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Abstract: In this work, we study the influence of the geometry of a thin film on its transmission 

spectrum, as measured on amorphous As-based chalcogenide layers grown onto 1-mm-thick soda-

lime-silica glass substrates. A new method is suggested for a comprehensive optical characterization 

of the film-on-substrate specimen, which is based upon some novel formulae for the normal-

incidence transmittance of such a specimen. It has to be emphasized that they are not limited to the 

usual cases, where the refractive index, n, of the film and that of the thick transparent substrate, s, 

must obey: n2>>k2  and s2>>k2 , respectively, where k stands for the extinction coefficient of the 

semiconductor. New expressions for the top and bottom envelopes of the transmission spectrum 

are also obtained. The geometry limitation usually found when characterizing strongly-wedge-

shaped films, has been eliminated with the introduction of an appropriate parameter into the 

corresponding equations. The presence of crossover points in the top and bottom envelopes of the 

transmission spectrum, for these strongly-wedge-shaped chalcogenide samples, has been both 

theoretically predicted and experimentally confirmed. 

Keywords: amorphous chalcogenides; optical properties; dielectric function; thin-film 

characterization; semiconductor; optical dispersion; Tauc–Lorentz model; Tauc–Lorentz–Urbach 

model 

 

1. Introduction 

Thin films of amorphous semiconductor materials have been very widely employed in all types 

of electronic devices, as integrated-microelectronic and optoelectronic devices, acousto-optic devices, 

optical fabrication of micro-lenses in chalcogenide glasses, optical phase-change materials for 

chalcogenide thin-film transistors and electronic memories, materials exhibiting reversible and 

irreversible photo-induced refractive-index changes, photovoltaic solar cells, and, very recently, in 

the area of chalcogenide photonics, among other important technological applications (see the 

following, quite ample set of illustrative references, covering all the aforementioned technological 

applications, [1–14]). Consequently, the optical characterization of such thin non-crystalline 

semiconducting films deposited onto thick transparent substrates, has been widely performed during 

the last decades [15–18]. This has been done in order to determine the optical constants of these 

amorphous layers, that is, their refractive index, n, and extinction coefficient, k, respectively. 

Furthermore, the necessary accurate description of the geometry of the thin-film sample under 

investigation, that is, the quantification of the degree of non-ideality of its geometric characteristics, 

was also carried out. 
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Normal-incidence optical transmission spectroscopy is undoubtedly a highly attractive tool for 

calculating the optical properties of films upon thick glass substrates, because it is certainly relatively 

simple, non-destructive and non-invasive, and most important of all very accurate [19–21]. 

Numerous properties of a material are related to in terms of its complex dielectric constant ε = 

ε1 – i ε2; therefore, a material is often characterized by its complex refractive index n = n – i k. The 

optical constants (n, k) and layer thickness d are also relevant in its own right, since they ultimately 

establish the corresponding optical behavior of a material [22]. Although the measurement of the 

normal-incidence transmissivity spectrum by a commercial spectrophotometer is a relatively simple 

experimental task, accurate extraction of the optical and geometrical parameters n, k, and d, 

respectively, for a film from its experimental spectral transmittance, turns out to be a challenging 

problem. It should be pointed out that there is an extensive literature devoted to methods of 

calculation of the optical properties of both uniform- or non-uniform-thickness thin films, hence 

various formulae being found, suggesting different approaches to this complex optical problem 

[16,17]. 

In our analysis, we shall consider first the case of a uniform film deposited onto a transparent 

substrate, shown in Figure 1a; the illuminated area by the UV/Vis/NIR spectrophotometer employed 

in the room-temperature transmission measurements made, has a rectangular shape with a light-

beam spot of 1 mm × 4 mm (or 10 mm) dimensions. On the other hand, regarding the equally 

important optical constants of the glass substrate, it is first confirmed to be highly transparent (non-

absorbing) for the whole wavelength range analyzed, and therefore is optically characterized by only 

its real refractive index, s; its value is around 1.52 in our particular case of a 1-mm-thick soda-lime-

silica glass substrate (specifically BDH microscope slides, Mumbai, India), for the complete measured 

range. 

  

 Figure 1. Geometry of (a) a uniform, and (b) a non-uniform weakly-absorbing thin film, onto a thick 

transparent glass substrate. 

In this paper, we will study in-depth the influence of the geometry of the thin film on the 

transmission spectrum, as measured on amorphous semiconductors deposited onto transparent 

substrates. A method is proposed for the optical characterization of a film on a glass substrate, which 

is based upon new formulae for the spectral transmittance of such a specimen. This formulae is not 

limited to the commonly-considered cases, where the real refractive index, n, of the film, and that of 

the transparent substrate, s, must necessarily verify the following two inequalities: n2 >> k2  and 

s2 >> k2 , respectively. Novel expressions for the upper and lower envelopes of the transmission 

spectrum are also derived. Besides, the appearance of crossover points in these upper and lower 

envelopes of the transmission spectrum for strongly-wedge-shaped samples has been both 

theoretically and empirically demonstrated. 

The value of the wedging parameter, Δd , will be accurately obtained as the optical 

characterization of some real amorphous As-based chalcogenide layers is carried out. At this point 

we must emphasize that the novelty of the present paper is the combination of the newly derived 

equations for the spectral transmittance, the use of the inverse synthesis method for the determination 
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of the optical constants of the layers, and the use of the Tauc–Lorentz–Lorentz optical dispersion 

model. 

Finally, it has to be noted that the alternative optical technique, the commonly-used variable-

angle spectroscopic ellipsometry has a maximum film thickness limit which depends upon the 

measurement wavelengths. In such a way that, as the film becomes thicker, the large number of 

Fabry–Perot oscillations of the spectro-ellipsometric data become very difficult to resolve at shorter 

wavelengths; the data oscillations are better separated at longer wavelengths. The much more 

preferred upper film thickness limit for most visible-to-near infrared is well below 5 µm. Even for 

films that are 1 µm up to well under 5 µm thick, it is best measure with multiple angles of incidence 

to be able to gain the necessary confidence that you have a unique film thickness solution [14]. 

However, with the novel approach proposed in the present work we have been able to accurately 

films thicker than up to 5 µm, having a notable lack of thickness uniformity, and using the normal-

incidence transmission spectrum only. 

2. Preliminary Theoretical Considerations 

Figure 1a shows the bi-layered sample geometry, consisting of a thin homogenous film of 

unknown optical constants (n, k), on top of a thick transparent substrate. Thin-film amorphous 

semiconductors are grown on top of the thick substrate, by using different physical or chemical vapor 

deposition techniques [23]. The studied thin layer has a uniform thickness d. The substrate, on the 

other hand, has smooth surfaces, and is thick enough so that the all optical interference effects 

associated with the transparent substrate completely disappear. The transparent-substrate refractive 

index s is previously found from independent transmission measurements on the bare substrate. The 

bi-layered sample is usually surrounded by air with refractive index n0 = 1. 

The complex refractive index n of the film is wavelength dependent, or dispersive. Its real part, 

n(λ) is the refractive index, while its imaginary part, k(λ) , is the extinction coefficient, responsible 

for the optical absorption of the material. It is convenient to express such an absorption by the 

absorption coefficient, α(λ) , and also by the absorbance, x(λ) , which are both related with the 

extinction coefficient,  k(λ),  by the relationships: k(λ) = α(λ)λ/4π  and x(λ) = exp (− α(λ)d) , 

respectively. 

The model optical function as a function of the photon energy for amorphous semiconductors 

employed in the present work, is based both upon the Tauc joint density of states [21] and the Lorentz 

electron-oscillator model [22]. The optical quantity to be used is the complex dielectric function ε. It 

has to be emphasized that its dispersive, real and imaginary parts, are not independent, but instead 

they are related by the Kramers–Krönig relationships [22]. On the other hand, for non-magnetic 

materials, the relations between the real and imaginary parts of the complex dielectric constant, ε, 

and the complex refractive index, n, are as follows. 

ε1(λ) = n(λ)2 − k(λ)2

ε2(λ) = 2n(λ)k(λ)
 (1) 

and equivalently, 

n(λ) = 
√√ε1(λ)2 + ε2(λ)2 + ε1(λ)

2

k(λ) = 
√√ε1(λ)2 + ε2(λ)2 − ε1(λ)

2

 (2) 
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3. On the Transmittance for a Thin Semiconductor Film onto a Thick Transparent Substrate 

3.1. Formulae of the Normal-Incidence Transmission for a Thin Film with Uniform Thickness 

Let’s now assume a monochromatic light beam incoming upon the surface of a thin film at 

normal incidence, as shown in Figure 1a. Taking into account the infinite reflections that occur at the 

three interfaces separating the three existing media: air–film, film–substrate, and substrate–air, 

respectively, it is obtained that the normal-incidence transmission is a function of the vacuum 

wavelength, and is approximated by the following equation [24–30] (we repeat here this already 

reported expression for the sake of completeness and for the reader´s convenience): 

T(n, k, s, d; λ) = 
A1x

B1 − C1x cos(φ) + D1x2
 (3) 

with 

A1 = 16 n2s

B1 = (n + 1)3 (n + s2)

C1 = 2 (n2 − 1) (n2 − s2)

D1 = (n− 1)3 (n− s2)

 (4) 

φ = 4πnd/λ

x = exp( − αd)

k = αλ/4π

 (5) 

Equation (3) is the most-commonly-used expression when optically characterizing uniform films 

onto transparent substrates. We instead propose in this work, as a more accurate approach, the use 

of the exact formulae [25] for the normal-incidence transmission corresponding to the bi-layered 

sample geometry displayed in Figure 1a. 

T(n, k, s, d; λ) = 
A2x

B2 − C21x cos(φ) + C22x sin(φ) + D2x2
 (6) 

with 

A2 = 16(n2 + k2)s

B2 = ((n + 1)2 + k2)((n + 1)(n + s2) + k2)

C21 = 2((n2 + k2 − 1)(n2 + k2 − s2)− 2k2(s2 + 1))

C22 = − 2k(2(n2 + k 2– s2) + (n2 + k2 − 1)(s2 + 1))

D2 = ((n− 1)2 + k2)((n− 1)(n− s2) + k2)

 (7) 

together with Equation (5). 

Generally speaking, there can exist sufficiently enough differences between the values obtained 

by Equations (3) and (6), as to justify the use of the exact but more complex form given by Equation 

(6). This is especially true in the spectral region of weak and medium absorption of the transmission 

spectrum of the film, where there are Fabry–Perot interference fringes. On the other hand, in the 

spectral region of strong absorption where the interference pattern disappears, the transmittance 

formula mainly depends upon the exponential term in the numerator of such a formula. Hence, in 

this spectral region the exact expression of the transmission can be approximated by: 

T ≈ 
A2x

B2
 ≈ 

A1x

B1
 = 

16n2sx

(n + 1)3(n + s2)
 (8) 

3.2. Effect of Non-Uniformity of the Thin-Film Thickness on the Transmission Spectrum 

By definition, the thickness of an idealized homogenous film is obviously constant, but in real 

samples it is rarely the case, and non-uniformity in thickness or surface roughness are commonly 

present in real films. The simplest way to model the geometry of a non-uniform film is to assume 

such a film having a wedge shape, as displayed in Figure 1b. Therefore, the thickness of the as-
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deposited film has a linear dependence upon the position in the sample, along the area illuminated. 

In order to quantify this thickness variation, a wedging parameter, Δd, is defined and also an average 

thickness, d̅, so that the actual thickness varies linearly from d = d̅ – Δd up to d = d̅ + Δd. 

It will be shown in detail below that a small variation in thickness over the area illuminated by 

the spectrophotometer has a significant effect on the interference pattern of the transmission 

spectrum. Non-uniformity in film thickness destroys the coherence of the light beams inside the film, 

and hence shrinks the transmission spectrum. Figure 2 clearly displays the effect of the non-

uniformity of thickness on the transmission spectra for four simulated films of a-Si:H, with different 

values of Δd, having postulated the following optical and geometrical parameters [26,31]: 

λ = 500− 900 nm

n = 2.6 + 
3 × 105

λ2

k = 
λ

4π
10(1.5 × 106/λ2)−8

s = 1.51 (constant)

d̅ = 1500 nm
Δd = 0,  10,  20,  30,  60 nm

 (9) 

In order to generate the spectral transmittance of a uniform layer (Δd = 0), Equation (6) has been 

used, whereas for the other four model-generated transmission spectra with four values of the 

wedging parameters (Δd = 10, 20, 30, 60) , all depicted in Figure 2, the numerical integration of 

Equation (10) has been instead performed. These latter four shrunk generated spectra tend to the 

interference-free curve, Tα (this curve will be discussed later), as Δd increases. 

The clear influence of a relatively high value of Δd on the transmission spectrum is displayed 

in Figure 2. For the value of Δd = 60 nm, approximately at λ = 750 nm, there is a particular point from 

which, for wavelengths λ ≤ 750 nm, a phase difference is noticeable with the other generated spectra, 

with a pre-established value of Δd smaller than 60 nm, this phase difference being close to π radians, 

roughly speaking. This influence shall be dealt with in detail later. 

 

Figure 2. Numerical integration of Equation (6) for transmission, for five different values of the 

wedging parameter Δd (see the text for more details). 

It should be emphasized that if the effect of the non-uniformity in thickness on the transmission 

spectrum is neglected, and the layer is erroneously assumed to have a constant thickness throughout 

the beam-light spot, then the results obtained in the characterization of this non-uniform sample 

ignoring this effect, would lead to inaccurate information about the specimen, in particular: (i) an 
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overestimation of the absorption coefficient; (ii) an underestimation of the refractive index; and (iii) 

an overestimation of the film thickness. 

Under the assumption of linear dependence of the film thickness, a more accurate expression for 

the transmittance, accounting for this variable thickness, could be derived by integrating on the two 

variables which depend upon the variable thickness, namely, the phase φ and absorbance x, already 

defined by Equation (5). However, the effect of the variable thickness on the absorbance is negligible 

compared with the much stronger effect on the phase. Under this simplifying assumption, the 

integral for the transmission is then expressed as follows: 

TΔd(n, k, s, d̅, Δd; λ) = 
1

φ
2
− φ

1

1

x2 − x1

∫ ∫
A2x

B2 − C21x cos(φ) + C22x sin(φ) + D2x2
 dφdx

x2

x1

φ2

φ1

 

 ≈ 
1

φ
2
− φ

1

∫
A2x

B2 − C21x cos(φ) + C22x sin(φ) + D2x2

φ2

φ1

 dφ

 (10) 

where 

d̅− Δd ≤ d ≤ d̅ + Δd (11) 

and 

φ
1
 = 4πn(d̅ − Δd)/λ

φ
2
 = 4πn(d ̅+ Δd)/λ

 (12) 

It has to be stressed that the analytical integration of Equation (6) involves inverse hyperbolic 

functions: it is a complex formula obtained in this work for the first time, to the best of our knowledge, 

by using the Mathematica® software package (verison 10.0), and it is presented next after performing 

some algebraically manipulations [32,33],  

TΔd(n, k, s, d̅, Δd; λ) = 
2A2 x

√K3(φ
2
− φ

1
)

(tanh−1( K1 √K3⁄ )− tanh−1( K2 √K3⁄ )) (13) 

with 

K1 = (C22x + (B2x(C21 + D2x))tan( φ
1

2⁄ ))

K2  = (C22x + (B2x(C21 + D2x))tan( φ
2

2⁄ ))

K3 = (− B2
2 − 2B2D2x2 + x2(C21

2  + C22
2 −D2

2x2))

 (14) 

For reasons that will become clear later, it is useful to express the transmission for a film-on-

substrate specimen, using circular or goniometric functions instead of hyperbolic functions. After 

some manipulations, a convenient equation for the transmission is finally derived: 

TΔd(n, k, s, d̅, Δd; λ) = 
2A2 x

√−K3(φ
2
− φ

1
)
( − (tan−1( K1 √−K3⁄ )) + (tan−1( K2 √−K3⁄ ))) (15) 

It is stressed now that either Equation (15), or a simpler one obtained by integrating Equation (3) 

instead of Equation (6) [26,31], cannot be employed in the characterization of semiconductor films. 

The presence of a multi-valued inverse circular function in Equation (15), is responsible for the 

discontinuities around the minima (if the appropriate angles, multiples of π, are not taken into 

account). It should be pointed out that the existence of such discontinuities makes Equation (15) 

useless. This is demonstrated in Figure 3a, where such an equation is plotted in the case of a 

postulated a-Si:H film, whose wedging parameter has a value of 30 nm. It is seen in Figure 3a that 

this transmission curve matches the numerical integration of Equation (10) except around the minima 

of transmission. Lastly, Equation (15) will be used later to derive the expression for the upper 

envelope of the transmission curve. 
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Figure 3. Numerical integration of Equation (6) for transmission, and the upper and lower envelopes, 

for (a) Δd = 30 nm, and for (b) Δd = 60 nm (see the text for more details). 

3.3. Effect of the Optical Phase Variation within the Semiconductor Thin Layer 

The terms K1 and K2 in Equation (14) contain an angle or goniometric function, whose 

corresponding arguments φ
1

 and φ
2

 are given by Equation (12). Depending on the particular 

values of n, d̅, Δd, and λ, the argument of the angle or goniometric functions can exceed or not the 

limit of 2π radians. Taking into account that those two terms K1 and K2 are within inverse goniometric 

functions, it is therefore necessary to account for the number of multiples of 2π added to the optical phase. 

This key step does indeed eliminate the clearly invalidating discontinuities displayed in Figure 3a,b. 

In order to correct for the effect of the thickness non-uniformity on the transmission spectrum 

of the layer, we have proposed [32] to add two integer numbers in the corresponding expression to 

account for the correct optical phase. Thus, the new corrected expression of the transmission is finally 

derived, 

TΔd(n, k, s, d̅, Δd; λ) = 
2A2x(− (tan−1( K1 √−K3⁄ ) + N1π) + (tan−1( K2 √−K3⁄ ) + N2π))

√−K3(φ
2
− φ

1
)

 (16) 

where the two correcting integer numbers,  N1 and  N2, respectively, are given by: 

N1 = round (φ
1
/2π)

N2 = round (φ
2
/2π)

 (17) 

The function ‘round’ rounds off the argument to its closest integer number, and corresponds to 

the function with the same name implemented in the mathematical software package MATLAB® 

(Version: R2019A) used later. The new Equation (16) derived in this work is a continuous function 

that can be employed to characterize a great variety of amorphous semiconductors. 

The physical relevance of Equation (16) is twofold: (i) the transmission spectra of non-uniform 

layers can be characterized by using inverse-synthesis methods [34], rather than those methods based 

only on the top and bottom envelopes of the transmission spectrum; and equally important, (ii) the 

exclusion of non-uniform films having a large wedging parameter [26,31,34,35], is eliminated, as will 

be shown below with both simulated and measured spectra, which so far would have been 

considered useless. 

3.4. Derivation of an Expression for the Upper Envelope of the Transmission Spectrum 

The derivation of a novel expression for the upper envelope of the transmission TΔd Max is now 

straightforward, but only when the value of Δd is smaller than a certain limiting value. The equation 

for the existence of Fabry–Perot interference fringes, to be obeyed by the maxima and minima of such 

a pattern (see Figure 3), is as follows, 

2nd̅ = mλ (18) 

The order number, m, is an integer number for the maxima, and half-integer for the minima. 

In Equation (15), the oscillating behavior of the transmission is caused by the trigonometric 

functions tan (φ
1
/2) andtan (φ

2
/2) into the two terms K1 and K2, respectively, with the corresponding 
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two phase angles φ
1
 and φ

2
 given by Equation (12). So, by using some trigonometric identities and 

introducing Equation (18) into Equation (12), it is found that for the maxima, where m = 1, 2, 3,…, and 

therefore tan (mπ) = 0, it follows, 

tan ( φ
1

2⁄ ) = tan (2πn(d̅− Δd)/λ)= − tan (2πnΔd/λ)

tan ( φ
2

2⁄ ) = tan (2πn(d̅ + Δd)/λ)= +tan (2πnΔd/λ)
 (19) 

Next, by introducing Equation (19) into K1 and K2 defined in Equation (14), we derive the 

expression for the upper envelope of the transmission spectrum: 

TΔd Max(n, k, s, d̅, Δd; λ) = 
2A2 x

√−K3 φ
3

(tan−1( K4 √−K3⁄ )) (20) 

where K4 and φ3 are given, respectively, by: 

K4 = (C22x + (B2x(C21 + D2x))tan( φ
3

2⁄ )) (21) 

and 

φ
3
 = − 4πnΔd/λ (22) 

Figure 3a shows that when Δd is smaller than a limiting value, the expression for the upper 

envelope, Equation (20) (in blue), is correctly tangent to all the maxima of the spectrum. However, 

when the value of Δd is larger than the just-mentioned limiting value, the same equation becomes 

not useful in order to determine the optical constants of the film, as displayed in Figure 3b. 

3.5. Derivation of an Expression for the Lower Envelope of the Transmission Spectrum 

The derivation of the expression for the lower envelope of the transmission spectrum, TΔd Min, is 

more complex, regardless the value of Δd . As shown in Figure 3a,b, Equation (15) shows 

discontinuities in both cases considered. For these minima, again applying the basic equation for 

interference fringes, but with the different values of m = 0.5, 1.5, 2.5, 3.5,…, and hence tan (mπ) = ±∞, 

it is verified that 

tan ( φ
1

2⁄ ) = tan (2πn (d̅− Δd)/λ) = +cot (2πnΔd/λ)

tan ( φ
2

2⁄ ) = tan (2πn (d̅ + Δd)/λ) = − cot (2πnΔd/λ)
 (23) 

However, by introducing Equation (23) into Equation (14) does not lead to any useful function, 

since we would obtain the expression for the lower envelope plotted in green in Figure 3a,b, which 

is clearly useless. 

Therefore, in order find the lower envelope of the transmission spectrum we need to introduce 

now an auxiliary function Tπ, which consists of Equation (6), but adding this time a phase shift of π 

radians. Both functions have the respective maxima and minima exchanged each other, although 

both functions possess the same two envelopes. 

Tπ (n, k, s, d; λ) = 
A2x

B2 − C21x cos(φ + π) + C22x sin(φ + π) + D2x2

=
A2x

B2 + C21x cos(φ)− C22x sin(φ) + D2x2

 (24) 

We could next follow the same steps followed in order to derive Equation (20) starting from 

Equation (6). However, a more straightforward approach is used, by taking into account that the 

difference between Equations (6) and (24) is only the opposite signs of the two coefficients C21 and 

C22. Thus, the expression for the lower envelope of the transmission spectrum is derived, by changing 

the respective signs of C21 
and C22 in Equations (20) and (21): 

TΔd Min(n, k, s, d̅, Δd; λ) = 
2A2x

√−K3 φ
3

(tan−1( K5 √−K3⁄ )) (25) 

where 

K5 = (− C22x + (B2x(− C21 + D2x))tan ( φ
3

2⁄ )) (26) 
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As a summary, Equations (16), (20), and (25), are new expressions for the transmission and its 

top and bottom envelopes. However, whereas equation (16) is valid for any value of Δd , both 

Equations (20) and (25), in their current form, are only correct for limited values of Δd. As depicted 

in Figure 3a,b, corresponding to the generalized case of any non-uniform semiconductor film. 

Needless to say these three new Equations (16), (20), and (25), can be also successfully applied to 

uniform samples by only letting Δd approach to zero. 

4. Particular Case of a Film with Strong Thickness Non-Uniformity: Appearance of the Envelope-

Crossover Points 

In the literature, so far, all the available equations used in order to optically characterize non-

uniform semiconductor films have the limitation of a range of allowed value of the wedging 

parameter, as mentioned before. When Δd is larger than the maximum limiting value, the existing 

equations for the top and bottom envelopes of the transmission spectrum are discontinuous, and thus 

this spectrum is not usable. The range of validity of these already-reported equations for the two 

envelopes, Equations (20) and (25), respectively, is given by following inequality: 

0 < Δd < λ/4n (27) 

In our analysis, it has been found that when this maximum limit for Δd  is reached, the 

transmission spectrum and its upper and lower envelopes are coincident. Moreover, when the value 

of Δd is greater than such a maximum limit, then the lower envelope becomes greater than the upper 

envelope, and the equations for the top and bottom envelopes are discontinuous, as seen in Figure 

3b. It should also be noted that at the particular wavelength λ = 4nΔd, Equations (16), (20), and (25) 

merge to a single critical point with transmission Tα, and hence the optical interference pattern is 

totally destroyed. 

From Figure 1b, it can be seen that this physically means an optical-path difference of λ 2⁄  

between the thinnest and thickest parts of the light-spot area of the sample, and bears a clear 

similarity to the quarter-wavelength layers used for antireflection coatings. At this point the 

transmission is the interference-free or incoherent transmission, Tα [26]. For smaller values of λ, that 

is, for λ < 4nΔd , a second interference pattern, starts to appear. We will call from now on this 

condition of binding or crossing envelopes, the envelope crossover [26,31,35,36], and the specific 

wavelengths at which these envelope-crossover points do occur, crossover wavelengths, or λcross. 

The equations of the top and bottom envelopes, Equations (20) and (25), respectively, are similar 

in structure to the expression for the transmission curve, Equation (16). Following exactly the same 

approach used above [32], we can again introduce a correcting factor to account for the multiples of 

2π (consequence of the existing inverse goniometric functions), so that we can finally obtain 

absolutely usable equations for the upper and lower envelopes, which will allow the highly accurate 

characterization of a real non-uniform semiconductor film, very importantly, with a non-limited 

value of Δd ≥ λ/(4n). 

The expressions for the upper and lower envelopes of the transmission spectrum then become: 

TΔd Max(n, k, s, d̅, Δd; λ) = 
2A2x

√−K3 φ
3

(tan−1( K4 √−K3⁄ ) + N3π) (28) 

TΔd Min(n, k, s, d̅, Δd; λ) = 
2A2x

√−K3  φ
3

(tan−1( K5 √−K3⁄ ) + N3π)

 

(29) 

where the new correcting factor introduced is given by: 

N3 = round (φ
3
/2π) (30) 

φ
3
 = − 4πnΔd/λ

 
(31) 

and Non-uniform specimens having high values of Δd  can exhibit more than one envelope-

crossover points in their strongly-shrunk spectra. The successive wavelengths associated to these 

envelope-crossover points obey the following equation: 

λcross = 4nΔd/N, N = 1,  2,  3, ... (32) 
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As has been pointed out, the result of increasing the wedging parameter on the transmission 

spectrum is making progressively converge such transmission spectrum towards the interference-

free transmission curve Tα. Therefore, its expression is derived by integrating Equation (10) on the 

phase, φ, between a maximum and an adjacent minimum [25]: 

Tα(n, k, s, d̅; λ) ≈ 
1

π
∫

A2x

B2 − C21x cos(φ) + C22x sin(φ) + D2x2

π

0

 dφ (33) 

This leads to a new expression for the interference-free transmission curve, Tα, 

Tα(n, k, s, d̅; λ) = 
A2x

√−K3  
 (34) 

In Figure 4a,b, we have plotted the novel equations of the transmission, its top and bottom 

envelopes, and the interference-free transmission, for the postulated a-Si:H film, with a small value 

for Δd of 30 nm, and also a large value of 100 nm. The four transmission curves plotted merge at 

those existing two crossover points (see Figure 4b). 

  

Figure 4. Simulated transmission spectrum and its upper and lower envelopes, for a postulated 

a-Si:H film of average of thickness  d̅ = 1500 nm, and (a) Δd = 30 nm and (b) Δd = 100 nm (see the 

text for more details). 

The physical significance of the expression for Tα, Equation (34), which does not contain any 

trigonometric function, should be emphasized. In the transparent region k = 0 and x = 1 and, therefore, 

if an envelope-crossover point is found in the as-measured spectrum, then Equation (34) can be 

solved for n. In addition, since at the envelope-crossover points Equation (32) is obeyed, we can then 

calculate an alternate value for Δd  by using a dispersion-model-free approach, which can be 

compared with that obtained from the present inverse synthesis method. In Figure 4b, on the other 

hand, two envelope-crossover points are seen, corresponding to N = 1 and N = 2, Equation (32). Their 

particular values for the transmission and wavelength, together with their values for n and Δd, are 

shown in Table 1. The bigger difference with the postulated value of the wedging parameter of 100 

nm is larger in the case of λcross = 660 nm (see Table 1), due to the fact of a higher value of the 

extinction/absorption coefficient for this smaller crossover wavelength. 

Table 1. Envelope-crossover points and direct alternate estimates for n and Δd, for the model-

generated transmission spectrum belonging to the simulated a-Si:H film and plotted in Figure 4b, and 

to the real As33S67 film S4 and plotted in Figure 5d, and also fully and accurately characterized, from 

the optical standpoint, in the GUI of the devised optical-characterization computer program. 

Material Spectrum N Tα λcross (nm) n(λcross) Δd (nm) 

a-Si:H Simulated 2 0.60 660 3.465 95 

a-Si:H Simulated 1 0.70 1130 2.791 101 

a-As33S67 Experimental 3 0.78 615 2.499 185 

a-As33S67 Experimental 2 0.77 880 2.388 184 

a-As33S67 Experimental 1 0.75 1730 2.333 185 
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Figure 5. Optical transmission spectra for two thermally-evaporated chalcogenide samples deposited 

onto room-temperature glass substrates, at two cross positions of each specimen (as shown in Figure 

1b). Panels (a) and (b) correspond to the transmission spectra of the thinner layer, and panels (c) and 

(d) to the spectra of the thicker layer. A photo of an amorphous arsenic sulfide film is displayed as an 

inset in the figure. 

5. Optical Properties of Amorphous Semiconductor Films: Using the Tauc–Lorentz–Urbach 

Parameterization 

The glass substrate on which the film is deposited is confirmed to be transparent in the whole 

spectral range under study, and hence completely characterized by its real refractive index S. This 

optical parameter was determined from independent transmission measurements on the bare glass 

substrate, by using the well-known equation for the transmission of a non-absorbing layer, TS: 

Ts(s; λ) = 
2s

s2 + 1
 (35) 

The amorphous semiconductor film, on the other hand, will be optically and geometrically 

characterized by its complex refractive index n, along with the average thickness d̅ and wedging 

parameter Δd. In addition, the Kramers–Krönig-consistent optical dispersion model that is employed 

in this work for the investigated films, is the Tauc–Lorentz–Urbach (TLU) model or parameterization, 

as proposed by Foldyna [37]. This TLU model is appropriate for amorphous semiconductors and 

dielectrics, and is a generalization of the Tauc–Lorentz parameterization suggested by Jellison and 

Modine [38,39], with the exponential Urbach tail added. This TLU parameterization includes six free 

fitting parameters: A, E0, C, Eg, Ec, and ε1, ∞. 

In the TLU model, the imaginary part of the complex dielectric function ε2 (E) is expressed as 

follows: 

ε2(E) = 

{
 
 

 
 1

E

AE0C(E− Eg)2

(E2 − E0
2)

2
 + C2E2

,    E ≥ Ec

Au

E
exp(

E

Eu
),          0 < E < Ec

 (36) 
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where the first term of ε2(E) for E ≥ Ec is identical to the Tauc–Lorentz parameterization, and the 

second term for 0 < E < Ec expresses the Urbach tail. The free fitting parameters Eg, A, E0, and C 

denote the bandgap energy, oscillator, amplitude, Lorentz resonant energy, and broadening 

parameter, respectively. 

Moreover, the constants Au and Eu, the so-called Urbach amplitude and energy, respectively, 

have been introduced to ensure the continuity of the previous function, and also its first derivative: 

Eu = (Ec − Eg)[2− 2Ec(Ec − Eg)
C2 + 2(EC

2 − E0
2)

C2EC
2  + 2(EC

2 − E0
2)

2
]

−1

Au = exp(−
Ec

Eu
)

AE0C(Ec − Eg)2

(EC
2 − E0

2)
2
 + C2EC

2

 (37) 

The real part of the complex dielectric function,  ε1(E) , is obtained by using the analytical 

integration corresponding to the Kramers–Krönig relationship between ε1(E) and ε2(E): 

ε1(E) = ε1, ∞ + 
2

π
(C.P.)∫

ξε2(E)

ξ2
− E2

 dξ

∞

0

 (38) 

where ‘C.P.’ stands for the Cauchy Principal value of the integral. This leads to: 

ε1(E) = ε1, ∞ + ε1, TL(E) + ε1, UT(E) (39) 

where the Tauc–Lorentz part from Ec ≤ E < ∞ is expressed by: 

ε1, TL(E) = − AE0C
E2 + Eg

2 

π ς4 E
ln(

|Ec − E|

Ec + E
) + 

2AE0CEg

π ς4

ln(
|Ec − E|(Ec + E)

√(E0
2 − Ec

2)
2
 + C2Ec

2 

)

+ 
ACaL

2πς4αE0
ln(

E0
2 + Ec

2 + αEc

E0
2 + Ec

2 − αEc

)

−
AaA

πς4E0
[π − tan−1(

2Ec + α

C
)− tan−1(

2Ec − α

C
)]

+ 4AE0Eg

E2 − γ2

πς4α
[

π

2
− tan−1(

2(Ec
2 − γ2)

αC
)]

 (40) 

and where the intermediate variables used are given here for the sake of completeness, by the 

following expressions: 

aL = (Eg
2 − E0

2)E2 + Eg
2C2 − E0

2(E0
2 + 3Eg

2)

aA = (E2 − E0
2)(E0

2 + Eg
2) + Eg

2C2

γ = √E0
2 −

C2

2

α = √4E0
2 − C2

ς4 = (E2 −  E0
2)

2
+ C2E2

 (41) 

Furthermore, the Urbach-tail part for 0 < E < Ec is expressed by: 

ε1, UT(E) = 
Au

πE
exp(−

E

Eu
)[− re(expint( −

E

Eu
)) + re(expint( −

Ec + E

Eu
))] +

Au

π E
exp(−

E

Eu
)[− re(expint( −

Ec − E

Eu
))− re(expint(

E

Eu
))]

 (42) 

where the function ‘expint’ is the exponential integral function, as also implemented in MATLAB 
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expint (y) = ∫
exp( − t)

t
 dt

∞

y

 (43) 

and ‘re’ is the real component of y, since for negative values of y the corresponding integral result has 

an imaginary component that must be neglected. 

6. Practical Application to Real Amorphous As-Based Chalcogenide Materials 

The mathematical expressions already derived will now be employed in the characterization of 

some real chalcogenide layers. All the details of the procedure used in this work in order to accurately 

determine the optical properties of the non-crystalline chalcogenides under investigation follow below. 

6.1. AJUSTET: Computer Program for the Optical Characterization of Semiconductor Films Based on 

Inverse Synthesis 

The method devised in order to carry out the characterization of semiconductor films has been 

coded in MATLAB, and falls into the category of inverse-synthesis methods [34]. The software 

developed can accurately fit a model-generated transmission spectrum to the experimentally-measured 

spectrum of a semiconductor film, by adjusting up to a maximum of nine free fitting parameters: (i) 

seven associated to the optical dispersion relationships, plus (ii) two non-uniform-sample geometrical 

parameters, the average thickness and the wedging parameter, d̅ and Δd, respectively. 

Up to five different optical-dispersion models for n(λ), and another three for k(λ), have been so 

far implemented in the MATLAB-coded application, AJUSTET. They include a purely-empirical 

model, as the Cauchy dispersion relationship, and two physics-based models as those proposed by 

Wemple-Domenico [40,41], the single-effective-oscillator fit, and Solomon [42], that corresponding to 

the band-structure determination, respectively, for n(λ). In addition, the exponential and Urbach 

functional models for k(λ) [21]. Moreover, two coupled physics-based models that link n(λ) and 

k(λ) through the Kramers–Krönig relationships, as the popular Tauc–Lorentz [38,39], and the much 

less frequently-used Tauc–Lorentz–Urbach [37] dispersion models, have been also implemented in 

the developed computer program, AJUSTET. 

Lastly, the main idea behind the computer program AJUSTET, in the present case for the 

determination of the TLU parameters, is to find their values which minimize the following figure-of-

merit (FOM) or goodness-of-fit function: 

FOM ≡ RMSD = 
√
∑ (Ti,meas −  Ti,simu)2

N

i = 1

N
 

(44) 

where N is the number of data points measured, Ti,meas is the as-measured optical transmittance, and 

Ti,simu is the simulated optical transmittance, for vacuum wavelengths for which the glass substrate 

used is non-absorbing. The statistic function FOM to be minimized is therefore the root-mean-square 

deviation (RMSD) of the differences between the experimentally-measured and model-generated 

optical transmittance data; or, in other words, the square root of the average of squared optical 

transmittance differences. In AJUSTET, for the minimization routine, the Nelder and Mead 

(downhill) simplex algorithm in the MATLAB software was utilized; a non-linear direct search 

method, implemented in the MATLAB ‘fminsearch’ function, was employed in order to find the 

minimum of an unconstrained multivariable function. 

Regarding the data output of AJUSTET (see the detailed flowchart of the complete algorithm of 

MATLAB-based software AJUSTET in the Appendix A), it should be pointed out that the program 

AJUSTET is fully configurable through external excel files. It requires as data inputs, the as-measured 

transmission spectra belonging to the chalcogenide sample, together with that of its bare glass 

substrate. Upon completion of the execution phase of the program AJUSTET, it provides the 

following outputs: (i) the Tauc [43] and Cody [44] plots (that is, the so-called Tauc and Cody 

extrapolations), respectively, where the Tauc and Cody gaps, Eg, Tauc and Eg, Cody, respectively, along 

with the Tauc and Cody slopes, βTauc and βCody, respectively, are determined; (ii) the optical-
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absorption edge, where the three iso-absorption gaps, E03, E04 and E05, associated to the values of α of 

103, 104, and 105 cm−1, respectively, are indicated; (iii) two figures plotting both the real and imaginary 

parts of the complex refractive index, n, and those of the complex dielectric function, ε, as a function 

of the vacuum wavelength or photon energy; (iv) another figure plotting the differences between the 

generated and as-measured transmission spectra; and (v) a final figure plotting the generated 

spectrum, together with its two calculated top and bottom envelopes. All these figures can be 

conveniently exported to individual files. 

6.2. Case Study of Thermally-Evaporated Reasonably-Uniform and Non-Uniform Amorphous Chalcogenide 

Films 

6.2.1. Chalcogenide Sample Preparation Procedure and Optical Transmittance Measurements 

The amorphous As-based chalcogenide material prepared for our case study corresponds to the 

binary chemical composition As33S67. This has been deposited by conventional thermal evaporation 

of the bulk glass onto room-temperature, 1-mm-thick BDH glass substrates, inside a vacuum chamber 

with a base pressure of around 10−7 Torr. The evaporation system was equipped with a rotatory 

accessory device in order to make it possible the deposition of films with a reasonable degree of 

thickness uniformity, if wished [27,28]. The non-crystalline nature of the material was confirmed by 

both X-ray diffraction measurements and Raman spectroscopy. Besides, the chemical composition 

was carefully checked out by energy dispersive X-ray spectroscopy, and was determined to be 32.9 ± 

0.4 at.% As and 67.1 ± 0.6 at.% S, which is particularly close to the nominal chemical composition AsS2 

(i.e., As33S67). 

For this case study, specific positions of the chalcogenide samples inside the vacuum chamber 

were selected, in order to be able to both deposit reasonably uniform, as well as slightly-wedge-

shaped samples, with thicknesses in the particular range 1000 nm < d̅ < 2000 nm. Such specimens 

were used to study the influence of the ‘wedgeness’ on the transmission spectra, and also the 

performance of the proposed equations for the transmission of a uniform and non-uniform film on a 

transparent substrate, Equations (6) and (16), respectively. 

Furthermore, in order to be able to perform the characterizations of chalcogenide layers with 

very high values of the wedging parameter, films were also grown with larger thicknesses, such that 

d̅ < 5000 nm, and much higher wedging parameter, such that Δd ≤ 200 nm, in order to investigate in 

real samples the appearance of envelope-crossover points in the interference pattern, as predicted by 

the theory outlined above. 

The experimental normal-incidence transmission spectra of the chalcogenide samples under 

study, on the other hand, were measured by a Lambda 1050 Perkin-Elmer UV/Vis/NIR double-beam 

spectrophotometer (Perkin-Elmer Corporation, Waltham, MA, USA). The measured wavelength 

range was 400 nm ≤ λ ≤ 2200/2600 nm . The room-temperature transmission measurements were 

made at wavelength steps of either 1 nm or 0.6 nm, depending upon the particular characteristics of 

each layer; specifically, the smaller wavelength step of 0.6 nm was employed in the thicker layers, in 

order to be able to resolve in a better way the very large number of data oscillations, particularly at 

the smaller visible wavelengths analyzed. Furthermore, a feature appears in the spectra for 

transmittance in the case of the thicker samples explored with the 0.6-nm step, in the spectral region 

of 860 to 900 nm. It can be more clearly seen (Figure 5) on the transmission spectrum of the bare glass 

substrate, in the just-mentioned wavelength range. This noticeable artefact results from the change 

of detectors in the UV/Vis/NIR spectrophotometer employed, at the default value of wavelength of 

860 nm. As an additional characteristic feature of the amorphous chalcogenides studied, to the 

unaided eyes the as-deposited layers appear pale yellow. A photo of an amorphous arsenic sulfide 

layer deposited by thermal evaporation, taken by a digital camera, is shown in the inset of Figure 5b. 

Two representative chalcogenide samples, and their corresponding four spectra (two for each 

sample), were studied in order to carry out their optical characterizations. Each sample was 

illuminated at two cross orientations in the same location, as seen in Figure 1b. The illuminated area 

A was selected in such an orientation of the sample, as to be able to find the best thickness uniformity 
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possible along the light spot. The illuminated area B, on the contrary, was chosen in a direction 

perpendicular to the previous one, as to find the direction with the largest thickness gradient, instead. 

These cross-illuminated areas have allowed us the comparison of the experimental results of two 

independent characterizations, which have shown an excellent agreement indeed between the 

calculated optical properties and average thicknesses, obtained from the pair of normal-incidence 

transmission spectra. 

The four aforementioned transmission spectra and that of the bare-substrate spectrum are 

depicted in Figure 5. The spectra S1 and S2 belong to the thinner (approximately 1600-nm-thick) film, 

whereas the spectra S3 and S4 correspond to the thicker (approximately 4900-nm-thick) film. It is 

worth mentioning the strong influence on the spectra caused by the existence of a clear wedge 

shaping, especially notable when comparing the spectra S3 and S4 belonging to the much thicker 

sample. It has to be also pointed out the strong influence on the spectrum S3 in the visible-to-NIR 

region, with a large shrinkage of the interference pattern caused by the integration performed by the 

spectrophotometer, since this cannot precisely follow the numerous fringes of the very thick layers, 

due to its inherent limitation of a non-zero spectral bandwidth. 

6.2.2. Experimental Results Obtained Using AJUSTET 

The four transmission spectra S1 to S4 displayed in Figure 5 were independently analyzed by 

the computer program AJUSTET, and in Table 2 all the best-fit parameters corresponding to the TLU 

model employed, for each of the four representative transmission spectra, are listed. Furthermore, 

Figure 6a,b, show the comparison between the model-generated and as-measured transmission 

spectra for the cases of the spectra S1 and S2. The difference between the simulated and experimental 

spectra, ∆T, for those spectra S1 and S2 is also displayed in this figure. 

  

Figure 6. Experimental and best-fit transmission spectra of a representative a-As33S67 chalcogenide 

film. The difference between the Tauc–Lorentz–Urbach (TLU)-model-generated transmittance 

spectrum and the as-measured spectrum, for (a) spectrum S1, and (b) spectrum S2. These two spectra 

correspond to two crossed areas of the same chalcogenide sample, with two very different values of 

the wedging parameter. 
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Table 2. The results of fitting four sets of optical data to the present TLU- oscillator model. The best-

fit parameters Eg, ε1, ∞, A, E0, C, and Ec, are from the TLU-model parameterization. The values of the 

Urbach energy, Eu, obtained from the previous TLU-model parameters, are indicated in the table. 

Besides, the values of the Tauc–Lorentz fitting parameters corresponding to an amorphous As33S67 

thin-layer sample deposited instead by spin coating, are also listed in this table for the sake of 

comparison. The Tauc–Lorentz parameters for the As40S60 (As2S3, i.e., the stoichiometric-binary-

composition) bulk glass, presented in the table, were reported by Jellison and Modine. 

Amorphous 

Material 

As33S67  

S1 

As33S67  

S2 

As33S67  

S3 

As33S67  

S4 
As33S67 As40S60 

Data reference Present work Present work Present work Present work [29] [38,39] 

Deposition 

method 

Thermal 

evaporation 

Thermal 

evaporation 

Thermal 

evaporation 

Thermal 

evaporation 

Spin 

coating 

Bulk glass 

sample 

Wavelength 

range (nm) 
400–2200 400–2200 400–2600 400–2600 250–2500 220–1000 

Figure-of-merit RMSD: 0.684 RMSD: 0.672 RMSD: 1.701 RMSD: 0.951 MSE: 0.4 χ2 = 0.9 

Eg (eV) 2.42 2.42 2.40 2.40 2.33 2.37 

Offset, ε1, ∞ 1.49 1.49 1.24 1.24 2.46 2.50 

A (eV) 133.9 133.2 137.3 137.3 57 161 

E0 (eV) 4.29 4.33 4.66 4.66 3.74 3.75 

C (eV) 3.65 3.67 4.55 4.55 1.84 4.60 

EC (eV) 2.58 2.56 2.56 2.56 N/A N/A 

Eu (meV) 75 68 78 78 N/A N/A 

d̅ (nm) 1605 1598 4908 4897 734 N/A 

Δd (nm) 8 34 37 187 N/A N/A 

Eg, Tauc (eV) 2.48 2.48 2.46 2.46 N/A N/A 

β
Tauc

 872 880 799 800 N/A N/A 

Eg, Cody (eV) 2.45 2.45 2.44 2.44 N/A N/A 

β
Cody

 281 283 272 271 N/A N/A 

n (1 eV) 2.335 2.350 2.353 2.353 N/A N/A 

E03 (eV) 2.47 2.48 2.46 2.46 N/A N/A 

E04 (eV) 2.66 2.66 2.66 2.66 N/A N/A 

E05 (eV) 3.18 3.19 3.23 3.23 N/A N/A 

Dispersion 

model 
TLU TLU TLU TLU TL TL 

It is noticed the extremely good agreement between the as-measured and generated 

transmission spectra, with very low values of RMSD of 0.684 and 0.672, respectively. For the sake of 

clarity, the x-axis represents photon energy when plotting the spectral transmittance, and we have 

also used open circles instead of solid lines, in order to plot the experimental transmission data for 

this thinner chalcogenide sample. 

On the other hand, the carefully-designed GUI (main window) of the software application 

AJUSTET, displaying the values of all the free-fitting parameters involved in the optical and 

geometrical characterizations corresponding to of the transmission spectra S3 and S4, are shown in 

Figure 7a,b, respectively; the low obtained values of RMSD, 1.701 and 0.951, respectively, have 

indicated the very good correlation between the as-measured and calculated transmittance data, for 

these two particular transmission spectra corresponding to the thicker sample. In these two GUIs 

belonging to the much more complex and challenging spectra S3 and S4, the simulated and 

experimental solid transmittance curves are plotted, instead, as a function of vacuum wavelength, 

following the transmission data directly obtained from the double-beam spectrophotometer. These 

certainly very deformed spectra were also purposefully selected to test the actual capabilities of the 

UV/Vis/NIR spectrophotometer used in our investigation, as fully as possible. 
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Figure 7. Spectra S3 (a) and S4 (b). Graphical-user-interface (GUI, or main window) screen for the 

optical characterization of thin films of amorphous semiconductor materials belonging to the 

MATLAB-coded computer program, AJUSTET. Comparisons between the simulated (blue line) and 

experimental (red line) normal-incidence transmittance spectra are displayed in this figure. Measured 

(green line) transmission spectrum of the glass substrate alone is compared with the former spectra. 

There exist three clear envelope-crossover points appearing in the transmission spectra S4. Both 

optical spectra belonging to the almost-5 μm-thick sample, to the best of our knowledge, were not 

useful for their optical characterization, using the currently available formulae in the literature for 

the transmittance of a thin weakly-absorbing layer onto a thick transparent substrate. However, the 

use of the Equation (16) was indeed the key factor to be able to successfully analyze of the strongly-

shrunk transmission spectra S4, otherwise absolutely useless. 

The calculated complex refractive indices of the two chalcogenide samples under study, as a 

function of wavelength, are plotted in Figure 8a. On the other hand, the refractive index, n(E), and 

extinction coefficient, k(E), as a function of photon energy, instead, of a representative spectrum, are 

both displayed in Figure 8b. The average thickness of this particular slightly-wedge-shaped specimen 

was 1605 nm, and the corresponding very small wedging parameter was 8 nm: it clearly demonstrates 

the strong sensitivity of the devised characterization technique, based on the transmission spectrum 

only. It is seen in Figure 8b that n is initially an increasing function of the photon energy (i.e., 

dn(E)/dE > 0). The optical dispersion is then said to be normal. For values of the photon energy larger 

than around 3.6 eV, the refractive index, on the contrary, decreases with increasing photon energy 

(i.e., dn(E)/dE < 0), and we instead refer to the spectral region of anomalous optical dispersion. 

Because of the Kramers–Krönig relationships, the observed energy dependence of the refractive 

index is related to the existing chalcogenide-material absorption, described by its extinction 

coefficient, k (see Figure 8b). There is a very noticeable optical-absorption band around the value of 

photon energy of approximately 5.5 eV. 

  

Figure 8. (a) The complex refractive indices obtained from the four transmission spectra analyzed. (b) 

Extrapolated optical constants (n(E), k(E)) of a representative chalcogenide specimen, following the 
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Tauc–Lorentz–Urbach oscillator function (plotted for the spectral range 0.2–7 eV, or equivalently, 

200–6200 nm). The regions of normal and anomalous optical dispersion are colored differently. 

Best-fit TLU parameters for the two representative films (four selected transmission spectra) are 

listed in Table 2. For all cases, the amplitude of the TLU oscillator A is around 135 eV, and the 

bandgap value Eg is approximately 2.41 eV. The values of the parameters E0, C, EC and the offset, ε1, ∞, 

are about 4.49 eV, 4.11 eV, 2.57 eV, and 1.37, respectively. It is noted at this point that, in the present 

physical interpretation of the experimental results, the concept of bandgap still survives even in the 

absence of crystallinity (long-range order) of the material, through the influence of the existing short-

range ordering of the atomic structure in the non-crystalline chalcogenides, on their electronic density 

of states. 

The value of the Urbach energy parameter, Eu, calculated from the just-mentioned TLU 

parameters, are also presented for each transmission spectrum in Table 2. The average thicknesses 

and wedging parameters corresponding to the four selected spectra are also listed in Table 2. 

Interestingly, the values of the Tauc and Cody gaps, Eg, Tauc and Eg, Cody, respectively (we will discuss 

them below), the three iso-absorption gaps, E03, E04 and E05, and the value of the refractive index at 

the specific photon energy of 1 eV (wavelength of 1240 nm), n(1 eV), all determined using the 

program AJUSTET, are also presented in Table 2. Last but not least, our TLU parameters are 

comparable and clearly consistent with those reported by the authors in a previous paper for the case 

of for spin-coated a-As33S67 films [29], and with the values of the Tauc–Lorentz parameters belonging 

to As40S60
 
(i.e., the As2S3 stoichiometric composition) bulk-glass material, reported by Jellison and 

Modine [38,39]. 

6.2.3. Alternative Independent Determination of the Tauc and Cody Optical Band Gaps 

The absorption coefficient, α(E), was obtained, alternatively, directly from the transmission 

spectrum, exclusively in the region of strong absorption of the spectrum where the interference 

fringes absolutely disappear (see Figure 6). For very large values of α where the absorbance x << 1, 

the interference effects can be ignored, and the transmission can then be written following Equation 

(8) as: 

Tmeas ≈ 
A1exp(− αd̅)

B1
 = 

16n2s exp( − αd̅)

(n + 1)3(n + s2)
 (45) 

and the absorption coefficient is obtained from: 

α ≈ −
1

d̅
ln(

B1Tmeas

A1
) = −

1

d̅
ln(

 (n + 1)3(n + s2)Tmeas

16n2s
) (46) 

Tmeas being the as-measured transmission, and the expressions of the parameters A2 and B2 being 

previously given by Equation (7). 

Thus, we have finally reached an equation absolutely equivalently to Equation (22), from the 

seminal work by Swanepoel [25] on the optical characterization of thin films. He also proposed the 

use of the two-term Cauchy empirical relationship for the spectral dependence of the index of 

refraction, whereas we have more accurately used the expression for n(E) resulting from the 

Kramers–Krönig-consistent TLU dispersion model, considered in the present study. 

Tauc et al. [43], on the other hand, have shown that for α > 104 cm−1 (Tauc´s region) 

(αE)1 2⁄  = β
Tauc

(E− Eg, Tauc) (47) 

This equation is a well-known formula very often employed in order to determine the Tauc 

optical gap Eg, Tauc from the just-calculated values of α(E) (Tauc´s extrapolation). In addition, Cody et 

al. [44] have derived the so-called Cody formula, given by 

(α/E)1 2⁄  = β
Cody

(E− Eg, Cody) (48) 
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The slope βCody and ‘Cody gap’ Eg,Cody, both calculated by the Cody´s extrapolation, are not the 

same as those obtained from the Tauc model, Equation (47). Usually, it is verified that Eg,Cody < Eg,Tauc, 

and our results have confirmed that particular finding. 

Continuing with the analysis of the experimental results, the α(E) data for the present 

chalcogenide layers were examined via both Tauc and Cody approximations. At least above certain 

(~2.65 eV) energy, and within some energy region (up to ~2.90 eV), both methods of analysis 

accurately fit the optical absorption data. Figure 9a,c display the fit to Equation (47), and Figure 9b,d 

exhibit the results of the Cody plot, Equation (48), for the same as-deposited (un-annealed) 

chalcogenide specimen. 

  

  

Figure 9. (a) and (c) Tauc, and (b) and (d) Cody plots obtained from the transmission spectra S1 and 

S3, belonging to the two representative chalcogenide films. 

It is also interesting to show the results of the Tauc´s extrapolation for the thicker chalcogenide 

layer. Its corresponding fitting energy range, as well as that for the thinner layer, are both highlighted 

in Figure 9. The much smaller fit region for the thicker sample (from 2.66 to 2.72 eV), is the direct 

consequence of its larger film thickness, more precisely, more than three times thicker. Something 

similar can be said about the Cody´s extrapolation for this much thicker chalcogenide film. In 

addition, it has been illustrated in Figure 9b,d both the exponential (low-energy) Urbach tail, starting 

from the values of E < E04, and the high-energy (absorption) spectral region, where the Tauc and Cody 

optical gaps were calculated; it has been found in our study that the iso-absorption gap E03 practically 

coincides with the Tauc gap, as it is generally considered. 

In the present work, it has been finally reached the conclusion that the three spectral components 

of the TLU model, that is, the Lorentz electron oscillator, the Tauc joint density of states, and the 

Urbach exponential tail, respectively, very accurately describe both the below-band-gap and above-

band-gap absorption in the As-based chalcogenide films under study. The ‘trade-off’ between the 

three spectral components has resulted in the small reduction of the nominal band gap Eg (TLU gap) 



Coatings 2020, 10, 1063 20 of 23 

 

relative to the true Tauc and Cody optical band gaps, Eg, Tauc and Eg, Cody, respectively, when the TLU-

oscillator model has been fitted to the real transmission data; see Table 2, where all the calculated 

band-gap values are listed. We can conclude that part of the optical absorption of the material is 

embodied within the extra photon-energy range from the true extrapolated gap down to the fitted 

TLU gap. Thus, this TLU gap could be considered to certain extent a ‘mathematical gap’, rather than 

a purely-physical gap [45]. 

7. Concluding Remarks 

The complex refractive index of thermally-evaporated amorphous As-based chalcogenide films 

deposited onto room-temperature glass substrates, was determined as a function of photon 

energy/wavelength with the aid of the devised MATLAB-coded computer program, AJUSTET, based 

only on the measurement of the normal-incidence transmission spectrum. The wavelength range 

studied was from 400 to 2200/2600 nm, and it has been unambiguously demonstrated that the TLU 

dispersion relation is certainly appropriate for the evaluation of the UV/Vis/NIR normal-incidence 

transmission measurements on amorphous chalcogenide layers. 

Moreover, the average thickness values yielded by TLU evaluation are very close to the thickness 

values mechanically measured by a Dektak 150 surface profiler, and also by cross-section SEM 

microscopy images. The calculated complex refractive index spectra are in remarkable agreement 

with those reported by Jellison and Modine, confirming the correctness and accuracy of the new 

formulae for the optical transmittance, proposed in this paper. Besides, the values of the Urbach 

energy, Eu, deduced from the TLU parameterization, are also determined in the comprehensive 

optical characterization performed. 

Finally, our computer program AJUSTET program has enabled us the accurate determination of 

the optical properties, average thickness and wedging parameter of films even thicker than up to 

approximately 5 μm, well above the preferred maximum thickness limit of the alternative, and, in 

general, much more difficult technique of variable-angle spectroscopic ellipsometry. 
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Appendix A 

The flowchart describing the user interaction with AJUSTET and the associated input and output 

files related to the software are depicted in Figure A1 below. 
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Figure A1. Flowchart for the algorithm corresponding to the MATLAB-based computer program 

AJUSTET, presented in the present work. It accurately resolves the problem of determining the optical 

constants, average layer thickness, and wedging parameter of amorphous semiconductor thin films. 
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