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Abstract: Thermal barrier coatings serve as thermal insulation and antioxidants on the surfaces
of hot components. Different from the frequent thermal cycles of aero-engines, a heavy-duty gas
turbine experiences few thermal cycles and continuously operates with high-temperature gas over
8000 h. Correspondingly, their failure mechanisms are different. The long-term failure mechanisms
of the thermal barrier coatings in heavy-duty gas turbines are much more important. In this work,
two long-term failure mechanisms are reviewed, i.e., oxidation and diffusion. It is illustrated that
the growth of a uniform mixed oxide layer and element diffusion in thermal barrier coatings are
responsible for the changes in mechanical performance and failures. Moreover, the oxidation of bond
coat and the interdiffusion of alloy elements can affect the distribution of elements in thermal barrier
coatings and then change the phase component. In addition, according to the results, it is suggested
that suppressing the growth rate of uniform mixed oxide and oxygen diffusion can further prolong
the service life of thermal barrier coatings.
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1. Introduction

A heavy-duty gas turbine is an important device for power generation. Thermal barrier coatings
(TBCs) serve as a thermal protection structure and protect the hot components in heavy-duty gas
turbines [1]. TBCs are made up of a top ceramic coat (TC), intermediate metal bond coat (BC) and the
underlying superalloy substrate. A layer of thermally grown oxide (TGO) forms between the TC and
BC during the oxidation of TBCs [2,3]. Different from the frequent thermal cycling of aero-engines,
a heavy-duty gas turbine continuously operates at high temperature over 8000 h [4,5], as shown in
Figure 1, and the thermal stress, which mainly originates from the start and stop, is almost released by
material creep in the long-term service [6,7]. Moreover, the inlet air of a heavy-duty gas turbine is
filtrated and clean. Thus, the attack of calcium-magnesium-aluminum-silicate (CMAS) also almost
cannot occur. Accordingly, the spalling of TBCs is mainly induced by oxidation and element diffusion
during its long-term service.
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Figure 1. Schematic diagram of the typical service conditions of aero-engines and heavy-duty gas 
turbines. 0T  is the initial temperature. 

Both oxidation and element diffusion involve long-term atomic exchange processes and exhibit 
the slow evolution behaviors of material. A typical BC composition is MCrAlY (M = Ni, Co, NiCo) 
[8]. During the long-term oxidation of TBCs, firstly, Al in the BC reacts with the inward O and then 
slowly forms a dense α-Al2O3. Then, with the continuous proceeding of oxidation, Al near the 
reaction region is almost depleted. While other alloy elements, e.g., Ni and Co, continue to be 
oxidized, and the formed α-Al2O3 is consumed through the reaction Ni + O + α-Al2O3 = NiAl2O4, 
accordingly the porous mixed oxide (MO), which comprises NiO, Cr2O3 and (Ni, Co)(Cr, Al)2O4 [9], 
forms rapidly [10,11]. As a result, the mechanical performance of the BC changes significantly, 
which is detrimental for the reliability and durability of TBCs [12–14]. Thus, clarifying the 
long-term failure mechanism is helpful for us to evaluate the service performance and predict the 
lifetime of TBCs in heavy-duty gas turbines. 

Generally, oxidation and element diffusion are a continuous and related process [2]. After 
TBCs operate at the elevated temperature, under the driving of the difference in chemical potential 
between the external reservoir, e.g., O2 and coating, the guest atoms, e.g., O, leave the external 
reservoir and insert into coating at the boundary. Subsequently, the guest atoms continue to diffuse 
forwards in the coating until they reach the reaction region, as shown in Figure 2. When the guest 
atoms encounter the outward alloy elements, e.g., Al and Ni, new oxides form and significant stress 
occurs due to the surrounding constraint. The induced stress not only causes the failures of TBCs 
but also affects the diffusion and oxidation processes. Thus, oxidation and diffusion, as a whole, are 
responsible for long-term failure mechanisms of TBCs in heavy-duty gas turbines. 

 
Figure 2. Schematic diagram of oxidation and the diffusion of guest atoms in the long-time service 
process of thermal barrier coatings (TBCs) in heavy-duty gas turbines. 

Figure 1. Schematic diagram of the typical service conditions of aero-engines and heavy-duty gas
turbines. T0 is the initial temperature.

Both oxidation and element diffusion involve long-term atomic exchange processes and exhibit
the slow evolution behaviors of material. A typical BC composition is MCrAlY (M = Ni, Co, NiCo) [8].
During the long-term oxidation of TBCs, firstly, Al in the BC reacts with the inward O and then slowly
forms a dense α-Al2O3. Then, with the continuous proceeding of oxidation, Al near the reaction region
is almost depleted. While other alloy elements, e.g., Ni and Co, continue to be oxidized, and the
formed α-Al2O3 is consumed through the reaction Ni + O + α-Al2O3 = NiAl2O4, accordingly the porous
mixed oxide (MO), which comprises NiO, Cr2O3 and (Ni, Co)(Cr, Al)2O4 [9], forms rapidly [10,11].
As a result, the mechanical performance of the BC changes significantly, which is detrimental for the
reliability and durability of TBCs [12–14]. Thus, clarifying the long-term failure mechanism is helpful
for us to evaluate the service performance and predict the lifetime of TBCs in heavy-duty gas turbines.

Generally, oxidation and element diffusion are a continuous and related process [2]. After TBCs
operate at the elevated temperature, under the driving of the difference in chemical potential between
the external reservoir, e.g., O2 and coating, the guest atoms, e.g., O, leave the external reservoir and
insert into coating at the boundary. Subsequently, the guest atoms continue to diffuse forwards in the
coating until they reach the reaction region, as shown in Figure 2. When the guest atoms encounter
the outward alloy elements, e.g., Al and Ni, new oxides form and significant stress occurs due to
the surrounding constraint. The induced stress not only causes the failures of TBCs but also affects
the diffusion and oxidation processes. Thus, oxidation and diffusion, as a whole, are responsible for
long-term failure mechanisms of TBCs in heavy-duty gas turbines.
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Up to date, previous studies mainly focus on the fabrication, material, residual stress, cracking,
sintering and thermal properties of TBCs [15–24]. For instance, Wang et al. [25] reviewed finite element
method (FEM) research on thermal insulation, residual stress and the related failure problems of
TBCs. Wang et al. [26] reviewed the research on the stress and crack problems in TBCs during the
fabrication, oxidation, sintering and CMAS permeation. Lv et al. [27] also reviewed the FEM research
on stress analysis, heat transfer as well as fracture and damage mechanisms in environment barrier
coatings (EBCs). However, to our best knowledge, the long-term failure mechanism of TBCs still lacks
attention, let alone a related review. For TBCs in heavy-duty gas turbines, the long-term oxidation and
element diffusion are the dominant factors for its failure and change in performance. On one hand, the
BC is continuously oxidized to form TGO, and the undulating TGO induces a tensile stress, which
leads to the occurrence of cracks and interfacial delamination in TBCs. On the other hand, during the
fabrication and service processes of TBCs, the diffusion of atoms, e.g., O and Al, affects TGO growth [2]
and forms interdiffusion zone [28]. When element diffusion is promoted, TGO grows fast and the
interdiffusion zone enlarges. While creep cannot release the induced stress timely, accordingly, stress
increases remarkably and then accelerates the failures of TBCs. Thus, it is necessary to review and
analyze the related research on long-time oxidation and element diffusion.

To clarify the long-term failure mechanisms of TBCs in heavy-duty gas turbines, in this work, we
review TGO growth and element diffusion, respectively. We analyze the continuous growth process
of TGO and the coupled stress-diffusion process of elements. Finally, a conclusion that highlights
the roles of MO growth and element diffusion in the failures of TBCs in heavy-duty gas turbines is
made. Our results can provide some guide for improving the fabrication process and developing the
long-life TBCs.

2. Long-Term Oxidation of TBCs

During the long-time service of heavy-duty gas turbines, thermal stress is almost released by
material creep and then TGO growth becomes one important cause for failures of TBCs. Different
from the short oxidation duration of aero-engines, TGO growth experiences a continuous change
from α-Al2O3 to MO stage during the long-term oxidation of TBCs in heavy-duty gas turbines. After
improving and optimizing the fabrication process, the whole growth of uniform MO induces the
large-scale spalling of TBCs, as shown in Figure 3. Thus, the continuous growth of TGO needs to be
specially considered for the long-term failures of heavy-duty gas turbines.
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2.1. Research Advance on TGO Growth

Until now, TGO growth and the related failures of TBCs have attracted increasing attention [29–34].
Experimental results show that TGO exhibits the undulating morphology and cracks mainly occur
around the convex region [35–39]. Hutchinson et al. [40] and Evans et al. [41] investigated the buckling
of the TGO layer induced by residual stress and established the critical criterion of buckling deformation.
Mumm et al. [42] and He et al. [43] studied the displacement instability and the induced cracking
of TBCs through a thermal cycling experiment and numerical simulation, respectively. The results



Coatings 2020, 10, 1022 4 of 19

revealed that the amplitude of the undulating TGO increases with the number of thermal cycling,
which is also called ratcheting, and cracks initiate near TGO and gradually propagate. Moreover,
Tolpygo and Clarke [44,45] found that the rumpling of oxide related to the grain orientation also affects
the failures of TBCs. Su et al. [46] investigated the effect of TGO creep on the crack propagation in
TC, and the results show that with the increase of TGO creep, the driving force for crack propagation
gradually decreases, and even after the TGO creep is strong enough, crack propagation is suppressed,
as shown in Figure 4. In addition, other researchers [47–52] investigated the influence of undulating
TGO morphology on residual stress in TBCs during thermal cycling. For instance, Chen et al. [53]
adopted the finite element method to study the effects of different TGO asperities on residual stress in
TBCs, and the obtained results show that the rougher TGO is, the more significant the residual tensile
stress around the peak region is. The above research mainly focuses on the undulating TGO growth
and the induced stress during thermal cycling. However, heavy-duty gas turbines experience few
thermal cycles, and the continuous growth of TGO is a key factor in the failure of TBCs.
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(TGO) creep [46].

Nowadays, many researchers focus on continuous TGO growth and the induced stress evolution
in TBCs [54–60]. Evans et al. [61] utilized Eshelby’s elastic inclusion method to make TGO growth
equivalent to the self-assembly process of the free expansive TGO shell, and then established a sphere
model of TGO growth. Clarke [62] investigated the lateral growth of TGO at the grain boundary
and obtained a linear relationship between the lateral growth strain rate

.
ε

g
l and the thickening rate

.
h,

i.e.,
.
ε

g
l = Dox

.
h, where Dox is the scale coefficient related to the microstructure of oxide. Sun et al. [63]

further set up a multilayer sphere model of the convex TBCs and considered TGO growth along
with the thickness and in-plane directions, as shown in Figure 5a. The results showed that TGO
growth generates the in-plane tensile stress in the TC, which can induce the occurrence of micro-cracks.
Lin et al. [64] and Shen et al. [65] adopted the conception of oxidation front and considered the
consumption of oxygen in the process of TGO growth, as shown in Figure 5b; the obtained results
revealed that plasticity, creep and the irregular morphology of TGO affect the induced stress in TBCs.
Moreover, TGO growth is more significant at the convex region relative to that at the concave region.
Chai et al. [66] further investigated the stress development induced by “root-like” TGO growth,
and the results showed maximum tensile stress changes from the interface to the inside of the BC.
Loeffel et al. [67,68] established a coupled constitutive theory of visco-plasticity, thermal expansion
and volumetric deformation induced by chemical reaction, and numerically described the flat and
undulating TGO growth through the finite element method. However, the above research mainly
considers the growth of α-Al2O3, which serves as the resistance to oxidation. Moreover, the induced
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stress can be almost released by creep during the long-term service. Thus, the obtained results are not
applicable to the oxidation failures of TBCs in heavy-duty gas turbines.
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Figure 5. (a) The multilayer sphere model of TGO growth [63]; (b) the schematic diagram of oxidation
front during the TGO growth [64].

Recently, much research shows that the growth of local MO induces the failures of TBCs after
the oxidation for a period [69–71]. Busso et al. [72] investigated the effect of TGO growth around
the convex region on the stress evolution in TBCs, and the results showed that the fast growth of
non-protective oxide can enhance the development of stress. Li et al. [73] experimentally observed that
the fast growth of local MO induces the cracking and interfacial delamination in the TC, as shown in
Figure 6a. Zhang et al. [74] and Xu et al. [75] analytically and numerically model the growth of local
MO, respectively, as shown in Figure 6b; the results showed that the suppression of local MO growth
can prolong the service life of TBCs. Moreover, Zhang et al. [76] healed the spattering particles through
subsequent heat treatment and then eliminated the growth of local MO; the experiment results showed
that, after healing, the lifetime of TBCs is further extended.
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Figure 6. The local growth of mixed oxide (MO); (a) the local MO induces the failures of top ceramic
coat (TC) [73]; (b) the numerical model and results of the local MO growth [75]; Among, the thermal
expansion mismatch of MO and TC induces the interfacial tensile stress and debonding at stage A, the
growth of MO jacks TC up and induces the interfacial tensile stress at stage B, and the growth of local
MO induces the interfacial delamination at stage C.

However, after local MO growth is suppressed, with the continuous proceeding of oxidation,
cracking and interfacial delamination still occur in TBCs. Tang et al. [77] experimentally observed
that after the composition of TGO changes from α-Al2O3 to MO, the delamination occurs at the
α-Al2O3/MO interface. Bai et al. [78] observed through the oxidation experiment of the CoNiCrAlY BC
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at 1100 ◦C that the whole growth of uniform MO still induces cracks in TBCs, as shown in Figure 7.
Xie et al. [11] further modeled the whole growth of uniform MO and investigated the induced stress
evolution, the obtained results revealed that the fast growth and large volumetric expansion of MO
generate the catastrophic stress and then lead to the failures of TBCs. Lim and Meguid [79] adopted the
coupled simulation of finite volume and finite element methods to numerically analyze the diffusion
of Cr and O. The results showed that even if the supply of Al is enough, the growth of MO still occurs.
Mahalingam et al. [80] experimentally investigated the effects of the composition and the growth rate
of TGO on crack propagation in TBCs. The results showed that the appearance of MO can lead to the
fast propagation of the crack, which is consistent with Xie et al.’s calculation results [11].
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2.2. Failure Mechanism of TBCs Induced by the Growth of Uniform MO

Just as mentioned above, a heavy-duty gas turbine experiences few thermal cycles and is
continuously exposed to a high temperature for a long time, thus the whole growth of uniform MO
is the dominant oxidation result. During TGO growth, the resultant stress in TBCs depends on the
competition between the stress generated by TGO growth and stress relaxation caused by creep.
Compared to the α-Al2O3 growth, MO grows much faster and expands more significantly, as shown in
Figure 6; correspondingly, the induced stress is more remarkable. As material creep almost has no time
to release the induced stress, stress in TBCs increases significantly and even changes from compressive
stress to tensile stress, as shown in Figure 8. In addition, as α-Al2O3 grows slowly, the induced stress is
released by material creep significantly, thus, stress in TBCs is small and nearly compressive, which
has been investigated by Sun et al. [63], and when TBCs experience few thermal cycles, the failures
cannot occur.

During the growth of uniform MO, the out-plane tensile stress at the α-Al2O3/MO interface can
induce the delamination and then lead to the spalling of TBCs. As the TC is pushed by the expansive
MO, the in-plane stress in the TC is also tensile, which can generate the cracks along with intersplat.
Meanwhile, the in-plane tensile stress in α-Al2O3 can lead to the occurrence of micro-cracks and then
destroy its protective function. More O atoms and alloy elements diffuse along with the newly formed
crack channel, and as a result, MO growth is further accelerated and even appears at the α-Al2O3/BC
interface, and spheroidization occurs around the crack, as shown in Figure 7. When MO grows faster,
there is less time for creep to release the induced stress, thus the resultant stress in TBCs increases
sharply, i.e., catastrophic stress develops.
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Different from the dense microstructure of α-Al2O3, MO exhibits a porous microstructure and is
brittle, accordingly, cracks and interfacial delamination are prone to occur there. Thus, the growth of
uniform MO and the induced catastrophic stress are responsible for failures of TBCs in heavy-duty gas
turbines, e.g., the cracks in α-Al2O3 and TC layers, and the delamination at the α-Al2O3/MO interface,
as shown in Figure 9. According to the results, researchers can control the growth of uniform MO and
suppress the diffusion of oxygen through improving material composition and fabrication processes to
further prolong the service lifetime of TBCs.
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3. Element Diffusion in TBCs

Besides oxidation, element diffusion is also a key factor in the fabrication and long-term failures of
TBCs. For instance, the diffusion of Al determines the performance of the as-sprayed NiAl bond coat in
the alloying process of cold-sprayed Ni/Al coating [81]. During the oxidation, the diffusion of O atom
controls the growth of TGO [82], as shown in Figure 10a. Even the interdiffusion of alloy elements in
the BC leads to the formation of Kirkendall voids at the interface [83], as shown in Figure 10b. These
element diffusions directly affect the service performance of TBCs and need to be paid special attention.
Herein, as the TC does not involve the element diffusion, it is neglected in the following.



Coatings 2020, 10, 1022 8 of 19

Coatings 2020, 10, x FOR PEER REVIEW 8 of 19 

 

3. Element Diffusion in TBCs 

Besides oxidation, element diffusion is also a key factor in the fabrication and long-term 
failures of TBCs. For instance, the diffusion of Al determines the performance of the as-sprayed 
NiAl bond coat in the alloying process of cold-sprayed Ni/Al coating [81]. During the oxidation, the 
diffusion of O atom controls the growth of TGO [82], as shown in Figure 10a. Even the 
interdiffusion of alloy elements in the BC leads to the formation of Kirkendall voids at the interface 
[83], as shown in Figure 10b. These element diffusions directly affect the service performance of 
TBCs and need to be paid special attention. Herein, as the TC does not involve the element 
diffusion, it is neglected in the following. 

   
(a) (b) 

Figure 10. (a) The diffusion paths of O and Al atoms during the TGO growth [82]; (b) the 
interdiffusion of alloy element between BC and substrate [83]. 

3.1. Research Progress on Diffusion 

Nowadays, element diffusion has attracted increasing attention [84]. First, Fick [85] 
investigated the diffusion from a high concentration to a low one, and obtained a linear relationship 
between flux J  and concentration gradient C∇ , which is also called as “Fick’s law”, expressed as 

J D C= − ∇  (1) 

where D  is diffusivity. Darken [86,87] further considered that the gradient of chemical potential is 
the driving force for diffusion, and the flux is approximatively related to the gradient of chemical 
potential μ∇ , expressed as 

J MC μ= − ∇  (2) 

where M  is the mobility of the atom, and satisfies the relationship D MRT= . Equation (2) can 
describe many diffusion phenomena, including the “uphill diffusion” which cannot be explained by 
Fick’s law. When the chemical potential of atoms is only determined by their concentration, 
Equation (2) is the same as Fick’s law, that is, the concentration gradient drives the diffusion of 
atoms. 

However, element diffusion induces significant stress in TBCs and in turn affects the diffusion 
process. F.Q. Yang [88], Wang et al. [89], and Zhang et al. [90], respectively, investigated the effect 
of stress on diffusion in a plate, hollow cylinder as well as sphere model through considering the 
contribution of hydrostatic stress mσ  to the chemical potential μ , and the results revealed that 
stress promotes diffusion of atoms; here the expression of chemical potential can be written as 

Figure 10. (a) The diffusion paths of O and Al atoms during the TGO growth [82]; (b) the interdiffusion
of alloy element between BC and substrate [83].

3.1. Research Progress on Diffusion

Nowadays, element diffusion has attracted increasing attention [84]. First, Fick [85] investigated
the diffusion from a high concentration to a low one, and obtained a linear relationship between flux J
and concentration gradient ∇C, which is also called as “Fick’s law”, expressed as

J = −D∇C (1)

where D is diffusivity. Darken [86,87] further considered that the gradient of chemical potential is the
driving force for diffusion, and the flux is approximatively related to the gradient of chemical potential
∇µ, expressed as

J = −MC∇µ (2)

where M is the mobility of the atom, and satisfies the relationship D = MRT. Equation (2) can describe
many diffusion phenomena, including the “uphill diffusion” which cannot be explained by Fick’s law.
When the chemical potential of atoms is only determined by their concentration, Equation (2) is the
same as Fick’s law, that is, the concentration gradient drives the diffusion of atoms.

However, element diffusion induces significant stress in TBCs and in turn affects the diffusion
process. F.Q. Yang [88], Wang et al. [89], and Zhang et al. [90], respectively, investigated the effect
of stress on diffusion in a plate, hollow cylinder as well as sphere model through considering the
contribution of hydrostatic stress σm to the chemical potential µ, and the results revealed that stress
promotes diffusion of atoms; here the expression of chemical potential can be written as

µ = µ0 + RT ln X −Ωσm (3)

where µ0 is the reference, R is gas constant, T is the absolute temperature. X is the fraction concentration,
Ω is the partial molar volume and herein assumed to be constant. Moreover, Suo and Shen [91]
considered the contribution of chemical reaction to element diffusion, expressed as

∂C
∂t

+∇ · J +
.
r = 0 (4)

where
.
r is chemical reaction rate. Wang et al. [92] further investigated the transfer processes of O and

Al atoms during the concave TGO growth.
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Meanwhile, Haftbaradaran et al. [93] considered the effect of stress on the energy barrier of atomic
jump during the diffusion and obtained a diffusivity with stress effect, expressed as

D = D0 exp
(
αΩσb

RT

)
(5)

where D0 is the pre-factor of diffusivity, α is positive dimensionless factor, and σb is stress.
Dong et al. [94] adopted the diffusivity with stress effect to investigate the influence of stress on
the growth of metal oxide, the results showed that the induced stress slows down the thickening
of oxide film through retarding the diffusion of oxygen. Fang et al. [95] further observed through
a three-point bending experiment of MoCu alloy at 550 ◦C that the thickness of oxide film at the
compressive region is significantly thinner than that at the tensile region, as shown in Figure 11. On
the basis of the above research, we can see that stress significantly affects element diffusion through
changing both the chemical potential and diffusivity. Whether stress accelerates diffusion or not
depends on the actual service condition of TBCs.
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As a heavy-duty gas turbine operates at a high temperature for a long time, stress relaxation
caused by creep is significant. Moreover, both creep and diffusion are the same time-scale atomic
processes [96,97]. Thus, creep is the important stress relaxation mechanism along with element diffusion.
Xie et al.’s [81] study revealed that the concentration of Al is low without stress relaxation during the
alloying of Ni/Al coating. Sethuraman et al.’s [98,99] experimental results further verify that stress
relaxation exists in the process of diffusion and the relaxation behavior of stress is more in accordance
with creep. Brassart and Suo [100] considered the flow deformation of solids induced by the insertion
of guest atoms as reaction flow, and proposed the corresponding rate-dependent and -independent
constitutive relationships. Meanwhile, many researchers [101–103] consider plasticity in the process of
element diffusion. Zhao et al. [104,105] and Di Leo et al. [106] introduced plasticity to accommodate
the large volumetric expansion induced by diffusion, and the results showed that plasticity releases the
induced stress significantly. Other researchers [107–110] adopted elastic softening, i.e., elastic modulus
changes with the concentration, to be responsible for stress relaxation during the diffusion. However,
Chang et al.’s [111] work revealed that compared to the diffusivity, elastic softening is not the dominant
factor in stress relaxation. In addition, Lu et al. [112] and Xu et al. [113] considered the stress relaxation
induced by creep in a low-melting-point Sn electrode during Li diffusion, the results showed that creep
can improve the durability of electrode. While for the element diffusion of TBCs in heavy-duty gas
turbines, there still lacks the related research to clarify the role of creep.

Furthermore, interface property and residual stress also affect the element diffusion in TBCs. In
the fabrication and service processes of TBCs, the surface of the BC is inevitably affected by the external
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reservoir, e.g., pre-oxidation, and then changes the interface property, as shown in Figure 12. Similarly,
during the charging and discharging of Li-ion batteries, solid electrolyte interphase (SEI) forms at the
surface of the electrode and then induces the capacity loss of the Li-ion battery [114]. In addition, sand
blast, powder particle impact and quenching also generate residual stress in TBCs. The change of
interface property and the generated residual stress can significantly affect the insertion of atoms at the
boundary and the subsequent diffusion in TBCs. Zhang et al. [115] investigated the effect of the initial
TGO thickness on its fracture contraction, the results showed that the thinner the initial TGO is, the
easier the fracture contraction is. Xie et al. [81] modeled the alloying process of cold-sprayed Ni/Al
coatings, and found that residual stress and interface property can significantly affect the diffusion
of Al in the coating. However, the present research [116–119] mainly focuses on the improvement of
interface property through adjusting the material composition and fabrication process. The effect of
interface property on element diffusion in TBCs still lacks the related research.
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3.2. Failure Mechanism of TBCs Related to Element Diffusion

As a long-time evolution process, element diffusion is also closely related to the failures of TBCs in
heavy-duty gas turbines [121–124]. Besides controlling TGO growth, element diffusion between the BC
and substrate forms an interdiffusion region and changes the phase component [125]. The accumulation
of vacancy near the interface leads to the appearance of Kirkendall voids [126] and then changes the
interfacial strength, as shown in Figure 10b. Elsass et al. [83] investigated the effect of MCrAlY bond
coat fabrication processes on the formation of Kirkendall voids, the results showed that compared to
bond coats sprayed by high-velocity oxygen fuel (HVOF), bond coat fabricated by low pressure plasma
spraying (LPPS) has the less Kirkendall voids during the oxidation, and the location of voids changes
from bond coat to superalloy substrate. Texier et al. [127] carried out the micro-tensile experiment of
the specimen taken from the interdiffusion region. The obtained results revealed that the existence of
void decreases the mechanical property of the interdiffusion region. Qi et al. [128] investigated the
cyclic oxidation behavior of β-NiAlHfCrSi coatings at 1150 ◦C, and found that the formation of voids
under the oxide layer is the cause for its severe spalling. To evaluate the failures of TBCs induced by
element diffusion, it is necessary to make clear the intrinsic mechanism of diffusion.

Herein, we take the alloying process of Ni/Al coatings as a typical case to clarify the diffusion
process of atoms. When diffusion starts, the Al atom firstly inserts into the Ni splat at the boundary.
The insertion of Al induces significant compressive stress and increases the chemical potential.
Accordingly, the difference in chemical potential between the external Al reservoir and Ni splat, which
serves as the driving force for the insertion, is decreased. Thus, the supply of the Al atom gradually
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decreases until it vanishes, and then diffusion reaches equilibrium. During the insertion of Al, the flux
at the boundary can be written as

J = −k(µ− µ′) (6)

where k is interfacial diffusivity and characterizes the interface property, and µ′ is the chemical potential
of the external reservoir. When residual stress induced by cold spray is tensile, the chemical potential
of Al is decreased, and then the flux at the boundary increases and the concentration of Al enlarges.
Otherwise, the concentration of Al in Ni splat is decreased by residual compressive stress. Moreover,
as shown in Figure 13, compared to the case without stress effect, the flux in the case with stress effect
decreases more significantly. Thus, stress promotes the alloying but decreases the concentration of Al,
and the obtained quantitative relationship between the thickness of Ni splat and the alloying time
significantly deviates from the common parabolic law. While the previous research [90] shows that
stress accelerates the diffusion, the reason is that the flux at the boundary is kept as a constant. For
element diffusion in TBCs, the common constant concentration or flux condition at the boundary is not
applicable, and the flux at the boundary is affected by the induced stress and interface property.
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After the Al atom inserts into Ni splat, the large chemical potential gradient drives the Al atom
to diffuse forwards in Ni splat, as shown in Figure 14a. The insertion of Al distorts the surrounding
atomic network, and then induces significant stress. Meanwhile, the exchange of atoms can release the
induced stress and creep occurs. Thus, the resultant stress depends on the competition between the
stress generation by atomic insertion and stress relaxation by creep. The occurrence of stress not only
affects the chemical potential but also changes the energy barrier of atomic jump, thus, both stress
and its gradient affect the diffusion process. With the proceeding of diffusion, the chemical potential
gradient in Ni splat gradually reduces until it vanishes, and then the alloying process completes and
Al distributes uniformly, as shown in Figure 14b.

During the fabrication and operation of TBCs in heavy-duty gas turbines, element diffusion,
creep as well as the induced stress affect the mechanical performance and service lifetime of TBCs.
The change of phase component and the occurrence of Kirkendall voids and oxidation, which is
closely related to element diffusion, determine the long-term failure patterns and mechanisms of TBCs.
According to the results, researchers are encouraged to specially focus and control element diffusion in
TBCs through adjusting material composition, imposing external force and developing new interface
designs, etc.
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Figure 14. The diffusion of Al in Ni splat during the alloying of Ni/Al coating [81]; (a) the distribution
of the variation of chemical potential; (b) the distribution of concentration of Al. Note that in this work,
stress relaxation and the change of the energy barrier of atomic jump are not considered.

4. Summary

Aiming to clarify the long-term failures of TBCs in heavy-duty gas turbines, in this work, the
research on TGO growth and element diffusion are reviewed, which is mainly related to time effects.
The failures of TBCs induced by the growth of uniform MO and the implied mechanism are summarized.
The atomic process of element diffusion in TBCs and the induced change in performance are also
analyzed. According to the results, the following conclusions are drawn:

a. Oxidation and element diffusion are responsible for the long-term failure mechanisms of TBCs.
Different from the failures induced by the frequent thermal cycles in aero-engines, for heavy-duty
gas turbines, the initial thermal stress can be almost released by material creep, and the long-time
oxidation and element diffusion determine the change in performance and service lifetime
of TBCs.

b. The catastrophic stress induced by the growth of uniform MO is a key cause for the long-term
failure of TBCs. Compared to the slow growth of α-Al2O3, the fast growth and large expansion of
MO induce the out-plane tensile stress at the α-Al2O3/MO interface and the in-plane tensile stress
in α-Al2O3 and TC layers. Accordingly, interfacial delamination and micro-cracks can appear in



Coatings 2020, 10, 1022 13 of 19

TBCs. Especially, once crack occurs in α-Al2O3 layer, its protective function is destroyed, MO
growth is further accelerated and then the lifetime of TBCs is reduced significantly.

c. The formations of an interdiffusion region and Kirkendall voids induced by element diffusion also
play the key roles in the long-term failures of TBCs, besides controlling TGO growth. The process
of element diffusion in TBCs is affected by stress, creep and interface property, etc. Moreover,
the interdiffusion of alloy elements, surface oxidation of the BC and residual stress affect the
distribution of element in TBCs, and then change the phase component, which leads to change in
mechanical performance.

Our results provide an insight into the failures of TBCs in heavy-duty gas turbines and clarify
the long-term failure mechanisms. We also suggest that controlling the growth rate of uniform MO,
oxygen diffusion and interface property of the BC can further prolong the service life of TBCs. On
the basis of results, researchers can develop long-life TBCs through adjusting material composition,
improving the fabrication process and optimizing the structure design.
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