
coatings

Article

Nonthermal Plasma Treatment Improves Uniformity
and Adherence of Cyclodextrin-Based Coatings on
Hydrophobic Polymer Substrates

Greg D. Learn , Emerson J. Lai and Horst A. von Recum *

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
greg.learn@case.edu (G.D.L.); emerson.lai@case.edu (E.J.L.)
* Correspondence: horst.vonrecum@case.edu

Received: 10 October 2020; Accepted: 23 October 2020; Published: 31 October 2020
����������
�������

Abstract: Low surface energy substrates, which include many plastics and polymers, present challenges
toward achieving uniform, adherent coatings, thus limiting intended coating function. These inert
materials are common in various applications due to favorable bulk, despite suboptimal surface,
properties. The ability to functionally coat low surface energy substrates holds broad value for uses
across medicine and industry. Cyclodextrin-based materials represent an emerging, widely useful class
of coatings, which have previously been explored for numerous purposes involving sustained release,
enhanced sorption, and reversible reuse thereof. In this study, substrate exposure to nonthermal
plasma was explored as a novel means to improve uniformity and adherence of cyclodextrin-based
polyurethane coatings upon unreceptive polypropylene substrates. Plasma effects on substrates
were investigated using contact angle goniometry and X-ray photoelectron spectroscopy (XPS).
Plasma impact on coating uniformity was assessed through visualization directly and microscopically.
Plasma effects on coating adhesion and bonding were studied with mechanical lap-shear testing
and XPS, respectively. Substrate surface wettability and oxygen content increased with plasma
exposure, and these modifications were associated with improved coating uniformity, adhesion, and
interfacial covalent bonding. Findings demonstrate utility of, and elucidate mechanisms behind,
plasma-based surface activation for improving coating uniformity, adherence, and performance on
inert polymeric substrates.

Keywords: plasma; substrate; polypropylene; adhesion; coating; polysaccharide; cyclodextrin; polymer;
biomaterial; polyurethane

1. Introduction

The surface plays a critical role in the performance and success of many applied solid materials.
For example, on surgically implanted devices, events such as protein adsorption, cell or bacterial
attachment, biofilm formation, blood coagulation, tissue adhesion, foreign body response, and corrosion
can all transpire at the host-material interface, ultimately determining the fate and function of the
prosthesis, as well as the clinical outcome for the patient. Likewise, for non-medical commercial
products, the surface of an item can impact its appearance, operation, and even durability, all of which
influence consumer demand and profitability. Large bodies of research have been directed toward
modifying material surfaces to achieve desirable function without compromising bulk properties.
Within this vein, one of the most common surface modification approaches entails the application of
coatings, which may serve many purposes.

Many biomedical and non-medical commercial products are comprised of polymers that possess low
surface energy. Such polymeric materials include polypropylene (PP), polyethylene (PE), polydimethylsiloxane
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(PDMS), and polytetrafluoroethylene (PTFE). As a focus in this work, PP is a polyolefin, being one of the
most abundantly used plastics today [1]. PP has many uses that range from textiles [2] (e.g., surgical
meshes, sutures, clothing, and upholstery fabric), to filters/membranes [3] (e.g., in water or ventilation
systems, and in surgical respirators or masks), to packaging [4] (e.g., containers for food, cosmetics,
or chemicals), and beyond.

The low surface energy of such materials can be disadvantageous for several reasons. First, it decreases
the receptiveness of these polymers toward coatings [5], which could otherwise allow for improved product
function, appeal, longevity, safety, and in the case of implantable devices, host response. In general,
the surface energy of a substrate should exceed that of a coating to achieve reasonable spreading and
adhesion. If not, applied coatings suffer from lack of uniformity, adherence, and durability, limiting
the intended function of the coating over the product lifetime. The second disadvantage, particularly
important for implants and water treatment filters/membranes, is that the nonpolar nature of low
surface energy substrates promotes non-specific adsorption and denaturation of proteins on the bare
surface. It is thermodynamically favorable for proteins to displace water at a hydrophobic interface
and to change conformation (core nonpolar amino acids associate with the material) [6]. On implant
substrates, denatured proteins in this protein conditioning layer may assume altered functions or
be misidentified by the host immune system, thus triggering adverse thrombotic, inflammatory,
and foreign body responses [7–9]. Furthermore, this protein conditioning layer may serve as a site for
undesired attachment of biofoulants such as bacteria. On water treatment filters/membranes, adherent
bacteria and their biofilms can reduce flux and contaminate treated water [10,11].

An attractive solution to promote uniformity and adherence of coatings on such challenging
materials involves treatment of the substrate with nonthermal plasma [12,13]. Plasma is a state of matter
composed of a dynamic mixture of negative and positive ions, uncharged molecules/atoms, radicals,
photons, and free electrons. It is created when sufficient energy, either in the form of heat (thermal
plasma) or electromagnetic fields (nonthermal plasma) is applied to a gas. Thermal plasmas exist
only at very high temperatures (>4000 K) that would destroy most polymeric materials [14,15], thus
only nonthermal plasmas are used for surface modification as considered in this paper. Interaction of
nonthermal plasma with a polymer surface results in cleaning or etching, bond scission or rearrangement,
and the introduction of new functional groups as determined by the carrier gas composition. These
plasma-induced changes can promote substrate receptiveness to coatings [16], and also directly alter
biological responses at the substrate surface [17]. Furthermore, plasma treatments circumvent the
need for hazardous chemicals (e.g., solvents) as adhesion promoters, are amenable for substrates
with complex geometries, and can achieve desirable surface changes while minimizing impact on the
substrate material bulk properties [17].

Our group and others have previously investigated polysaccharide-based materials, constructed
from subunits of cyclodextrin (CD), as coatings that can serve a wide variety of unique purposes. CDs are
cyclic oligosaccharides, produced through bacterial enzymatic digestion of starch, having a truncated
cone geometry with a hydrophilic exterior and a lipophilic core or “pocket”. They have remarkable
abilities to reversibly complex, through non-covalent interactions, with small nonpolar molecules or
domains that “fit” in the pocket. Applications of these CD-based coatings include sustained delivery of
antibiotics [18–21], drugs [22–24], pesticides [25], or fragrances [26], and efficient uptake and retention
of pollutants [27,28] or dyes [29–31]. Additionally, due to the reversible nature of their molecular
interactions, these coatings may be regenerated and reused multiple times. Furthermore, owing to
hydrophilic properties imparted by the intrinsically polar exterior of CD subunits, certain formulations
of polymerized CD (pCD) applied as coatings have recently shown potential for mitigating events of
biofouling, through passive resistance to non-specific protein adsorption, mammalian cell adhesion,
and bacterial attachment [32]. Within our group, pCD coatings have previously been applied to
polyester surgical fabrics and metallic orthopedic screws [18,19,33,34]. However, given that many
low surface energy polymers are used as commercial materials in medicine and industry, in addition
to the perpetual need for functional and stable coatings, it would be advantageous to explore the



Coatings 2020, 10, 1056 3 of 17

application of pCD coatings upon such difficult substrates in efforts to maximize coating uniformity
and adherence.

The objective of this work is therefore to investigate effects of nonthermal plasma activation of
PP substrates on the quality of pCD coatings. PP is chosen as a model substrate material given its
inherently low surface energy, and its extensive use in biomedical and non-medical commercial products.
A few notable examples include: (i) PP surgical textile implants, for which pCD coatings could help
mitigate inflammatory, infective, and/or post-surgical tissue adhesion complications, whether through
delivery-based or passive means; (ii) PP water treatment filters/membranes, for which pCD coatings could
simultaneously resist biofouling and repeatedly scavenge pollutants; and (iii) PP packaging, for which
pCD coatings could benefit the quality and shelf life of food through delivery of preservatives and/or
extraction of undesirable spoilage byproducts.

An overview of this work is presented in Figure 1. The hypothesis of this study is that nonthermal
plasma treatment enhances the uniformity and adherence of pCD coatings on PP substrates. To test
this hypothesis, the time-dependent effects of nonthermal plasma exposure on PP substrate surface
characteristics were first evaluated using contact angle goniometry and X-ray photoelectron spectroscopy
(XPS). Next, the effects on pCD coating uniformity and adherence were investigated. Uniformity
was qualitatively assessed through both direct visualization and use of scanning electron microscopy
(SEM), and semi-quantitatively investigated through spreading experiments under direct visualization.
Adherence was evaluated using lap-shear testing to evaluate mechanical adhesion in accordance with
ASTM standard, and XPS to survey for chemical evidence of interfacial covalent bonds.
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Figure 1. Study overview. Effects of nonthermal plasma on polypropylene (PP) substrates were investigated
in terms of wettability and surface chemistry, and effects on polymerized CD (pCD) coatings were
explored in terms of uniformity and adherence.

2. Materials and Methods

2.1. Materials

Soluble, lightly epichlorohydrin-crosslinked β-CD polymer precursor (bCD) was purchased from
CycloLab R&D (#CY-2009, batch CYL-4160, MW ~116 kDa; Budapest, Hungary). Hexamethylene
diisocyanate (HDI) crosslinker (#52649) and 2-(trifluoromethyl) phenyl isocyanate (2-TPI) (#159379)
were purchased from Sigma Aldrich (St. Louis, MO, USA). N,N-dimethylformamide (DMF) solvent
(#D119-4) was purchased from Fisher Scientific (Pittsburgh, PA, USA). PP 24-well plates (#1185U58)
and lids (#1185U62) for macroscopic coating observation were purchased from Thomas Scientific
(Swedesboro, NJ, USA). PP sheet stock (#8742K133) for XPS and contact angle goniometry, and bar
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stock (#8782K11) for lap-shear testing were purchased from McMaster-Carr (Elmhurst, IL, USA). PP
4-0 Prolene blue suture (#8592G) was purchased from eSutures (Mokena, IL, USA).

2.2. Plasma Cleaning and Activation of PP Substrate Surfaces

In order to systematically examine effects of plasma treatment on pCD coatings and PP substrates,
PP materials were placed in a 4 in (10 cm) diameter × 8 in (20 cm) length cylindrical quartz reaction
chamber of a Branson/IPC Model #1005-248 Gas Plasma Cleaner (St. Louis, MO, USA) and treated
with low-pressure nonthermal plasma (500 mTorr, 50 W, 13.56 MHz) using an inlet gas mixture of
argon bubbled through water (Ar/H2O). Given equipment scheduling constraints, effects of plasma
treatment on PP substrate wettability and surface chemistry were investigated using treatments of
durations from 1–20 min performed within 6 or 12 h of contact angle measurement or XPS analysis,
respectively. The impact of plasma treatment on pCD coating uniformity and adherence was next
assessed using a substrate treatment duration of 10 min (unless otherwise specified) within 1 h of pCD
coating application. Non-treated (0 min) PP samples without any known prior exposure to plasma or
ultraviolet light were included as controls in all experiments.

2.3. Effects of Plasma Treatment on PP Substrates

2.3.1. Wettability—Contact Angle Goniometry

For polar pCD coatings to spread uniformly on nonpolar PP substrates, the surface must be
rendered more wettable, therefore the effect of plasma treatment on wettability of PP was examined
using contact angle goniometry. PP sheet stock was cut to dimensions of ~1.5 in × 1.5 in (38 mm ×
38 mm), gently sanded to expose fresh surface using a graded series of SiC sandpaper (1200, 2500,
and 5000 grit), and rinsed thoroughly with a stream of deionized water prior to performing plasma
treatments (0, 1, 2.5, 5, 10, and 20 min). After sanding and/or plasma treatments, care was taken to
ensure that faces to be analyzed were not inadvertently exposed directly to any liquid or solid materials
before analysis. PP surfaces were then evaluated for wettability by static contact angle measurement
using a CAM 200 Optical Contact Angle Meter (KSV Instruments, Monroe, CT, USA). Deionized water
droplets (n = 9–14 unique droplets per sample) of 8 µL volume were dispensed onto each PP surface
and allowed to equilibrate for 30 s prior to photographing and measurement. The measurement
for each droplet reflects the average of the angles on the left and right sides. Measurements were
performed using KSV CAM 2008 software. Results shown represent findings from one experiment,
with the same trends having also been observed in 2 similar independent experiments.

2.3.2. Surface Chemistry—XPS

Effects of plasma treatment on PP surface chemistry were studied using XPS to better understand
the mechanistic basis by which plasma impacts spreading and adhesion of pCD coatings onto PP
substrates. PP sheet stock was cut to dimensions of ~7.5 mm × 7.5 mm, gently sanded to expose fresh
surface using a graded series of SiC sandpaper, and rinsed thoroughly with a stream of deionized
water prior to performing plasma treatments (0, 1, 2.5, 5, 10, and 20 min). After sanding and/or plasma
treatments, care was taken to ensure that faces to be analyzed were not inadvertently exposed directly
to any liquid or solid materials before analysis. PP surfaces were then analyzed for elemental content
using a PHI Versaprobe 5000 Scanning X-ray photoelectron spectrometer (Physical Electronics, Inc.,
Chanhassen, MN, USA) equipped with Al Kα source (hν = 1486.6 eV). Scans were acquired on a total
of n = 3–4 samples per plasma treatment duration across 2 pooled experiments, with 2 unique scan
locations averaged per sample. Survey scans were collected using a 200 µm spot size, 45 W power,
15 kV acceleration voltage, 117.40 eV pass energy, 0.40 eV step size, 25 ms/step, 8 cycles, 44.7◦ take-off

angle, and 0–1100 eV range. The C1s peak was auto-shifted to 284.8 eV, and the ratios of the elements
carbon, nitrogen, and oxygen were analyzed. The areas of peaks were taken with background set
using a Shirley function from 280–292 eV for C1s, 396–404 eV for N1s, and 526–538 eV for O1s. Auger
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peaks were not used for analysis. After survey scans, high-resolution scans were collected using a
100 µm spot size, 25.2 W power, 15 kV acceleration voltage, 23.50 eV pass energy, 0.20 eV step size,
50 ms/step, 16 cycles, 44.7◦ take-off angle, and 278–298 eV range for C1s, or 523–543 eV range for
O1s. The vertical sampling depth ζ (from which 95% of signal originates) for take-off angle θ = 44.7◦

and reported inelastic mean free path of λ = 3.5 nm at a photoelectron kinetic energy of 1 keV for
PP surfaces [35], is determined to be ~7.4 nm based on the relation [36] ζ = 3λcos(θ). Analysis was
performed using MultiPak software version 9.8.0.19 (Physical Electronics, Inc., Chanhassen, MN, USA).
For interpretation of high-resolution scans, C–C, C–O, C=O, and O–C=O peak positions [37–41] were
constrained at 284.8 ± 0.1, 286.3 ± 0.1, 288 ± 0.2, and 289 ± 0.2 eV, respectively, and full widths at half
maximum (FWHM) were constrained to be within 10% that of the C–C peak FWHM value.

2.4. pCD Synthesis and Coating onto Surfaces

pCD coatings were synthesized in three steps using HDI as a crosslinker for bCD. First, bCD was
weighed and placed in a PP tube, and DMF was added to dissolve it, maintaining a ratio of 3 mL DMF
per gram bCD. Second, HDI was added so as to initiate crosslinking, and this pre-polymer mixture
was thoroughly vortexed. Third, pre-polymer mixtures were cast as coatings either: (i) into wells
of PP multiwell plates for production of coated well surfaces for qualitative and semi-quantitative
direct visualization of coatings, (ii) onto PP sutures for qualitative microscopic visualization of coating
uniformity under SEM, or (iii) onto flat PP bar stock pieces (newly abraded using SiC sandpaper to
expose fresh surface) for preparing coated specimens for lap-shear testing. Unless otherwise specified,
the amount of HDI used in experiments was 320 µL per gram bCD to achieve an intermediate crosslink
ratio of 0.32. For experiments where polymer curing was necessary, cast pre-polymer mixtures were
kept covered with Parafilm and allowed to cure for between 2–6 days, as specified for each experiment,
under static conditions at ambient temperature and pressure. Cured pCD coatings were used promptly
and directly in subsequent experiments before any drying could take place.

2.5. Effects of Plasma Treatment on pCD Coatings

2.5.1. Qualitative Uniformity—Direct Visualization

For qualitative visual assessment of pCD coating uniformity on PP substrates following plasma
treatment, pCD coatings were applied to 24-well plates with or without a prior 10 min exposure to
plasma. In this experiment, to observe potential effects of pCD formulation on polymer spreading,
the amount of HDI crosslinker was varied between extremes of 80 and 640 µL per gram bCD,
to achieve approximate crosslink molar ratios (HDI per glucose residue) from 0.08 to 0.64, respectively,
chosen to span a range from the minimum limit for gelation up to brittle materials. The volume of
pre-polymer mixture added was 140 µL/well, with each unique crosslink ratio in a different column (i.e.,
4 wells/formulation), then all plates were gently but thoroughly agitated to help promote complete initial
coverage prior to covering them with Parafilm and allowing the polymers 2 days to cure under static
conditions at ambient temperature and pressure. Plates were then photographed and representative
rows were selected to demonstrate the completeness of spreading for each pCD formulation.

2.5.2. Qualitative Uniformity—SEM

SEM was performed to qualitatively study pCD coating uniformity on PP substrates with or
without prior plasma surface activation. Prolene sutures were removed from sterile packaging, cut into
1 in long pieces, and either treated with nonthermal plasma for 10 min or left untreated (0 min). Sutures
were then coated with pCD by dipping them in freshly prepared pre-polymer mixture, then were
placed in a Parafilm-covered Teflon dish and allowed to cure for 2 days at ambient temperature and
pressure. pCD-coated sutures were then gently adhered to a stub using carbon tape, and sputter-coated
with 5 nm of palladium under vacuum. Sutures were characterized using a JSM-6510 series scanning
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electron microscope (JEOL USA, Inc., Peabody, MA, USA). Images were taken at 50×magnification
and an excitation voltage of 25 kV.

2.5.3. Semi-Quantitative Uniformity—Direct Visualization

For semi-quantitative direct visual assessment of pCD coating uniformity on PP substrates
following plasma treatment, pCD pre-polymer solutions were applied to PP 24-well plates treated
with plasma for different lengths of time (0, 1, 2.5, 5, 10, and 20 min). PP 24-well plates were held
still on a stable fixture on an isolated lab bench, and solutions were slowly and gently added to each
well via pipette by the same operator. The volume of pre-polymer mixture added to each well was
varied for each plate to evaluate the completeness of spreading across a narrow range of volumes.
All wells were used in each plate, for a total of 24 volumes tested per plasma treatment duration,
with each unique volume being tested in at least triplicate. Pre-polymer solutions were allowed to
spread on well surfaces for 1 min under static conditions (no agitation), then visually determined to
be either completely spread across the well surface (passing result), or not (failing result). Volumes
were initially selected based on results of a preliminary study (not included), and refined slightly if
needed as the experiment progressed, such that roughly half of the wells would demonstrate complete
coverage, while the other half would not. Binary logistic regression was then performed on the results
using a logit link function in Minitab 19 software to estimate best-fit equations, which were used to
determine volumes at which 50% of wells would be expected to have a passing result after 1 min of
spreading (V50).

2.5.4. Adherence—Lap-Shear Testing

To examine the impact of plasma surface activation on the adhesion of PP substrates to pCD
coatings, lap-shear testing was performed. Lap-shear testing and specimen preparation were performed
in accordance with the ASTM D3163-01(2014) standard [42]. pCD pre-polymer mixtures (150 µL) were
cast between two rectangular strips of PP sheet substrate with overall dimensions of 4 in × 1 in × 1/8 in
(101.6 mm × 25.4 mm × 3.2 mm), on a 1 in × 1 in (25.4 mm × 25.4 mm) overlap region, and allowed
to cure for 6 days at ambient temperature and pressure. Paired PP strips were either left untreated
(0 min), or treated with nonthermal plasma for 10 min, prior to pCD application. Overlap regions were
securely held together over the curing period with the use of paired medium-size binder clips and
excess pre-polymer that spilled out of the joint was carefully wiped off with a KimWipe. Lap joints
(n = 5/group) were tested in tension until failure at a rate of 0.05 in/min (1.3 mm/min) and a sampling
rate of 72 Hz on an Instru-Met renewed load frame (#1130) operated with Testworks 4 software and
hand-tightened vice grips capable of being horizontally offset so as to minimize peel effects. Load
was monitored using a 100 lbf (445 N) tension load cell (Instron, Norwood, MA, USA) (cat #2512–103).
The maximum load attained during the test was divided by the overlap area and recorded as the
ultimate lap-shear strength (reported in units of kPa). The work to failure was divided by the overlap
area and recorded as the lap-shear toughness (reported in units of J/m2). Grips were maintained with
2.5 in (63.5 mm) between the grip edge and the bonded region, providing a 0.5 in (12.7 mm) length of
specimen/grip overlap. Results shown represent findings from one experiment, with the same trend
having also been observed in one similar independent experiment.

2.5.5. Interfacial Covalent Bonding—XPS

In order to better understand the mechanisms behind plasma treatment effects on PP substrate
adhesion to pCD coatings, we sought to determine whether covalent bonding takes place between
pCD coatings and the plasma-treated PP surface. However, to do this an isocyanate compound was
needed that could be uniquely identified at the activated PP surface. This was done using XPS to
detect fluorine as a unique marker of the isocyanate compound 2-TPI after exposure of this compound
to PP surfaces left untreated (0 min) or treated with plasma for 10 min. PP sheet stock was first cut to
dimensions of ~7.5 mm × 7.5 mm, gently sanded to expose fresh surface using a graded series of SiC
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sandpaper, and rinsed thoroughly with deionized water. Next, plasma treatments were performed
for the 10 min samples. Sample surfaces were then directly exposed to 2-TPI overnight, followed by
two sequential rinses with copious amounts of toluene, acetone, isopropanol, then deionized water.
Finally, a stream of dry nitrogen gas was used to remove excess water from sample surfaces. Untreated
and plasma treated PP surfaces that were not exposed to isocyanate were prepared as controls as well.
After sanding, plasma, and isocyanate exposure, care was taken to ensure that faces to be analyzed
were not inadvertently touched by any solid surface before or during analysis. PP surfaces were
then analyzed for elemental content using XPS as above. XPS was performed within 48 h of plasma
treatment. Survey scans were acquired on 2 samples per plasma treatment duration, with 2 unique
scan locations per sample. The ratios of carbon, nitrogen, oxygen, and fluorine were analyzed using
Multipak software (version 9.8.0.19). The areas of peaks were taken with background set using a
Shirley function as before for C1s, N1s, and O1s, and from 675–695 eV for F1s. Auger peaks were
not used for analysis. Increased fluorine content was attributed to covalent urethane bond formation
between hydroxyl groups on the PP surface and the isocyanate group on 2-TPI.

2.6. Statistical Analysis

All data is presented as mean ± standard deviation. Unless otherwise specified, statistical analysis
tests were carried out in Microsoft Excel 2016, with two-sample two-tailed Student’s t-tests with unequal
variance used for all comparisons. Statistical significance was set at p < α = 0.05. Plots depicting
representative data were constructed using the sample closest to the group mean value(s).

3. Results

3.1. Effects of Plasma Treatment on PP Substrate Wettability and Surface Chemistry

First, we sought to evaluate the effects of plasma on the substrate surface, particularly in terms of
wettability and chemistry. Wettability was studied through contact angle goniometry using the sessile
drop method. Plasma treatment for any length of time was found to increase the wettability of PP
substrates (p < 0.001) (Table 1), with longer treatments correlating with decreased static water contact
angles. Without plasma treatment, water contact angles on PP averaged >120◦, but after 20 min of
plasma exposure, this value decreased to <60◦.

Table 1. Effect of plasma treatment duration on PP wettability, and surface chemistry.

Plasma Duration (Min) Contact Angle (◦) Atomic % Carbon Atomic % Nitrogen Atomic % Oxygen

0 126.8 ± 4.8 † 98.27 ± 0.35 † 0.29 ± 0.19 1.45 ± 0.24 †
1 95.0 ± 7.4 88.47 ± 0.70 0.34 ± 0.19 11.19 ± 0.51

2.5 87.1 ± 10.4 88.18 ± 0.75 0.45 ± 0.40 11.37 ± 0.63
5 70.1 ± 9.5 85.79 ± 0.29 0.53 ± 0.17 13.68 ± 0.28
10 65.8 ± 9.9 82.18 ± 0.89 0.71 ± 0.07 * 17.11 ± 0.85
20 57.9 ± 9.7 79.93 ± 1.28 0.72 ± 0.15 * 19.36 ± 1.20

† Significant difference to all subsequent time points. * Significant difference to 0 min control.

PP substrate surface chemistry was studied using XPS. Quantitative analysis of survey scan
spectra (Figure 2) indicated that plasma exposure for any duration enhanced the amount of oxygen
on PP surfaces (p < 0.001), and decreased the proportion of carbon (p < 0.001), with no significant
impact on surface nitrogen content (p > 0.1) until 10 or 20 min (p < 0.014) of treatment (Table 1).
Longer treatments were associated with increased oxygen, slightly increased nitrogen, and decreased
carbon concentrations. Engraftment of oxygen-containing groups likely explains the enhanced surface
wettability of PP following plasma treatment.
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Figure 2. Representative XPS survey scans (rescaled to normalize areas under curves) of the 0 and
20 min time points demonstrate increasing height of the O1s peak with plasma treatment. KLL peaks
indicate atomic relaxation via the Auger effect (with the acronym reflecting the K and L electron orbital
shells involved in the energy transition), and were not used for analysis. Spectra are intentionally offset
from each other along the vertical axis.

High-resolution C1s spectra were nearly symmetric for the untreated PP surface, but demonstrated
an increasing skew to the left as plasma exposure time increased (Figure 3), suggesting increasing
abundance of oxygen-containing functionalities including C–O, C=O, and O–C=O. Deconvolutions
of high-resolution C1s scans suggested that most engrafted oxygen was incorporated as hydroxyl
groups, with lesser amounts as ketones/aldehydes and carboxyls/esters, for all tested plasma durations.
This finding is in agreement with previous reports [17,37]. However, the abundance of hydroxyl
groups leveled off after 10 min of treatment, as existing hydroxyls were oxidized further to species
such as ketones, carboxylic acids, or possibly even carbonates [38,39,41]. These latter two oxygen-rich
functional groups can only be created through chain scission at the substrate surface, and such
degraded polymer chains may embrittle the PP material [17]. Furthermore, loss of hydroxyl groups
at the PP surface might be predicted to decrease the extent of interfacial covalent bonding with the
polyurethane coating, as hydroxyls undergo expected reaction with isocyanates [43,44]. This would
tend to decrease coating adherence. For these reasons, a treatment duration of 10 min was selected for
most subsequent experiments.

3.2. Effects of Plasma Treatment on pCD Coating Uniformity, Adherence, and Interfacial Covalent Bonding

Having characterized the effects of plasma treatments on PP substrates, we next aimed to evaluate
the effects of the plasma on pCD coating uniformity and adherence.

First, coating uniformity was qualitatively assessed based on direct and SEM visualizations. pCD
coatings uniformly and stably covered the surfaces of PP substrates after plasma treatment, but not
otherwise. This was observed both directly on initially-agitated PP 24-well plate surfaces (Figure 4),
and microscopically on PP suture surfaces (Figure 5).

For PP 24-well plates, coatings tended to bead up at well edges without prior substrate plasma
treatment, resulting in inadequate surface coverage at well centers. These well coatings were also
observed to delaminate more easily from well surfaces, especially at higher crosslink ratios when
pCD tended to contract more upon curing. Following plasma treatment, coatings applied in the same
manner covered the entire surface of each well, regardless of the HDI crosslink ratio.
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Figure 5. Scanning electron micrographs demonstrate that plasma treatment of PP suture improves
microscopic pCD coating uniformity: (A) an untreated and pCD-coated PP suture. The pCD coating
beads up instead of spreading on untreated PP suture; (B) a 10 min plasma-treated and pCD-coated PP
suture. The pCD coating is thin and well-spread on the plasma-treated suture, as made apparent based
on the presence of cracks caused by sample drying upon sputtering and imaging.

For PP sutures, SEM images demonstrated that pCD coatings beaded up and covered very little
of the untreated PP suture surface (Figure 5A). At the same time, pCD coatings applied in the same
manner were able to spread and coat a much larger fraction of the surface on plasma treated sutures
(Figure 5B).

Next, coating uniformity was semi-quantitatively assessed by evaluating, across a range of
volumes, whether or not pCD pre-polymer solutions were able to completely spread within 1 min
under static conditions on PP 24-well plate surfaces that had been treated with plasma for various
durations of time. Binary logistic regression was then performed on the results so as to determine the
volume for each plasma exposure duration at which 50% of wells would show complete coverage,
V50. In agreement with the wettability study results, V50 was lower for plasma-treated wells than for
untreated wells (Table 2), implying that plasma treatment decreased the volume of pCD pre-polymer
solution required to achieve complete coverage of PP wells. Additionally, V50 tended to decrease with
increasing plasma duration, with the minor exception of the 20 min group (though this small deviation
might reflect low sensitivity of the test method to detect such slight differences).

Table 2. Effect of plasma duration on calculated pCD pre-polymer solution volume needed for complete
coverage of half of tested PP well surfaces.

Plasma Duration (Min) V50 (µL)

0 246.67
1 163.75

2.5 163.75
5 162.34

10 159.65
20 166.81

Taken together, results of the qualitative and semi-quantitative coating uniformity studies indicate
that plasma treatments of PP substrates improve pCD coating uniformity. In light of the PP wettability
findings, this improved uniformity likely reflects decreased substrate hydrophobicity, which promotes
spreading of the polar pre-polymer mixtures on the surface.

Coating adherence was next investigated using lap-shear testing, an approach used for measuring
the bond shear strength of coatings and adhesives, which here involved pulling apart two rectangular
PP adherends parallel to a bond line of pCD applied over a defined area. Lap-shear testing revealed
that plasma treatment of PP substrates for 10 min increased average ultimate lap-shear strength by 43%
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(p = 0.003) and doubled average lap-shear toughness (p = 0.026) of pCD coatings (Table 3). The ultimate
lap-shear strength and toughness are related to the maximum load (peak) and work (integral) for
the load-displacement curve (Figure 6), respectively. For general reference, the ultimate lap-shear
strength of untreated PP adherends bonded with cyanoacrylate has been reported as 0.22 MPa [45],
approximately the strength observed here for untreated PP bonded with 0.32 pCD, though cyanoacrylate
most likely possesses higher cohesive strength than the tested pCD. The enhanced coating adherence
following plasma treatment may result from the evident engraftment of hydroxyl groups onto the PP
surface, which might react to form covalent urethane linkages between the coating and substrate upon
diisocyanate crosslinking [43,44].

Table 3. Effect of plasma treatment on pCD coating adherence to PP substrates.

Plasma Duration (Min) Ultimate Lap-Shear Strength (kPa) Lap-Shear Toughness (J/m2)

0 222.3 ± 31.7 32.9 ± 12.3
10 318.7 ± 40.0 * 66.4 ± 22.5 *

* Significant difference to 0 min control.
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To validate this explanation that interfacial covalent bonding was partly responsible for enhanced
coating adherence following plasma treatment, we next aimed to evaluate the formation of covalent
urethane bonds between functional groups at the coating-substrate interface. This was done using
XPS to detect fluorine as a unique marker of an isocyanate compound, 2-TPI, after exposure of this
compound to untreated and plasma-treated PP surfaces followed by copious rinsing. In comparison to
non-2-TPI-exposed controls, incubation of untreated PP samples with 2-TPI resulted in no significant
change in surface fluorine content (p = 0.5), while incubation of plasma-treated PP samples with 2-TPI
led to a significant increase in surface fluorine content (p = 0.018) (Figure 7, Table 4). This supports that
plasma treatment of PP substrates enables covalent linkages between the PP surface (most likely via
hydroxyl groups) and compounds containing isocyanate groups (such as pCD coatings during HDI
crosslinking). This result corroborates the finding that plasma treatment improved the adherence of
pCD coatings, and suggests that this effect can be attributed, at least in part, to covalent bond formation
at the coating-substrate interface. Note that the 10 min plasma treated PP that was not exposed to 2-TPI
in this experiment showed lower surface oxygen content than was seen before (Table 1). This likely
reflects an extended period between plasma treatment and XPS (given overnight 2-TPI incubation),
as well as the employed rinsing protocol.
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Table 4. Effect of plasma treatment on isocyanate-mediated fluorination of PP surfaces.

Plasma Duration
(Min)

2-TPI
Exposure

Atomic %
Carbon

Atomic %
Nitrogen

Atomic %
Oxygen

Atomic %
Fluorine

0 − 99.34 ± 0.37 0.42 ± 0.02 0.25 ± 0.35 0.00 ± 0.00
0 + 99.55 ± 0.64 0.00 ± 0.00 0.15 ± 0.21 0.31 ± 0.43
10 − 87.09 ± 0.11 0.89 ± 0.06 11.97 ± 0.26 0.07 ± 0.09
10 + 90.41 ± 0.49 0.72 ± 0.32 7.48 ± 0.53 1.39 ± 0.08 #

# Significant difference to non-2-TPI-exposed control at the equivalent plasma duration.

4. Discussion

Uniformity and adherence to the substrate are crucial for the performance and function of any
coating. For example, delamination of a drug-eluting polymer coating on an intravascular implant
could pose risk for lethal thrombosis or embolism [46]. Similarly, improper adherence of paint to a
metal component (e.g., for an automobile) could accelerate corrosion and potential structural failure of
the part [47,48]. Likewise, a lack of adequate substrate coverage of an anti-biofouling coating could
enable organisms to exploit coating surface defects and attach to the underlying substrate [49–51],
creating problems such as infection on a medical device or increased drag on a marine vessel.

CD-based coatings have numerous potential applications relevant for inert polymeric substrates like PP.
For example, on PP surgical textile implants, they could deliver antibiotics/drugs [19,24], or provide intrinsic
resistance to protein/cell/bacterial attachment [32] to help mitigate complications related to inflammation,
infection, and/or post-surgical tissue adhesion. On PP non-medical textiles, they could be used to improve
fabric dyeability [30], for sustained and controlled release of insect repellent compounds [52–54] and
fragrances [55–57], and for incorporating protectants against ultraviolet radiation [58,59] to which PP has
known degradation susceptibility [60]. In PP water treatment filters/membranes, they could be useful as
reusable adsorbents for scavenging of pollutants from water [27,61,62], and for limiting attachment and
growth of biofouling microbial biofilms [32]. In PP packaging materials, they could be used to improve
the quality and shelf life of food, through release of antimicrobial or preservative compounds [63,64],
or through scavenging of undesirable components [65,66], either directly from the food or from the
package headspace.

This study was designed to test the hypothesis that nonthermal plasma treatment enhances the
uniformity and adherence of pCD coatings on PP substrates. The observations from contact angle
goniometry, XPS, direct and SEM visualization, and lap-shear testing support this hypothesis. Plasma
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activation was found here to be a suitable strategy for improving both uniformity and adherence of
polymer coatings such as pCD, on inert and otherwise incompatible polymer substrates like PP.

This conclusion is in agreement with those from prior studies that have investigated effects of
plasma on uniformity and adherence of other polyurethane coating materials to low surface energy
polymer substrates [44,67]. Martinez et al. determined that atmospheric plasma treatment of PDMS and
acrylonitrile-butadiene-styrene substrates could enhance the adhesion of polyurethane-based paints in
scratch, cross-cut, and pull-off tests [67]. Bao et al. found that atmospheric plasma treatment engrafted
hydroxyl and amine groups onto styrene-butadiene-styrene rubber surfaces, and that these specific
changes in surface chemistry, more so than incorporation of halogen functionalities, enabled increases
in T-peel strength of polyurethane coatings after addition of an isocyanate-terminated hardener [44].
Sanbhal et al. showed that oxygen cold plasma treatment of PP mesh substrates enhanced the uniformity
of pCD coatings [43]. Extending the knowledge gained from these previous investigations, through
detailed surface analysis in combination with mechanical lap-shear adhesion testing, this study revealed
direct evidence for formation of covalent bonds at the interface between a plasma-treated polyolefin
substrate and a polyurethane coating, clarified the basis for these interfacial connections, and identified
their contribution to improved strength of adhesion.

Substrate plasma activation is advantageous for improving uniformity and adherence of coatings
upon inert polymer substrates when compared to conventional treatments, which utilize harsh chemicals
as adhesion promoters. The former strategy represents a greener chemistry process, and eliminates
the risk for residual hazardous compounds, which is especially important for any materials that may
ultimately come into contact (directly or indirectly) with human cells or tissues (e.g., medical devices,
water treatment filters/membranes). Furthermore, appropriate selection of plasma treatment parameters
can ensure minimal impact on bulk mechanical properties of load-bearing substrates [17]. Apart from
CD-based coatings, findings herein support the use of substrate plasma activation for improving
uniformity and adherence of adhesives or paints (especially polyurethane-based formulations) upon
low surface energy substrates such as polyolefins.

Future studies could implement these findings to achieve enhanced uniformity and adherence of
coatings for improved functionality and durability in important applications, such as those mentioned
previously, involving low surface energy substrates. Additionally, effects of plasma treatment on pCD
coating uniformity and adherence could be investigated in detail for other polymer substrate materials,
different plasma processes, and other CD-based polymer chemistries/formulations. Changes in coating
uniformity or adherence over long periods after application could also be assessed, as the effects of
plasma on surface chemistry of bare substrates are known to diminish (i.e., age) over time. Prior studies
suggest that hydrophobic recovery of bare plasma-treated PP normally occurs over the course of several
weeks, the rate being dependent on environmental factors and polymer crystallinity [68–71]. However,
the application of a covalently anchored coating, such as pCD in this study, may limit conformational
changes and reorientation of the activated substrate surface, in theory preserving the coating uniformity
and adherence long term.

Author Contributions: Conceptualization, G.D.L. and H.A.v.R.; methodology, G.D.L.; validation, G.D.L. and
E.J.L.; formal analysis, G.D.L.; investigation, G.D.L. and E.J.L.; resources, H.A.v.R.; writing—original draft
preparation, G.D.L., E.J.L., and H.A.v.R.; writing—review and editing, G.D.L.; visualization, G.D.L.; supervision,
G.D.L.; project administration, G.D.L.; funding acquisition, H.A.v.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Institutes of Health, Grant No. R01 GM121477.

Acknowledgments: The authors gratefully acknowledge support from National Institutes of Health: NIH R01
GM121477 (H.A.v.R.), and NIH Ruth L. Kirschstein NRSA T32 AR007505 Training Program in Musculoskeletal
Research (G.D.L.). Additional support was provided by the Center for Stem Cell and Regenerative Medicine
Student Summer Program (ENGAGE) at Case Western Reserve University (E.J.L.). Core facility services provided
by the Swagelok Center for Surface Analysis of Materials and the Advanced Manufacturing and Mechanical
Reliability Center at CWRU are also appreciated. The authors also thank the Advincula group for use of the
contact angle goniometer, the Eppell group and Eloise Miller for use of and guidance with operating the plasma
cleaner, Kevin Abbassi for expertise and assistance with XPS, Kathleen Young for expertise and assistance with



Coatings 2020, 10, 1056 14 of 17

SEM, Katherine Yan for assistance with sample preparation, and Erika Cyphert and Nathan Rohner for valuable
writing feedback.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Maddah, H.A. Polypropylene as a promising plastic: A review. Am. J. Polym. Sci. 2016, 6, 1–11. [CrossRef]
2. Zhang, S.; Horrocks, A.R. A review of flame retardant polypropylene fibres. Prog. Polym. Sci. 2003, 28, 1517–1538.

[CrossRef]
3. Yang, Y.-F.; Wan, L.-S.; Xu, Z.-K. Surface engineering of microporous polypropylene membrane for antifouling:

A mini-review. J. Adhes. Sci. Technol. 2011, 25, 245–260. [CrossRef]
4. Boone, J.; Lox, F.; Pottie, S. Deficiencies of polypropylene in its use as a food-packaging material—A review.

Packag. Technol. Sci. 1993, 6, 277–281. [CrossRef]
5. Ryntz, R.A. Coating adhesion to low surface free energy substrates. Prog. Org. Coatings 1994, 25, 73–83.

[CrossRef]
6. Hoffman, A. Non-Fouling Surface Technologies. J. Biomater. Sci. Polym. Ed. 1999, 10, 1011–1014. [CrossRef]
7. Hu, W.J.; Eaton, J.W.; Ugarova, T.P.; Tang, L. Molecular basis of biomaterial-mediated foreign body reactions.

Blood 2001, 98, 1231–1238. [CrossRef] [PubMed]
8. Zdolsek, J.; Eaton, J.W.; Tang, L. Histamine release and fibrinogen adsorption mediate acute inflammatory

responses to biomaterial implants in humans. J. Transl. Med. 2007, 5, 31. [CrossRef]
9. Koo, J.; Rafailovich, M.H.; Medved, L.; Tsurupa, G.; Kudryk, B.J.; Liu, Y.; Galanakis, D.K. Evaluation of

fibrinogen self-assembly: Role of its αC region. J. Thromb. Haemost. 2010, 8, 2727–2735. [CrossRef]
10. Nguyen, T.; Roddick, F.A.; Fan, L. Biofouling of water treatment membranes: A review of the underlying

causes, monitoring techniques and control measures. Membranes (Basel) 2012, 2, 804–840. [CrossRef]
11. Flemming, H.C. Biofouling in water systems—Cases, causes and countermeasures. Appl. Microbiol. Biotechnol.

2002, 59, 629–640. [CrossRef]
12. Weon, J.-I.; Choi, K.-Y. Surface Characterization and morphology in Ar-plasma-treated polypropylene blend.

Macromol. Res. 2009, 17, 886–893. [CrossRef]
13. Harth, K.; Hibst, H. Surface modification of polypropylene in oxygen and nitrogen plasmas. Surf. Coatings

Technol. 1993, 59, 350–355. [CrossRef]
14. Desmet, T.; Morent, R.; De Geyter, N.; Leys, C.; Schacht, E.; Dubruel, P. Nonthermal plasma technology as

a versatile strategy for polymeric biomaterials surface modification: A review. Biomacromolecules 2009, 10,
2351–2378. [CrossRef] [PubMed]

15. Bogaerts, A.; Neyts, E.; Gijbels, R.; van der Mullen, J. Gas discharge plasmas and their applications.
Spectrochim. Acta Part B At. Spectrosc. 2002, 57, 609–658. [CrossRef]

16. Navaneetha Pandiyaraj, K.; Deshmukh, R.R.; Arunkumar, A.; Ramkumar, M.C.; Ruzybayev, I.; Ismat Shah, S.;
Su, P.-G.; Periayah, M.H.; Halim, A.S. Evaluation of mechanism of non-thermal plasma effect on the surface
of polypropylene films for enhancement of adhesive and hemo compatible properties. Appl. Surf. Sci. 2015,
347, 336–346. [CrossRef]

17. Learn, G.D.; Lai, E.J.; Wilson, E.J.; von Recum, H.A. Nonthermal plasma treatment of polymers modulates
biological fouling but can cause material embrittlement. bioRxiv 2019, 842260. [CrossRef]

18. Thatiparti, T.R.; Shoffstall, A.J.; von Recum, H.A. Cyclodextrin-based device coatings for affinity-based
release of antibiotics. Biomaterials 2010, 31, 2335–2347. [CrossRef] [PubMed]

19. Harth, K.C.; Rosen, M.J.; Thatiparti, T.R.; Jacobs, M.R.; Halaweish, I.; Bajaksouzian, S.; Furlan, J.; Von
Recum, H.A. Antibiotic-releasing mesh coating to reduce prosthetic sepsis: An in vivo study. J. Surg. Res.
2010, 163, 337–343. [CrossRef]

20. Cyphert, E.L.; Zuckerman, S.T.; Korley, J.N.; von Recum, H.A. Affinity interactions drive post-implantation
drug filling, even in the presence of bacterial biofilm. Acta Biomater. 2017, 57, 95–102. [CrossRef]

http://dx.doi.org/10.5923/j.ajps.20160601.01
http://dx.doi.org/10.1016/j.progpolymsci.2003.09.001
http://dx.doi.org/10.1163/016942410X520835
http://dx.doi.org/10.1002/pts.2770060508
http://dx.doi.org/10.1016/0300-9440(94)00503-6
http://dx.doi.org/10.1163/156856299X00658
http://dx.doi.org/10.1182/blood.V98.4.1231
http://www.ncbi.nlm.nih.gov/pubmed/11493475
http://dx.doi.org/10.1186/1479-5876-5-31
http://dx.doi.org/10.1111/j.1538-7836.2010.04072.x
http://dx.doi.org/10.3390/membranes2040804
http://dx.doi.org/10.1007/s00253-002-1066-9
http://dx.doi.org/10.1007/BF03218631
http://dx.doi.org/10.1016/0257-8972(93)90111-Z
http://dx.doi.org/10.1021/bm900186s
http://www.ncbi.nlm.nih.gov/pubmed/19655722
http://dx.doi.org/10.1016/S0584-8547(01)00406-2
http://dx.doi.org/10.1016/j.apsusc.2015.04.097
http://dx.doi.org/10.1016/j.jmbbm.2020.104126
http://dx.doi.org/10.1016/j.biomaterials.2009.11.087
http://www.ncbi.nlm.nih.gov/pubmed/20022369
http://dx.doi.org/10.1016/j.jss.2010.03.065
http://dx.doi.org/10.1016/j.actbio.2017.04.015


Coatings 2020, 10, 1056 15 of 17

21. Blanchemain, N.; Laurent, T.; Chai, F.; Neut, C.; Haulon, S.; Krump-konvalinkova, V.; Morcellet, M.; Martel, B.;
Kirkpatrick, C.J.; Hildebrand, H.F. Polyester vascular prostheses coated with a cyclodextrin polymer and
activated with antibiotics: Cytotoxicity and microbiological evaluation. Acta Biomater. 2008, 4, 1725–1733.
[CrossRef] [PubMed]

22. Haley, R.M.; Qian, V.R.; Learn, G.D.; von Recum, H.A. Use of affinity allows anti-inflammatory and anti-microbial
dual release that matches suture wound resolution. J. Biomed. Mater. Res. A 2019, 107, 1434–1442. [CrossRef]
[PubMed]

23. Vermet, G.; Degoutin, S.; Chai, F.; Maton, M.; Bria, M.; Danel, C.; Hildebrand, H.F.; Blanchemain, N.; Martel, B.
Visceral mesh modified with cyclodextrin for the local sustained delivery of ropivacaine. Int. J. Pharm. 2014,
476, 149–159. [CrossRef] [PubMed]

24. Chai, F.; Maton, M.; Degoutin, S.; Vermet, G.; Simon, N.; Rousseaux, C.; Martel, B.; Blanchemain, N. In vivo
evaluation of post-operative pain reduction on rat model after implantation of intraperitoneal PET meshes
functionalised with cyclodextrins and loaded with ropivacaine. Biomaterials 2019, 192, 260–270. [CrossRef]
[PubMed]

25. Romi, R.; Nostro, P.L.; Bocci, E.; Ridi, F.; Baglioni, P. Bioengineering of a cellulosic fabric for insecticide
delivery via grafted cyclodextrin. Biotechnol. Prog. 2005, 21, 1724–1730. [CrossRef] [PubMed]

26. Abdelkader, M.B.; Azizi, N.; Baffoun, A.; Chevalier, Y.; Majdoub, M. Fragrant microcapsules based on
β-cyclodextrin for cosmetotextile application. J. Renew. Mater. 2019, 7, 1347–1362. [CrossRef]

27. Martel, B.; Le Thuaut, P.; Bertini, S.; Crini, G.; Bacquet, M.; Torri, G.; Morcellet, M. Grafting of cyclodextrins
onto polypropylene nonwoven fabrics for the manufacture of reactive filters. III. Study of the sorption
properties. J. Appl. Polym. Sci. 2002, 85, 1771–1778. [CrossRef]

28. Wang, Z.; Guo, S.; Zhang, B.; Fang, J.; Zhu, L. Interfacially crosslinked β-cyclodextrin polymer composite
porous membranes for fast removal of organic micropollutants from water by flow-through adsorption.
J. Hazard. Mater. 2020, 384, 121187. [CrossRef]

29. Fuhrer, R.; Herrmann, I.K.; Athanassiou, E.K.; Grass, R.N.; Stark, W.J. Immobilized β-cyclodextrin on
surface-modified carbon-coated cobalt nanomagnets: Reversible organic contaminant adsorption and
enrichment from water. Langmuir 2011, 27, 1924–1929. [CrossRef]

30. Ghoul, Y.E.; Martel, B.; Achari, A.E.; Campagne, C.; Razafimahefa, L.; Vroman, I. Improved dyeability of
polypropylene fabrics finished with β-cyclodextrin–citric acid polymer. Polym. J. 2010, 42, 804–811. [CrossRef]

31. Park, J.S.; Kim, I.-S. Use of β-cyclodextrin in an antimigration coating for polyester fabric. Color. Technol.
2013, 129, 347–351. [CrossRef]

32. Learn, G.D.; Lai, E.J.; von Recum, H.A. Cyclodextrin polymer coatings resist protein fouling, mammalian
cell adhesion, and bacterial attachment. bioRxiv 2020. [CrossRef]

33. Blatnik, J.A.; Thatiparti, T.R.; Krpata, D.M.; Zuckerman, S.T.; Rosen, M.J.; von Recum, H.A. Infection
prevention using affinity polymer-coated, synthetic meshes in a pig hernia model. J. Surg. Res. 2017, 219,
5–10. [CrossRef]

34. Grafmiller, K.T.; Zuckerman, S.T.; Petro, C.; Liu, L.; von Recum, H.A.; Rosen, M.J.; Korley, J.N. Antibiotic-
releasing microspheres prevent mesh infection in vivo. J. Surg. Res. 2016, 206, 41–47. [CrossRef] [PubMed]

35. Cumpson, P.J. Estimation of inelastic mean free paths for polymers and other organic materials: Use of
quantitative structure–property relationships. Surf. Interface Anal. 2001, 31, 23–34. [CrossRef]

36. Ton-That, C.; Shard, A.G.; Bradley, R.H. Thickness of spin-cast polymer thin films determined by
angle-resolved XPS and AFM tip-scratch methods. Langmuir 2000, 16, 2281–2284. [CrossRef]

37. Morent, R.; De Geyter, N.; Leys, C.; Gengembre, L.; Payen, E. Comparison between XPS- and FTIR-analysis
of plasma-treated polypropylene film surfaces. Surf. Interface Anal. 2008, 40, 597–600. [CrossRef]

38. Wang, K.; Wang, W.; Yang, D.; Huo, Y.; Wang, D. Surface modification of polypropylene non-woven fabric
using atmospheric nitrogen dielectric barrier discharge plasma. Appl. Surf. Sci. 2010, 256, 6859–6864.
[CrossRef]

39. Mutel, B.; Grimblot, J.; Dessaux, O.; Goudmand, P. XPS investigations of nitrogen-plasma-treated
polypropylene in a reactor coupled to the spectrometer. Surf. Interface Anal. 2000, 30, 401–406. [CrossRef]

40. Sarani, A.; Nikiforov, A.Y.; De Geyter, N.; Morent, R.; Leys, C. Surface modification of polypropylene with an
atmospheric pressure plasma jet sustained in argon and an argon/water vapour mixture. Appl. Surf. Sci.
2011, 257, 8737–8741. [CrossRef]

http://dx.doi.org/10.1016/j.actbio.2008.07.001
http://www.ncbi.nlm.nih.gov/pubmed/18676187
http://dx.doi.org/10.1002/jbm.a.36658
http://www.ncbi.nlm.nih.gov/pubmed/30771234
http://dx.doi.org/10.1016/j.ijpharm.2014.09.042
http://www.ncbi.nlm.nih.gov/pubmed/25275939
http://dx.doi.org/10.1016/j.biomaterials.2018.07.032
http://www.ncbi.nlm.nih.gov/pubmed/30458361
http://dx.doi.org/10.1021/bp050276g
http://www.ncbi.nlm.nih.gov/pubmed/16321057
http://dx.doi.org/10.32604/jrm.2019.07926
http://dx.doi.org/10.1002/app.10682
http://dx.doi.org/10.1016/j.jhazmat.2019.121187
http://dx.doi.org/10.1021/la103873v
http://dx.doi.org/10.1038/pj.2010.80
http://dx.doi.org/10.1111/cote.12026
http://dx.doi.org/10.1101/2020.01.16.909564
http://dx.doi.org/10.1016/j.jss.2017.05.003
http://dx.doi.org/10.1016/j.jss.2016.06.099
http://www.ncbi.nlm.nih.gov/pubmed/27916373
http://dx.doi.org/10.1002/sia.948
http://dx.doi.org/10.1021/la990605c
http://dx.doi.org/10.1002/sia.2619
http://dx.doi.org/10.1016/j.apsusc.2010.04.101
http://dx.doi.org/10.1002/1096-9918(200008)30:1&lt;401::AID-SIA826&gt;3.0.CO;2-G
http://dx.doi.org/10.1016/j.apsusc.2011.05.071


Coatings 2020, 10, 1056 16 of 17

41. Boyd, R.D.; Kenwright, A.M.; Badyal, J.P.S.; Briggs, D. Atmospheric nonequilibrium plasma treatment of
biaxially oriented polypropylene. Macromolecules 1997, 30, 5429–5436. [CrossRef]

42. ASTM International. ASTM D3163-01(2014) Standard Test Method for Determining Strength of Adhesively Bonded
Rigid Plastic Lap-Shear Joints in Shear by Tension Loading; ASTM: West Conshohocken, PA, USA, 2014.

43. Sanbhal, N.; Mao, Y.; Sun, G.; Xu, R.F.; Zhang, Q.; Wang, L. Surface modification of polypropylene mesh
devices with cyclodextrin via cold plasma for hernia repair: Characterization and antibacterial properties.
Appl. Surf. Sci. 2018, 439, 749–759. [CrossRef]

44. Bao, L.; Fan, H.; Chen, Y.; Yan, J.; Yang, T.; Guo, Y. Effect of surface free energy and wettability on the adhesion
property of waterborne polyurethane adhesive. RSC Adv. 2016, 6, 99346–99352. [CrossRef]

45. Mühlhan, C.; Weidner, S.; Friedrich, J.; Nowack, H. Improvement of bonding properties of polypropylene by
low-pressure plasma treatment. Surf. Coatings Technol. 1999, 116–119, 783–787. [CrossRef]

46. Mehta, R.I.; Mehta, R.I. Hydrophilic polymer embolism: An update for physicians. Am. J. Med. 2017, 130,
e287–e290. [CrossRef]

47. Deflorian, F.; Rossi, S.; Prosseda, S. Improvement of corrosion protection system for aluminium body bus
used in public transportation. Mater. Des. 2006, 27, 758–769. [CrossRef]

48. Sørensen, P.A.; Kiil, S.; Dam-Johansen, K.; Weinell, C.E. Anticorrosive coatings:A review. J. Coatings Technol.
Res. 2009, 6, 135–176. [CrossRef]

49. Epstein, A.K.; Wong, T.-S.; Belisle, R.A.; Boggs, E.M.; Aizenberg, J. Liquid-infused structured surfaces with
exceptional anti-biofouling performance. Proc. Natl. Acad. Sci. 2012, 109, 13182–13187. [CrossRef]

50. Charnley, M.; Textor, M.; Acikgoz, C. Designed polymer structures with antifouling–antimicrobial properties.
React. Funct. Polym. 2011, 71, 329–334. [CrossRef]

51. Kingshott, P.; Griesser, H.J. Surfaces that resist bioadhesion. Curr. Opin. Solid State Mater. Sci. 1999, 4, 403–412.
[CrossRef]

52. Maestá Bezerra, F.; García Carmona, Ó.; García Carmona, C.; Souza Plath, A.M.; Lis, M. Biofunctional wool
using β-cyclodextrins as vehiculizer of citronella oil. Process Biochem. 2019, 77, 151–158. [CrossRef]

53. Peila, R.; Scordino, P.; Shanko, D.B.; Caldera, F.; Trotta, F.; Ferri, A. Synthesis and characterization of
β-cyclodextrin nanosponges for N,N-diethyl-meta-toluamide complexation and their application on polyester
fabrics. React. Funct. Polym. 2017, 119, 87–94. [CrossRef]
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