have a large
number of non-equilibrium defects and metastable structure, thereby reducing the conductivity of free
electrons and increasing the resistivity [41].

Figure 8. Resistivity of Ti, Cu, as-deposited Ti–Cu, and Ti–Cu coatings annealed at varied temperatures
of 300 ◦C, 400 ◦C, and 500 ◦C on silicon substrates.

Figure 8 shows that the resistivity of Ti–Cu coatings annealed at 300–500 ◦C decreases compared
with that of the deposited coatings. These results are in agreement with a study by Tsukimoto et al.
showing that the resistivity of a Cu (Ti) alloy annealed at 400 ◦C decreases compared to that before
annealing [25]. The EDS results (Figure 4f,g) showed that titanium diffuses to the surface and
interface, while copper is enriched in the bulk of the coatings. It has been reported that the resistivity
values of TiO compounds is 2.6 × 10−6 Ω·m [42], which is close to that of the as-deposited Ti–Cu
coating. The formation of non-stoichiometric titanium oxides such as TiO or Ti3O is the main factor
influencing the resistivity of the Ti–Cu coatings annealed at 500 ◦C. It has also been shown that the
Ti atoms segregate on the surfaces and lead to a decrease in the resistivity for the Cu (Ti) coatings
annealed at 400 ◦C [34]. Besides, the annealing process can reduce the non-equilibrium defects and
metastable structure, resulting in the increase of the conductivity of free electrons and decrease of
the resistivity [43,44]. It has been reported that the annealing process results in the reduction of
resistivity for coatings such as sputter-deposited tungsten [45], Ga-doped ZnO [46], and Al–Ti-doped
ZnO coatings [47]. Therefore, the decrease of resistivity is due to the uneven element distribution and
decreased defects and metastable structures for the annealed Ti–Cu coating.



Coatings 2020, 10, 1064 11 of 16

3.4. Electrochemical Corrosion of Ti–Cu Coatings

The electrochemical corrosion of the as-deposited and annealed Ti–Cu coatings on 316L SS
substrates were evaluated using open-circuit potential and polarization curve test. Figure 9a shows
the open-circuit potential for the as-deposited and annealed Ti–Cu samples. From a thermodynamic
perspective, the more negative Ecorr value, the higher tendency for corrosion to occur [48]. The Ti–Cu
coatings annealed at 300, 400, and 500 ◦C exhibit higher open-circuit potential than the as-deposited
Ti–Cu coatings and 316L SS, indicating lower corrosion tendency. The coating annealed at 300 ◦C
shows the lowest corrosion tendency.

Figure 9. (a) Open circuit potential and (b) polarization curves of the deposited and annealed Ti–Cu
coatings (300 ◦C, 400 ◦C, and 500 ◦C) deposited on 316L SS substrates; (c) Surface morphologies
evaluated by SEM images after electrochemical corrosion for the deposited and annealed Ti–Cu coatings
on 316L SS substrates.

Figure 9b shows the polarization curves of the 316L SS, deposited and annealed Ti–Cu coatings.
Table 2 displays the self-corrosion potential (Ecorr) and self-corrosion current density (Icorr) of the
samples according to the Tafel extrapolation method [49]. Similar to the open circuit potential, a higher
Ecorr indicates a lower possibility of corrosion for these samples. In a previous study, it has been
reported that the TiO2 coatings have greater Ecorr compared to Ti or SS substrates [50,51]. The presence
of passivated metal oxides, as indicated by XPS and TEM results, may reduce the corrosion tendency
of the annealed Ti–Cu coatings.

Table 2. The corrosion potential (Ecorr) and current densities (Icorr) of 316L SS and Ti–Cu coatings
before and after annealing at 300 ◦C, 400 ◦C, and 500 ◦C.

Sample Ecorr (V) Icorr (A·cm−2)

316L SS −0.375 3.38 × 10−7

As-deposited Ti-Cu −0.293 1.07 × 10−8

Ti-Cu-300 ◦C 0.004 1.42 × 10−8

Ti-Cu-400 ◦C −0.026 1.24 × 10−7

Ti-Cu-500 ◦C −0.016 1.76 × 10−7

The corrosion rate of the coated samples is generally determined by the corrosion current density.
Figure 9b and Table 2 show that all Ti–Cu coatings have lower corrosion current density compared
with 316L SS, indicating lower corrosion rates. The Ti–Cu coating annealed at 300 ◦C show similar
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corrosion rate compared to the as-deposited Ti–Cu coating, while it increases for the Ti–Cu coatings
annealed at 400 and 500 ◦C. These results correspond to the results of SEM surface morphology after
polarization tests in Figure 9c. Figure 9c shows that 316L SS sample is severely corroded as evidenced
by the appearance of deep and large pits. The deposited and annealed Ti–Cu coatings (300 ◦C) exhibit
smooth surfaces without obvious pits, while the coatings annealed at 400 and 500 ◦C display shallow
and small micro pits (1–3 µm in diameter).

Naka et al. found that the corrosion behavior of the amorphous Cu50Ti50 and Cu50Zr50 alloys
is lower than that of the crystalline alloys with the same composition [52]. The reason is that the
amorphous alloy has higher chemical uniformity and fewer crystal defects, such as precipitation,
segregation, grain boundaries, and dislocations, forming a uniform and highly protective coating for
passivation. The passivated metal oxides are formed after annealing according to the results of XPS
and TEM. However, the TEM results (Figure 4) indicate that annealing can cause uneven element
distribution for the Ti–Cu coatings. The XRD results (Figure 1) indicate crystal growth and crystallinity
enhancement as increasing the annealing temperatures of Ti–Cu coatings. The uneven distribution
of elements and improvements in crystallinity probably lead to increased corrosion behavior for the
Ti–Cu coatings annealed at 400 and 500 ◦C.

3.5. Copper Ion Release of Ti–Cu Coatings

The copper ion release profile of Cu-bearing coatings can be affected by their Cu content [16],
thickness [17], substrate roughness [53], and crystallographic structure [54]. The changes in Cu release
profile are crucially important for biomedical applications as such changes significantly influence the
function of the coatings such as their antibacterial activity and biocompatibility [15,16,55]. Figure 10a,b
shows the concentration of released copper ions and release rate detected by ICP-MS after immersing
in a PBS solution at 37 ◦C for 30 min, and 1–30 days for the as deposited and annealed Ti–Cu coatings.
From Figure 10a, it is observed that the concentrations of the released copper ions are less for all the
annealed Ti–Cu coatings compared with those released from the as-deposited coatings. The stable
release of copper ions in PBS solution is within 0.8–1.0 µM for up to 30 days for all the annealed Ti–Cu
coatings. A study by Ding et al. concluded that greater release rates of copper ions in natural seawater
occur for Cu/Cu2O coatings with higher Cu2O contents [54]. TEM and corresponding EDS results
show that the Cu element is enriched in the bulk of the annealed coatings, possibly resulting in the
inhibition of the copper ion release compared to as-deposited coatings. Figure 10b shows that the
release rate of all samples in the first 30 min is high, indicating the burst release of copper ions. After the
initial decline, all the release rates remain almost stable ranging from 0.008 to 0.003 µmol/cm2

·d·L for
immersing time of up to 30 days. These results suggest that vacuum annealing affects the Cu diffusion
of Ti–Cu coatings, and thereby affecting the copper ion releasing profiles.

Figure 10. (a) The accumulated Cu ions and (b) release rate of Cu ions of the deposited and annealed
Ti–Cu coatings (300 ◦C, 400 ◦C, 500 ◦C) deposited on silicon substrates after immersion in PBS solution
(pH = 7.4) for durations from 30 min to 30 days.
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4. Conclusions

Ti–Cu coatings were fabricated using HPPMS/DC magnetron co-sputtering followed by vacuum
annealing at temperatures of 300, 400, and 500 ◦C. XRD and cross-sectional TEM results showed that
as-deposited Ti–Cu coatings mainly contain nanocrystals such as Ti, Cu, and CuTi3, while Ti3O/TiO,
Cu2O, and CuTi3 nanocrystals are mainly present in the annealed coatings. TEM results also showed
that Ti and Cu elements are uniformly distributed in the deposited Ti–Cu coatings, while Cu is enriched
in the bulk of the coatings and Ti diffuses to the surface and interfaces between the coatings and
the silicon substrates for the coating annealed at 500 ◦C. XPS results before and after Ar ion etching
provided evidence that TiO2, Cu2O, and CuO are present on the surfaces, while Cu2O, TiO2, Ti2O3,
and TiO are formed in the bulk of the coatings annealed at 500 ◦C. SEM results demonstrated that
the surfaces of annealed Ti–Cu coatings have more obvious particles than that of the deposited Ti–Cu
coatings. Both as-deposited and annealed Ti–Cu coatings show higher resistivity than Ti and Cu
coatings. The resistivity of Ti–Cu coatings annealed at 300–500 ◦C decreases compared with that of
the deposited coatings. The uneven elemental distribution and improvement of crystallinity decrease
the electrical resistivity of the annealed Ti–Cu coatings. The corrosion behavior of the Ti–Cu coatings
annealed at 300 ◦C is similar to that of the deposited Ti–Cu coatings, while it increases for the Ti–Cu
coatings annealed at 400 and 500 ◦C. The concentration of released copper ions of Ti–Cu coatings
annealed at 300, 400, and 500 ◦C slightly decreases compared with that of as-deposited coatings.
The release rates remain almost unchanged in the range of 0.008 to 0.003 µmol/cm2

·d·L for immersion
times of up to 30 days. We have demonstrated that vacuum annealing affects the Cu diffusion and
microstructure of Ti–Cu coatings, and thereby affects the resistivity, corrosion properties, and copper
ion releasing behaviors.
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