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Abstract: Fluoride conversion (MgF2) coating with facile preparation and good adhesion is promising
to protect Mg alloy, but defects of pores in the coating lead to limited corrosion resistance. In this
study, a compact and dense MgF2 coating was prepared by the combination of fluoride treatment and
ultrasonic treatment. The ultrasonically treated MgF2 coating showed a compact and dense structure
without pores at the frequency of 28 kHz. The chemical compositions of the coating were mainly
composed of F and Mg elements. The corrosion potential of the ultrasonically treated Mg alloy shifted
towards the noble direction in the electrochemical tests. The corrosion current density decreased due
to the protectiveness of MgF2 coating without defects of pores or cracks. During immersion tests for
24 h, the ultrasonically treated Mg alloy exhibited the lowest H2 evolution (0.32 mL/cm2) and pH value
(7.3), which confirmed the enhanced anti-corrosion ability of MgF2 coating. Hence, the ultrasonically
treated fluoride coating had great potentials for their use in anti-corrosion applications of Mg alloy.
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1. Introduction

As one of the lightweight metals with low density and high mechanical properties, Mg alloy
has attracted significant interest in the automotive and aviation industry. However, the lightweight
applications of Mg alloy have been hindered due to the highly corrosive tendency [1–3]. Mg alloy is
extremely sensitive to galvanic corrosion, leading to a rapid corrosion [3–5]. In addition, Mg alloy
also has a tendency of localized corrosion, leading to a quick failure of mechanical properties [6,7].
To protect Mg alloy against corrosion and to maintain their mechanical integrity, various kinds of
anti-corrosion techniques have been developed, such as phosphating treatment, microarc oxidation
and polymer coating [8–12]. Although these surface modifications are ways of preventing corrosion
and maintaining the mechanical strength of Mg alloy to some extent [13], there are a lack of chemical
bonding interfaces between Mg alloy substrate and the protective coating.

Fluoride treatment seems to be an effective way to prepare a protective chemical fluoride conversion
coating (MgF2) for high Mg alloy corrosion resistance recently. Dvorsky et al. [14] found that fluoride
treatment could reduce the corrosion rate of WE43 Mg alloy by half due to good chemical adhesion
on the substrate. Panemangalorea et al. [15] developed a uniform fluoride conversion coating using
fluoride treatment, which improved corrosion resistance of Mg–3Zn–0.5Er alloy. It should be noted
that hydrogen (H2) is produced during fluoride treatment, leading to a porous coating. Moreover,
the fluoride conversion coating is usually thin [16–18]. Consequently, the anti-corrosion property is
often inferior, as well as the thickness of the coating. It is generally thought that fluoride treatment
can be mainly used as a pre-treatment process. Hence, more researches are needed to prepare reliable
fluoride conversion coating with desirable protective characteristics.
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Ultrasonic treatment is reported to tailor the microstructure of the solution-metal interface with
the spread of ultrasound wave through liquid media, which brings about physical, mechanical
changes of coatings [19,20]. Studies show that ultrasonic in the phosphating process produced
high corrosion resistance coating with fewer pores [21]. Yang et al. [22] investigated the effect of
ultrasonic on the microstructure of manganese phosphating coating and found that ultrasonic induced
a uniform fine-grained coating with low porosity. Domnikov et al. [23] found that ultrasonic in the
phosphating process could generate less porous coating, thereby greatly improving corrosion resistance.
Qu et al. [24] found that the corrosion resistance of ultrasonic micro-arc oxidation was better than that
of micro-arc oxidation coating on Mg alloy. Hence, the application of the ultrasonic treatment may
be valuable to prepare compact MgF2 coating without obvious defects of pores or cracks. To our best
knowledge, few papers reported the ultrasonically treated MgF2 coating on Mg alloy. This study
aimed to explore fluoride conversion coating on Mg alloy via ultrasonic treatment to improve its
corrosion resistance. To obtain a better understanding, the mechanisms of ultrasonically treated fluoride
conversion layer, compositions, thickness, and porosity, etc., were investigated. The protectiveness of
fluoride conversion coating on Mg alloy in a corrosive environment was discussed.

2. Materials and Methods

2.1. Experimental Materials

The AZ31 alloy is one of the most popular Mg alloys with aluminum. Due to its good
mechanical properties and magnificent strength to weight ratio, the material offers great potentials
for the aviation and automotive industry. Thus, substrate material was AZ31 Mg alloy (0.004 Mn,
2.98 Al, 0.007 Fe, 0.97 Zn, 0.005 Ni, 0.05 Ca, 0.02 Si, and Mg Bal. wt.%). The AZ31 Mg alloy sheets
(20 mm × 10 mm × 5 mm in size) were ground using different SiC papers and polished on diamond
paste. Finally, the polished Mg alloy was washed in ethanol for the removal of residues. Hydrofluoric
acid (HF, 38 wt.%, Shandong Xuchen Chemical Technology Co., Ltd., Zibo, China) was used to generate
fluoride conversion coating on the Mg alloy substrate.

2.2. Fluoride Conversion Coating Preparation

The fluoride conversion (MgF2) coating was produced via dipping of the polished Mg alloy
substrate into HF for 14 h in a sealed plastic beaker (15 cm × 10 cm × 8 cm). The different frequencies of
0 (untreated, F-treatment), 14 and 28 kHz under ultrasonic treatment (U-treatment) were chosen for the
processing of the MgF2 coatings on Mg alloy substrate. Mg alloy samples were subsequently removed
from the container and dried in hot air from a thermal dryer (HS-101-0, Wuhan Hans Instrument
Equipment Co., Ltd., Wuhan, China) for 2 h after the set treatment time. The schematic illustration of
ultrasonically treated fluoride coating on Mg alloy was exhibited in Figure 1.
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2.3. Characterization

The cross-sectional and surface morphologies of MgF2 coating were studied by scanning electron
microscopy (SEM, XL-30FEG, Eindhoven, The Netherlands) at an accelerating voltage of 15 kV),
which was equipped by an energy dispersive spectroscopy (EDS, Oxford, Eindhoven, The Netherlands)
attachment. EDS was used to analyze the element compositions of the fluoride conversion layer.
The microstructure of the layer was also investigated by SEM. The layer thickness of the samples was
determined according to SEM images in the cross-sections. Pores and cracks were evaluated using
image analysis (Image J) of surface morphologies.

2.4. Electrochemical Properties

The corrosion resistance of the ultrasonically treated fluoride coating Mg alloy was investigated
using electrochemical tests [25,26]. A three-electrode system with a saturated calomel reference
electrode and a platinum counter electrode was used to carry out electrochemical tests at 25 ◦C.
The ultrasonically treated fluoride coating Mg alloy acted as the working electrode. The tests were
performed in NaCl aqueous solution with a pH of 7 at room temperature using an electrochemical
workstation (Zahner, Kronach, Germany). The exposure area of the working electrode to NaCl aqueous
solution was 1 cm2. The potentiodynamic polarization curves were obtained from −2.1 to −0.8 V
at the rate of 15 mV/s. The corrosion potentials and corrosion current density were determined via
Taffel extrapolation based on potentiodynamic polarization curves. The electrochemical impedance
spectroscopy (EIS) tests were conducted at a disturbance frequency ranging from 10−2 to 105 Hz under
a perturbation signal-amplitude of 15 mV.

2.5. Statistical Analysis

The test values were expressed by the mean values ± standard deviation and analyzed by the
t-test. A p-value of less than 0.05 was considered significant statistically.

3. Results and Discussion

Surface morphologies of ultrasonically treated fluoride coating Mg alloy at the frequency of
0, 14 and 28 kHz are shown in Figure 2, respectively. Obviously, there were differences in surface
microstructure. The surface of HF-treated Mg alloy (0 kHz) was covered with many pores and cracks
in Figure 2a,d. The high amount of pores and cracks could bring about a fast penetration of corrosive
medium through the MgF2 coating to Mg alloy substrate, leading to the corrosion attack of the coated
samples. After ultrasonic treatment at 14 kHz, MgF2 coating in Figure 2b,e was smoother and fewer
pores and cracks were found. Moreover, the surface of the MgF2 coating in Figure 2c,f after ultrasonic
treatment at 28 kHz exhibited a compact structure without obvious pores and cracks. Such a compact
MgF2 coating acted as a good barrier against the ingress of corrosive medium, which was responsible
for the durability of the protective layer. The pores mainly came from H2, which was generated in the
displacement reaction between HF and Mg. Ultrasonic treatment at 28 kHz induced strong physical
and chemical changes at the interface of the solution-metal through ultrasound wave. On the one
hand, due to the ultrasound wave H2 bubbles might smoothly flow, hence greatly reducing defects
caused by the residual gas; on the other hand, the ultrasound wave greatly enhanced local pressure in
the liquid, which brought about the collapse of H2 bubbles. Moreover, it was reported that ultrasonic
treatment could tailor the microstructure of the solution–metal interface with the spread of ultrasound
wave through liquid media due to ultrasonic cavitation [19,20]. In this way, ultrasonic treatment
might increase not only the nucleation rate but also the nucleation number of MgF2 grains, thereby
producing fluoride conversion coating with better coverage and seal of pores and cracks. Hence,
proper ultrasonic treatment facilitated uniform and compact coating deposit with fine microstructure.
In contrast, without ultrasonic treatment witnessed more pores due to the residual gas, as shown in
Figure 2g.
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The surface chemical elements of U-treatment Mg alloy were further examined by EDS in this
study and it was shown in Figure 3. It could be observed that the distributions of F and Mg elements
were indicated in red and blue, respectively, which demonstrated that the MgF2 coating was uniformly
distributed on Mg alloy substrate in Figure 3. The following reaction of Equations (1) and (2) between
Mg and HF was thought to take place on Mg alloy substrate during ultrasonic treatment in HF solution:

Mg(OH)2 + 2HF→MgF2 + 2H2O (1)

Mg + 2HF→MgF2 + H2 (2)

The in-situ reactions produced MgF2 layers on Mg alloy substrate. Owing to the nature barrier of
the MgF2 coating [27,28], the corrosion reaction decreased after immersion in NaCl solution. However,
in those chemical reactions, H2 was produced. It would remain within the MgF2 coating or escape from
the coating along cracks, which would only offer a limited increase in Mg alloy corrosion resistance.
Porous MgF2 coating could not act as an effective barrier from the perpetration of corrosive medium
and thereby corrosion would proceed along these defects in the MgF2 coating, significantly reducing
the corrosion resistance of the protective layer.
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Figure 3. The energy dispersive (EDS) map analysis of the surface of U-treatment Mg alloy at the
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Cross-section of Mg alloy surfaces with EDS analysis of ultrasonically treated fluoride coating at
0, 14 and 28 kHz are shown in Figure 4a–d, respectively. It could be seen that the thickness of the MgF2

coating was about 18, 21 and 28 µm in Figure 4e, which demonstrated that all the Mg alloy substrate
was mainly covered with the MgF2 coating. Although MgF2 coating formed on Mg alloy substrate,
small defects, such as pores and cracks, could be found in the coating and the interface between the
coating and the substrate, as exhibited in Figure 4a. These pores formed because of the evolution of H2

during the coating procedure. Corrosion would proceed along these pores and cracks, breaking the
protective MgF2 layer. To protect Mg alloy from corrosion in corrosive conditions, ultrasonic treatment
was proposed to eliminate the pores or cracks. As shown in Figure 4b,c, the cross-section of U-treatment
samples presented much more compact and dense morphologies. It should be noted that no pores or
cracks were visible in the cross-section of the U-treatment sample at 28 kHz, indicating that ultrasonic
treatment well covered micro-pores and -cracks in the MgF2 layer. Moreover, the interface in Figure 4c
was tightly bonded onto Mg alloy substrate, suggesting a good binding force. The enlarged view of
area A in Figure 4f showed that no serious defects, including pores or cracks that induced fracture
and peeling of the coating, could be observed. This suggested the MgF2 coating was well adhered
to the Mg alloy substrate chemically and it was expected to have a strong adhesive and protective
ability, which represented the coating’s ability to impede corrosion to some extent. The cross-section
analyses revealed that ultrasonic treatment effectively removed the pores and cracks, and promoted
the formation of MgF2 coating with a compact and dense microstructure. This study provided a new
way of eliminating defects produced by the H2 in the coating.
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To determine the influences of ultrasonic treatment on the electrochemical corrosion characteristics
of the MgF2 coated Mg alloy, electrochemical tests were performed via a three-electrode system,
as shown in Figure 5a. The obtained corrosion potential and corrosion current density are exhibited in
Figure 5b,c, respectively. It could be found that the MgF2 coating on Mg alloy substrate brought about
the increase of corrosion resistance from both corrosion potential and corrosion current density point of
view. This was due to coating isolation, which was basically consistent in agreement with the reports
in the literature [29,30]. It should be noted that differences were found between U-treatment and
F-treatment samples. The corrosion potential of the U-treatment sample was more positive compared
to that of the F-treatment sample. Moreover, the U-treatment sample exhibited a decrease in corrosion
current density. These results showed that the use of ultrasonic treatment was an effective way of
improving corrosion resistance of the MgF2 coated Mg alloy.

EIS tests are non-destructive techniques in which the frequency change in impedance could be
instantaneously measured in response to an alternating current voltage. Information in relation to
anti-corrosion properties could be obtained based on the tests. Hence, EIS was a useful and valuable
tool to reveal the protection ability of coatings to the underlying Mg alloy substrate. Nyquist plots of
ultrasonically treated fluoride coating are shown in Figure 6a. After ultrasonic treatment at 14 kHz,
MgF2 coating exhibited an increase in the diameter of the semi-circle over the untreated (0 kHz),
which was representative of larger charge transfer resistance at the interface of electrolyte and samples.
After ultrasonic treatment at 28 kHz, MgF2 coating further increased the charge transfer resistance,
as observed by the largest diameter of the semi-circle. Impedance magnitude of Bode plots is exhibited
in Figure 6b. It was clearly observed at a low frequency range (1–10−2 Hz) that MgF2 coating with
ultrasonic treatment at 28 kHz showed the highest impedance magnitude (3568 ohm·cm2). The phase
angle of Bode plots in Figure 6c also exhibited obvious differences among as-prepared samples at a high
frequency range (105–10 Hz). The results of both Bode and Nyquist plots proved that ultrasonically
treated fluoride coating had better corrosion protection effects.
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The protectiveness of the MgF2 coating was further evaluated by means of H2 evolution and pH
variation. H2 from corrosion reactions was measured to evaluate the anti-corrosion property in the
tests, as shown in Figure 7a. The samples were immersed in a 3.5% NaCl solution for 24 h and H2 was
collected during the tests. It was found that the H2 bubble soon evolved for the F-treatment sample at
the beginning. This was due to the fact that the corrosive medium penetrated through the top MgF2

coating layer to Mg alloy substrate, and the corrosion of the Mg alloy started. Some H2 bubbles were
observed for the U-treatment sample at the frequency of 14 kHz at the early stage of the immersion
tests. In the case of the U-treatment sample at the frequency of 28 kHz, the H2 bubble was obviously
inhibited. After a long period of immersion time, only several bubbles were found. The U-treatment
Mg alloy at the frequency of 28 kHz exhibited the lowest H2 evolution (0.32 mL/cm2) during immersion
tests for 24 h, as shown in Figure 7b. These findings of ultrasonically treated fluoride coating Mg alloy
were attributed to its slow corrosion rate. The above results showed that the ultrasonic procedure was
an important reason for the improved corrosion resistance. Furthermore, the pH of the solution after
immersion in the 3.5% NaCl solution for 24 h was measured and exhibited in Figure 7c. It could be
found that U-treatment samples possessed low pH values (7.3), which also confirmed that ultrasonic
treatment significantly enhanced the anti-corrosion ability of MgF2 coating.Coatings 2020, 10, x FOR PEER REVIEW 9 of 13 
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Mg alloy corrosion resistance could be improved by U-treatment, in which the sample was dipped
into HF solution under ultrasonic treatment. The surface of the sample was covered by a MgF2 layer
with a dense and compact microstructure, which acted as a barrier and prevented corrosion reactions
between Mg alloy substrate and corrosive medium. This agreed with the electrochemical test results,
suggesting that the corrosion resistance of Mg alloy was obviously improved via ultrasonic treatment.

To reduce the corrosion of Mg alloy, the role played by the ultrasonically treated fluoride coating
could be explained by considering the corrosion process of Mg alloy in a corrosive environment,
as shown in Figure 8. Mg alloy was reactive and easily corroded in aqueous medium due to the
reaction between H2O and Mg. In this study, due to the reaction between Mg and HF, MgF2 coating
was produced. However, considering defects, mainly pores and cracks shown in Figure 8a in the
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coating, this self-protecting coating was unstable and it resulted in the penetration of corrosive medium,
which rapidly corroded the Mg alloy substrate. It has been reported that the protectiveness of MgF2

layers only held for a short time. For example, Conceiçao et al. found that after 20 h of exposure in
corrosion medium, the impedance of Mg alloy coated with MgF2 layer decreased by four decades [31].
This suggested that the corrosive medium penetrated through the coating, arriving at Mg alloy substrate
over short time periods. The short-term protectiveness it provided was related to pores and cracks
in the MgF2 coating, which resulted in corrosion of Mg alloy underneath the coating, producing
undermining effects, as evidenced in tests. Hence, to improve the long-term protectiveness, the coating
defects, such as pores and cracks, should be suppressed via the coating process optimization. In this
study, a controlled defect behavior could be established by ultrasonically treated fluoride coating
on Mg alloy substrate with optimum frequency. Firstly, ultrasound waves might make H2 bubbles
flow smoothly, which significantly reduced the number of residual H2 bubbles, as shown in Figure 8b.
Secondly, ultrasonic treatment transferred energy among solutions, the interface of the solution-metal
and MgF2 layers through ultrasound wave. The local pressure around an H2 bubble was enhanced and
simultaneously the temperature increased, which facilitated the collapse of the H2 bubble. It should be
noted that ultrasonic cavitation, which was a common phenomenon during ultrasonic treatment in
liquid conditions, might also facilitate the formation of MgF2 coating with compact microstructure.
The ultrasonic cavitation contained bubble formation, growth and implosion at the solution–metal
interfacial [19,32], as shown in Figure 8c, which could not only accelerate the fresh HF solution to
diffuse towards the reaction interface but also increase the nucleation rate and number of MgF2 grains.
This would seal the cracks or pores in the MgF2 layer, producing better coverage among grains.
In this way, a dense and compact MgF2 coating with high protectiveness formed on Mg alloy substrate,
as exhibited in Figure 8d. The preliminary studies showed promising results of the ultrasonic treatment
in eliminating the defects of pores or cracks in the MgF2 coating.
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AZ31 Mg alloy with magnificent strength to weight ratio is emerging as an alternative in car
body replacements like in luggage retainers and car panels. Highly reactive nature of Mg resulted in
surface oxidation with atmospheric H2O or O2, immediately after it extruded from a twin roll casting
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machinery. Moreover, exposure of AZ31 Mg alloy to the environment during storage or handling
among the operation steps may lead to an electrochemically driven corrosion. Improving corrosion
resistance to avoid this early corrosion is therefore essential [10,33,34]. For the purpose, the processing
methods need to possess temporary anti-corrosive protective ability to protect the semi-finished AZ31
Mg alloy. Therefore, the ultrasonically treated fluoride coating without defects was introduced for
temporary protection of AZ31 Mg alloy against corrosion in this study. In addition, the ultrasonically
treated fluoride coating may have been potentially applied in temporary implants, such as a urinary
stent, vascular stent, and bone fixators. MgF2 coating can not only increase new mineral deposition,
but also provide a layer against too rapid biodegradation [35–37].

4. Conclusions

The protective coating of an MgF2 layer with solid interfacial bonding and no obvious defects
was prepared by the combination of fluoride treatment and ultrasonic treatment, which effectively
enhanced corrosion resistance. The effect of ultrasonic treatment was investigated and discussed in
detail. The main findings of this study were as follows:

(1) A dense and compact MgF2 coating was successfully prepared by the combination of fluoride
treatment and ultrasonic treatment. When the frequency was 28 kHz during ultrasonic treatment,
the surface microstructure was uniform. The chemical compositions were mainly composed of F
and Mg elements.

(2) Electrochemical tests in NaCl solution exhibited improved corrosion resistance. The corrosion
potential of U-treatment Mg alloy constantly shifted towards the noble direction. The corrosion
current density decreased due to the protectiveness of MgF2 coating without pores or cracks.

(3) Immersion tests showed an improvement in the short-term instability of the MgF2 coating
after ultrasonic treatment, which provided enough corrosion protection, inhibiting not only
pH increase but also gas cavities formation. The improvement in corrosion resistance that
MgF2 coating induced on Mg alloy was due to the formation of a compact structure without
defects. This reduced the channel of the corrosive medium into the Mg alloy surface and thereby
strengthened coating passivation ability. Consequently, it could be concluded that ultrasonically
treated fluoride coating had much promise for their use in anti-corrosion applications of Mg alloy,
such as automotive, aviation industry and temporary implants.
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