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Abstract: Plasma electrolytic oxidation (PEO) is a method to obtain protective coatings on metallic
light-weight construction materials. Here, the workpiece receives a strong anodic polarisation in
a suitable aqueous electrolyte, which leads to the formation of a passive layer and a gaseous shell.
Afterwards, plasma electrolytic discharges appear on the substrate surface and convert it into a
ceramic layer. The properties of the passive layer are influenced by the selected substrate/electrolyte
combination and are essential for the PEO process-initiation and characteristics. In this work,
a new method for the systematic investigation of the substrate/electrolyte interactions during the
pre-discharge stage is presented. The procedure is carried out by a polarisation experiment and allows
for a quantitative characterisation of the passivation behavior, based on a small electrolyte volume.
The method is used to investigate a literature-known electrical conduction mechanism on passive
films formed on magnesium, by cross-comparison between different Mg and Al materials. In addition,
the influence of phosphate, glycerol, and fluoride on the passivation behaviour of the Mg alloy AZ31
in an alkaline environment is considered and quantified. The results provide an explanatory approach
for the positive influence of toxic fluorides within the electrolyte on the morphology of PEO layers
on magnesium.
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1. Introduction

1.1. Plasma Electrolytic Oxidation

Plasma electrolytic oxidation (PEO) is a promising method for the surface treatment of metallic
light-weight construction materials, such as aluminium, magnesium, titanium, and their alloys [1,2].
The workpiece is immersed within an aqueous electrolyte and receives a strong anodic polarisation.
This procedure leads to the ionization of metal atoms at the substrate surface. These ions react
with electrolyte constituents by the formation of insoluble, electrical isolating compounds and
forming dense anodic barrier layer. In the context of PEO treatment, the process is called passivation.
This so-called passive layer has a high electrical resistance, which causes a localized potential drop at
the electrolyte/substrate-interface and a rising electrical field strength within the mentioned system.
These conditions allow for layer growth by migration of substrate ions through the existing layer
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towards the electrolyte-side transition zone. Furthermore, a limited electronic charge transfer is made
possible, which leads to the evolution of molecular oxygen by electrolysis of water [1].

The released oxygen forms a gas or rather a gas/steam shell close to the passive layer enveloping
the substrate geometry. The interface between this gaseous shell and the bulk electrolyte is assumed
to be an area of equal electrical potential following the topography of the anodically polarised metal.
This so-called quasi-cathode becomes the point of origin for the plasma-chemical gas/solid reactions.
Starting from the electrolyte, spark discharges strike through the gaseous shell and passive layer into
the substrate. The discharges leave oxidised spots on the metal surface and convert it into a dense,
protective oxide-ceramic layer, as long as appropriate process parameters are chosen. To prevent
the transition from short-lasting, layer-forming spark discharges to long-lasting layer-deteriorating
arc-discharges, PEO is usually carried out by alternating pulse patterns [3].

The model presented above shows that the passivation characteristics of a selected
electrolyte/substrate system are essential for the PEO initiation, as well as for the progress of the
entire process. Therefore, appropriate methods for the systematic investigation of these characteristics
are necessary for the development of PEO processes for new materials and material combinations.
Hence, in the present study, a new procedure for the characterisation of the passivation behaviour of
substrate/electrolyte combination within the pre-discharge stage is proposed.

1.2. Experimental Investigation of Passivation

Up until now, passivation properties of a given system have qualitatively been classified according
to Kurze [4,5] in substrate dissolution (I-II), passivation (V-VI), and various intermediates (III-IV) by
means of current-density potential curves (Figure 1a).
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Figure 1. Comparative schematic representation of the results of qualitative polarisation [4,5] (a) and
step measurements [6,7] (b) experiments as well as quantitative polarisation experiments (c) to
determine the passivation capability of plasma electrolytic oxidation (PEO) electrolytes.
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Snizhko et al., on the other hand, use chronopotentiometric and chronoamperometric step
measurements to investigate passivation processes on Al and Mg materials. For these measurements,
the electrical reference variable is suddenly applied to the examined system and the resulting process
variable is recorded [6,7] (Figure 1b). For the method presented in this study, defined potential cycles
are imposed on the investigated system and the resulting current is integrated over specific time ranges
(Figure 1c). This allows a quantitative assessment of the passivation behaviour, characterised by the
amount of charge passed through the system (σ1) after the potential rise. Low values of σ1 represent a
passive surface state at the chosen potential, while high values of σ1 indicate a high charge transfer and
hence active surface state, in most cases due to dissolution of the substrate. In addition, the procedure
facilitates the systematic investigation of an electrical conduction effect, which occurs on Mg substrates
on formed passive films in the range of 40–1 V [8] and is quantified by the amount of charge passed
in the phase of voltage decrease in the cycle (σ2). The procedure is orientated to the potential course
of cyclic voltammetry. Due to the high maximum potentials and potential feeds, the test scenario is
approximated to the conditions during the PEO process. Thus, the method represents a transitional
form between the current-density/potential-measurements of Kurze, and Snizhko’s step experiments.

1.3. Electrolyte Constituents

The PEO of magnesium materials is usually carried out in alkaline or weakly alkaline media.
Glycerol [9–11] and phosphates [11,12] are named in the literature as electrolyte constituents.

Despite its toxicological concern, fluoride compounds are ingredients of various commercial
electrolytes [13,14]. Numerous publications prove their positive influence on the morphology and
corrosion protection properties of the resulting layers [15–19]. The work of Kazanski [20] and Moon [21]
suggests that the addition of fluoride into the electrolyte suppresses the formation of a defect-rich zone
between the substrate and the PEO layer, which is described by several authors for the PEO of Mg
materials over a wide parameter range [11,20–24]. Figure 2 shows a schematic representation of the
often described layer morphology obtained by PEO on aluminium materials (left) and on magnesium
materials (right) within fluoride-free electrolytes.

amorphous 
barrier layer 

substrate 

technological layer

working layer

pore band

MgAl

Figure 2. Schematic representation of the morphology of PEO layers on aluminium [25,26] (left) and
magnesium materials within fluoride-free electrolyte [23,24] (right).

The appearance of this zone, referred to by Lu and Ma as the pore band [23,24], inevitably has
a limiting effect on the technological layer properties such as wear and corrosion resistance and
substrate adhesion.

The positive contribution of glycerol, phosphate and especially fluoride within the electrolyte
could either originate from improved passivation or more complex interactions during the PEO
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process. Therefore, it is the aim of this study to use the method presented to investigate the influence
of the above-mentioned electrolyte constituents on the passivation behaviour of the magnesium alloy
AZ31. Furthermore, certain peculiarities in the passivation of Mg materials will be investigated
by cross-comparison to aluminium substrates. Explanations for the observations made and a
categorisation of the underlying passivation mechanisms are then proposed.

2. Experimental Procedure

2.1. Setup, Methods, and Materials

The experiments were carried out within a rotationally symmetric electrochemical cell.
A 3-mol/l-Ag/AgCl-electrode serves as the reference (RE) and a platinum sheet as the counter
electrode (CE). To minimise the influence of gas bubbles possibly formed at the sample surface,
the working electrode (WE) is localised at the button of the cell. The active sample area has a diameter
of 10 mm. Holes in the cell lid allow a view of the sample during the measurement. The electrolyte
volume is 250 mL. Figure 3 shows a schematic representation of the cell arrangement.

CE RE WE

electrolyte

sampleseal ring

Figure 3. Schematic representation of the used cell arrangement.

The electrical regimes are applied by an electrochemical workstation Zennium connected with a
potential booster CVB120 (both from Zahner elektrik, Germany). The vertices of the potential cycles
described in Figure 1c are listed in Table 1.

Table 1. Vertices of the potential cycle used.

n 1 2 3 4 5 6

En/V 0 100 100 0 100 0
tn/s 0 100 220 320 420 ≈420

The characteristic values σ1 and σ2 are obtained by integration of the area-related current over the
time period between t2 and t3 or t3 and t4, respectively:

σ1 =
∫ t3

t2

i(t) dt (1)

σ2 =
∫ t4

t3

i(t) dt (2)

To ensure that a varied σ-value can clearly be attributed to an improved passivation, the electrolyte
conductivities were measured with a laboratory multi-parameter system LM 2000 with a LVC 0.35/23
electrode conductivity cell (Meinsberg, Germany) at 24 ◦C. To provide the data with statistical coverage,
the polarisation measurements were carried out three times. Some measurements were evaluated using
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an analysis of variance. For this purpose, experiments were repeated five times each. The chemical
compositions of the materials used are listed in Table 2.

Table 2. Chemical compositions of the materials used.

Mass Fraction/%
Element Al 99.5 AlMgSi1 Pure Mg AZ31

Al balance balance 0 3
Mg 0 1 ≥99.9 balance
Si ≤0.25 0.7–1.3 0 0
Zn 0 0 0 1

To ensure comparable initial states of the test samples, they were pretreated by grinding on
4000 cm−2 paper, pickling, and subsequent rinsing under deionized water. The Mg materials were
etched in 1:1 nitric acid at room temperature, and the Al materials in 30 g/L NaOH solution at 50 ◦C.
The electrolytes were prepared by analytically pure chemicals (Merck, Germany).

2.2. Test Series

Firstly, polarisation experiments were carried out in a solution consisting of 5 g/L Na2SiO3 · 5 H2O
and 5 g/L KOH on the Al alloy AlMgSi1. From previous studies, it is known that this
substrate/electrolyte combination is suitable for the formation of very compact and protective PEO
layers [25,26]. Therefore, this procedure allows a technologically well-matched process to assign a
σ1-value, which can subsequently be used as a reference. In addition, it becomes possible to investigate
whether the electrical conduction effect described for passive films formed on Mg-AZ31 under various
conditions [8] also occurs on aluminium materials. In order to allow cross-comparisons and to exclude
the possibly adulterating influence of alloying elements, the experiments were also carried out on the
materials Al 99.5, Mg-AZ31, and technically pure Mg subsequently.

To investigate the electrical conduction effect, indicated by characteristic current-density peaks
between t3 and t5, that was observed during the experiments on magnesium materials, further
measurements were carried out. Therefore, the experimental procedure was repeated on Mg-AZ31 and
pure Mg in pure KOH-solution at pH = 13 without additional electrolyte constituents. This makes it
possible to investigate the observed mechanism more precisely and to exclude interactions of electrolyte
and alloy components as its origin.

As the current peaks were still obviously detectable, the next experiments were carried out on
Mg-AZ31 in pure KOH-solution at pH = 13 under adjusted potential cycles. The potential retraction
from U3 = 100 V after t3 = 220 s with a potential feed of 1 V/s was stopped at various end potentials
Ue, which were then kept constant until the end of the experiment at t5 = 420 s. For the end potentials,
different values Ue/V = 50, 30, 10, 7, 4.7 were chosen. The observed occurrences could be interpreted in
context of the so-called negative difference effect (NDE), which is known at magnesium electrodes for
low positive potentials [27–29]. This NDE is combined by counterintuitive anodic hydrogen formation.
Therefore, further such experiments were carried out with Ue = 4.7 V and a significant prolonged
testing time of 15 min. The evolved gas was collected pneumatically and examined qualitatively by an
oxyhydrogen test.

Another test series was carried out to investigate the influence of selected electrolyte constituents
and their concentration on the passivation (quantified by σ1) and the electrical conduction mechanism
(quantified by σ2) on Mg-AZ31 substrates. The electrolyte components were C3H5(OH)3, Na2HPO4,
and NaF. The concentration levels were 0.03 mol/L and 0.1 mol/L. To ensure comparability, the pH
level was adjusted by 10 g/L KOH solution up to a value of 13 (see Table 3). The results of these
experiments were evaluated by the use of an analysis of variance (ANOVA).
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3. Results

The results of the measurements within the electrolyte tested for the PEO of Al-AlMgSi1 on
various Al and Mg materials are shown in Figure 4.
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Figure 4. Results of polarisation experiments within an electrolyte which allows for the formation of
dense and protective PEO layers on AlMgSi1 [25,26] on various Al (a) and Mg (b) materials the curves
for three repetitions of each measurement are shown.

The current-density courses on the aluminium materials depicted in Figure 4a show a significant
initial active peak. While the potential rises up to 100 V, there are reproducible fluctuations in the i(t)
curve detectable. This behaviour can be attributed to the competition of simultaneous anodic processes
taking place on the bare metal surface. They can allow the occurrence of current by metal dissolution
and oxygen evolution or hinder it through passive film formation. During the following potential
plateau between t2 and t3, the current flow lowers approximately exponentially. Over the following
descending and rising potential ramps between t3 and t5, a likewise approximately exponential i/U
and i/t correlation can be observed. In general, the current in this range is lower than during the
initial fluctuations. This suggests that, between t2 and t4, the anodic processes are dominated by
passive layer growth, which eases up at a constant potential because of the increasing layer thickness
and varies in dependence of the potential, which is its driving force.

On the magnesium materials (Figure 4b), there are hardly any fluctuations detectable in the
i(t) curves during the initial potential ramp. While the potential is constant between t2 and t3,
the current-density course is qualitatively similar to those on the aluminium materials. However,
the current between t1 and t3 is in general significantly lower. This suggests that the process of
passive film formation in the chosen electrolyte is much more dominant on the magnesium materials.
However, in range of the sloping potential ramp, the literature-known electric conduction effect
becomes detectable. At approximately 75 V (t = 245 s), the initially decreasing current-density profiles
show a local minimum and then rise again. Afterwards, clearly visible current-density peaks occur,
which are accompanied by intense gas evolution at the sample surface and its change of colour from
transparent to dark grey. At the beginning of the subsequent rising potential ramp between t3 and t4,
similar observations can be made. After a potential level of 20–30 V was reached, the peaks subsided.
Subsequently, increases in current-density follow the potential course until the end of the experiment.
During this period, no further gas evolution is visible. The colour of the sample surface turns from
dark to a light grey.

The observations described allow the assumption that, during the electrical conduction effect,
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oxygen evolution and possibly also metal dissolution dominate the anodic processes, which have
a destructive effect on the morphology of the passive film and significantly reduces its electrical
resistance. The mechanism would thus have a depassivating character. Hence, the current course
during the rising potential ramp between t4 and t5 could be interpreted as an active peak on the
damaged passive film with subsequent repassivation.

Figure 5 shows a comparison of the σ-values extracted of the measurements in Figure 4.
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Figure 5. Comparison of the σ-values of the measurements shown in Figure 4.

The charge carrier throughput quantified by σ1 is lower on magnesium than on aluminium
materials. Hence, the Mg substrates show a better passivation under the selected conditions.
Furthermore, the technical pure materials show a better passivation behaviour than the alloys.
This suggests that the absence of substrate inhomogeneities supports the formation of a homogeneous,
insulating passive layer.

The σ2 obtained by the integration of the current between t3 and t4 is significantly higher on
Mg-AZ31 than on the almunium materials. This is due to the described current-density peaks, which
are presumably attributable to a depassivation mechanism. In contrast to the Al substrates, they are
also present on pure magnesium. However, they are too low to be visible in this quantitative bar graph
by an increased σ2-value. This is in accordance with the assumption that the passive films formed on
pure materials are more stable.

The results of the measurements on Mg-AZ31 and pure magnesium in KOH-solution are depicted
in Figure 6.

The current-density fluctuations during the rising (t1 – t2) and declining (t3 – t4) potential
ramps are much more pronounced than during the measurements represented in Figure 4b.
The current-density peaks between t3 and t4 are associated with intense gas evolution on both materials.
In the case of the pure magnesium, the measurement data show transient current peaks and potential
drops during the initial potential ramp. This is also accompanied by extensive gas evolution; discharge
phenomena which could explain this behaviour [30] are not visible even in darkened experimental
conditions. Furthermore, the measurements were terminated by the experimental setup at a process
time of t ≈ 330 s because the current limit was exceeded.

The observations made can be explained when compared to the measurements shown in Figure 4,
in that the absence of silicate ions within the electrolyte results in the formation of less stable passive
films. In the case of pure magnesium, this leads to time-limited layer breakthroughs accompanied by
anodic gas evolution, even during the initial potential ramp. The experimental setup governs in the
range of latency to a potential limitation, which allows a repassivation. However, the passive film
damage occurring in the time domain between t3 and t4 is so strong that repassivation during the
subsequent potential ramp under the given conditions is not possible.

The results of the measurements with adjusted potential cycle and varied end potential Ue on
Mg-AZ31 in KOH solution at pH = 13 are depicted in Figure 7.
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Figure 6. Results of polarisation experiments within KOH solution of pH = 13 on Mg-AZ31 (a) and
technical pure magnesium (b), the curves for several repetitions of each measurement are shown.
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Figure 7. Results of polarisation experiments within KOH solution of pH = 13 on AZ31 with different
end potentials Ue, for Ue = 4.7 V the curves for three repetitions of the measurement are shown.

All i(t) curves show an initial active peak, followed by current-density fluctuations during the first
potential ramp. Furthermore, the current-density courses show an approximately exponential time
dependence during the subsequent potential plateau. This behaviour is known from the experiments
presented in Figure 6a and underlines their reproducibility.
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However, the expression of the depassivating peaks in the rage of the declining potential ramp
after t3 varies significantly in dependence of the end potential. While at Ue = 50 V, only a shallow
i(t)-peak is observed, the measurements with Ue = 30–7 V show extensive current-density peaks,
which are accompanied by intense gas evolution and a darkening of the passive film. At Ue = 4.7 V,
on the other hand, after strong current-density fluctuations, a high current accompanied by gas
evolution persists. The sample surface becomes dark grey. These observations suggest that critical
potential ranges exist around Ue = 4.7 V, where the anodic reactions on formed magnesium passive
films are outweighed by metal dissolution and gas evolution compared to passive film formation.
Thus, potential courses throughout this range lead to passive film damage and staying at the critical
point to passive film destruction.

The oxyhydrogen tests of the pneumatically-collected gas did not show any flames or sound
emission. It can therefore be assumed that no significant amount of hydrogen has been developed.
However, it should be taken into account that the experiments showed that a very low amount
of anodic gas formation occurs during the entire polarisation experiment before the characteristic
current-density peaks.

The result of the experiments regarding the influence of selected electrolyte constituents and their
concentration on the passivation behaviour of Mg-AZ31 substrates are depicted in Figure 8.
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Figure 8. Results of polarisation experiments within KOH solution of pH = 13 with various electrolyte
additives, the curves for five repetitions of each measurement are shown.

Table 3 lists the electrical conductivities of the electrolytes used.
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Table 3. Chemical composition, and conductivity κel of the electrolytes for the experiments depicted in
Figure 8; the pH of the electrolytes was adjusted by the addition of KOH solution up to pH = 13.

Substance c/mol · l−1 κel/mS · cm−1

Na2HPO4 0.03 36.1
0.10 53.5

C3H5(OH)3 0.03 20.3
(glycerol) 0.10 21.9
NaF 0.03 20.9

0.10 26.8

For all solutions, the electrical conductivity is in the range of several tens of mS/cm, and hence
high enough, that the potential drop over the electrolyte can be neglected. Hence, variations of the
current courses depicted in Figure 8 can be attributed clearly to shifted passive layer properties.
Figure 9 summarises the σ-values of the measurements presented in Figure 8.
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Figure 9. Comparison of the σ-values of the measurements shown in Figures 6a and 8, as well
as the percentage effect size e of the different electrolyte variations and the error probability perror

assuming the effect of an certain electrolyte component and the elevation of its concentration as
statistically significant.

These experiments are identical to those depicted in Figure 6a, in terms of experimental set up,
procedure, substrate, and electrolyte alkalinity. Therefore, the corresponding σ-values have been added
to the bar graph as a reference for the influence of the studied electrolyte variations. Furthermore,
the diagram contains the percentage effect size e of the electrolyte variations, as well as the results of
the ANOVA given by the error probability, assuming that the effect of a certain electrolyte component
(perror-el) compared to the pure KOH electrolyte and the elevation of its concentration (perror-c) is
statistically significant. Effects with a probability of error of less than 5% are assumed to be statistically
significant. The i(t) courses shown in Figure 8a,b for measurements in glycerol- and phosphate-added
electrolytes are qualitatively similar to those in pure KOH solution depicted in Figure 6a. Glycerol
additions influence the current-density peaks that occur between t3 and t4. However, the strong
spread of the curves does not initially allow a clear classification of this effect. Within the phosphate
electrolytes, an initially reduced current can be observed during the initial potential ramp between t1

and t2, and in addition, the characteristic current-density peaks are narrower and occur partially offset
in time. Furthermore, the i(t) curves show a slightly transient behaviour between t1 and t3 for the
0.1 molar phosphate solution. In contrast, fluoride additives lead to completely different experimental
results. The current-density is lowered significantly over the entire measurements and does not exceed
0.5 A/dm2. i(t)- fluctuations during the initial potential ramp are hardly detectable and vanish between
t3 and t4.

With the exception of the 0.1 molar phosphate solution, all investigated electrolyte additives
achieved an improved passivation compared to pure KOH solution. For glycerol, this effect is
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only statistically significant for σ2 at a concentration of 0.03 mol/L and for σ1 at a concentration
of 0.1 mol/L. With an increase in concentration from 0.03 to 0.1 mol/L, the phosphate additives lead
to a deteriorated passivation (quantified by σ1), while the σ2-value is not influenced to a statistically
significant extent. The fluoride solution leads to a significant reduction in both passivation values
at a 0.03 molar concentration, but a statistically significant increase can be observed for σ1 when the
concentration is increased to 0.1 mol/L. The characteristic current-density peaks vanish completely for
both concentration levels.

In general, the measurements presented in this study were very sensitive to sample pretreatment.
Preliminary tests (not shown here) with rougher samples show qualitatively similar i(t) curves with
noticeably higher currents. In the case of the experiment described in Figure 7c, keeping Ue at 4.7 V
resulted in current-densities of over 9 A/dm2. Here, the passive film was completely destroyed, while
deep black voluminous reaction products formed. The latter were easy to rinse off after the experiment,
leaving a shallow depression on the sample exposure area.

The observations described can be explained by the increased roughness leading to an enlarged
active sample surface. Electrochemically formed passive films only have a thickness of several tens of
nm. Hence, the measurements are very sensitive to the sample topography.

4. Discussion

The results depicted in the Figures 4 and 5 indicate that the passivation quantified by σ1 is not
a limiting factor for the PEO of magnesium. The achievable values are significantly below the level
which is sufficient to form compact PEO layers on aluminium. However, it was clearly shown that the
processes between t3 and t4 quantified by σ2 occur exclusively on Mg materials. The current-density
peaks within the alkaline silicate electrolyte were significantly lower on technically pure magnesium
than on Mg-AZ31. In pure potassium hydroxide solution, however, the effect on technically pure
magnesium was more pronounced than on Mg-AZ31, as can be seen in Figure 6. Thus, it becomes
clear that the underlying processes are influenced by electrolyte and alloy components, but are an
intrinsic property of magnesium passive films in alkaline environments.

The experiments summarised in Figure 7 showed that the increased current persists if the potential
is kept constant at a specific value of Ue = 4.7 V. The additional current-density peaks at around 42 V
and 28 V suggest that there could be at least two additional such characteristic potential values in
the system under consideration. The intense gas evolution and dark discolouration of the passive
film during the increased current indicate that non-passive layer-forming anodic processes such as
oxygen formation and metal dissolution dominate. The process observed would therefore have a
depassivating character. Respecting the fact that plasma electrolytic oxidation is usually carried out
with alternating pulse patterns, this mechanism could occur several ten or hundred times every second
during PEO of magnesium, depending on the chosen frequency.

This could be the reason for elevated porosity ate the substrate/layer interface of PEO coatings on
magnesium depicted in Figure 2. This theory is supported by the fact that recent studies show, by TEM
micrographs, small cavities within the amorphous barrier film of PEO layers formed on Mg in flouride
free electrolytes [31].

Hereafter, a model is proposed to interpret the processes described, which is then used to explain
the influences of individual electrolyte components summarised in Figures 8 and 9.

The appearance of the characteristic current-density peaks could be explained as follows. Under
anodic polarisation, the following reactions compete with each other on magnesium samples in alkaline
environment at the substrate/electrolyte interface:

• formation of magnesium hydroxide:

Mg→ Mg2+ + 2e− (3)

Mg2+ + 2OH− → Mg(OH)2 (4)
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• dissociation of water molecules and hydroxide ions:

2H2O→ 4H+ + O2 + 4e− (5)

2OH− → 2H+ + O2 + 4e− (6)

According to the corresponding Pourbaix diagram, reactions (3) and (4) are favoured
thermodynamically on blank magnesium surfaces within alkaline media. During the most time
of the polarisation measurements, the applied potential is over the decomposition potential of water.
Hence, reactions (3) and (4), as well as (5) and (6), are possible thermodynamically.

Before the current-density peaks occur (t1–t3), only a very low gas evolution can be observed.
This proves that reactions (3) and (4) dominate at first, the Mg(OH)2 film largely blocks the flow of
electrons, but still has a low residual electron conductivity, which enables reactions (5) and (6) to a
limited extent. Maintaining Mg(OH)2 formation requires migration of the ions involved through the
continuously growing passive film. Therefore, the activation energy of the reaction increases with
increasing passive film thickness. Keeping the potential (and thus the available activation energy)
constant (t2–t3) leads to a decreased reaction rate. If the potential is subsequently decreased, the level
of the energy previously required to activate the reaction is undercut (t3–t4). The Mg(OH)2 formation
temporarily subsides and reactions (5) and (6) become more dominant. This is accompanied by an
elevated current and a visible gas evolution, which is interpreted as oxygen formation. According to
reactions (5) and (6), additional protons are released, which lead to local pH reduction of the electrolyte
and cause damage to the passive film (according to Figure 10, magnesium hydroxide is only stable
in an high alkaline environment). As the protons drift towards the cathode and the locally thinned
passive film allows magnesium hydroxide to form again, repassivation takes place for the moment.
This process is repeated several times along the falling potential ramp and explains the occurrence of
the current-density fluctuation. At Ue = 4.7 V, the equilibrium finally shifts in favour of reaction (5)
and (6). When the potential is reduced further, the electrochemical charge flow ultimately comes to
a standstill.

The experiments on aluminium depicted in Figure 4 did not show this behaviour, hence the
formed Al2O3 (whose stability range was expanded to alkaline by the silicate additives) has a high
electrical resistance and is stable in neutral media, see Figure 10.

pH

Mg2+

E
S

H
E

 
/ 
V

M
g
(O

H
) 2

pH

Al3+

AlO2
-

Al2O3

· 3 H2O

Figure 10. Pourbaix diagrams of magnesium (left) and aluminium (right) according to [32] drawn
with the MEDUSA software [33], dashed lines mark the hydrolysis of water, potential related to the
standard hydrogen electrode (SHE).
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Based on the model just proposed, the influence of the investigated electrolyte constituents on the
passivation behaviour of Mg-AZ31, depicted in Figure 8, can be interpreted and categorised as follows:

• physiochemical passivation: adsorption of glycerol molecules on the substrate surface

C3H5(OH)3(aq) → C3H5(OH)3(ads) (7)

• chemical passivation: buffering of the protons released according to Equations (5) and (6) by
phosphate ions

PO3−
4 + H+ → HPO2−

4 (8)

HPO2−
4 + H+ → H2PO1−

4 (9)

• electrochemical passivation: passive layer enforcement by reaction of phosphate and fluoride
with magnesium to stable, electrical isolating compounds

Mg→ Mg2+ + 2e− (10)

3Mg2+ + 2PO4
3− → Mg3(PO4)2 (11)

Mg2+ + 2F− → MgF2 (12)

According to the species distribution diagram of phosphates at pH of 13, both PO3−
4 and HPO2−

4
exist, approximately in a ratio of 4:1. So, for the electrochemical passivation, several reactions with
formation of various Mg-P-O-H compounds are conceivable.

Based on these assumptions, the effect sizes and the statistical significance summarised in Figure 9
can be explained as follows. Glycerol molecules adsorb at the substrate/electrolyte interface and limit
the possible charge-carrier flow. So, the σ1-value is lowered. However, this effect is rather weak and
becomes statistically significant only with increased concentration and degree of coverage. Hence,
C3H5(OH)3 is just bonded physiochemically to the substrate, the gas formation between t3 and t4 (σ2)
leads to elevated statistical derivations and to a lowered significance. The presence of phosphate within
the electrolyte could lead to the formation of various insoluble compounds within the passive film.

In order to ensure that this reaction layer does not rip open or flake off and can therefore have
a good electrical insulation effect, the unit cell volumes of the reaction product and the substrate
metal must be in a favourable ratio. In the case of atmospheric oxidation, this is described by
the Pilling-Bedworth ratio (PBR). Song extended this concept in the context of PEO to reaction
layers formed in aqueous media and introduced the term product-metal ratio (PMR). For both terms,
values below 1 lead to rip open, values above 2 lead to the layer flaking off [34,35].

Table 4 summarises the PMRs of magnesium hydroxide which should usually be formed on
magnesium in alkaline media, some Mg-P compounds which could be the result in presence of
phosphate within the electrolyte and magnesium fluoride.

Table 4. PMRs and the material data necessary for their calculation for selected magnesium compounds.

Substance x M/g · mol−1 ρ/g · cm−1 PMR

Mg(OH)2 1 58.32 2.37 [36] 1.76

Mg2P2O7 2 222.55 2.56 [36] 3.11

Mg3(PO4)2 3 262.85 3.06 [37] 2.05

Mg3P2 3 134.86 2.06 [36] 1.56

MgF2 1 62.30 3.15 [36] 1.42
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The PMR values are calculated with MMg = 24.3 g/mol and ρMg = 1.73 g/cm3 according to the
following equation:

PMR =
Mp · ρMg

x ·MMg · ρp
(13)

Here, the index p stands for the formed reaction product and x for the number of magnesium
atoms contained therein. Most of the Mg-P compounds listed have an unfavourable PMR > 2.
This could explain that, at low phosphate concentration, passive film reinforcement takes place
(σ1 decreased), while higher phosphate fractions in the electrolyte lead to a poorer insulating reaction
layer (σ1 increases). However, a decrease in σ2 can be observed for both concentration levels. This can
be interpreted as chemical passivation or buffering according to Equations (8) and (9).

The use of fluoride-containing electrolytes led to a sharp reduction in the two passivation values,
as well as to a complete disappearance of the characteristic current-density peaks. The latter were
clearly assigned to the properties of Mg(OH)2 in the model presented here. This suggests that the
Mg-F compounds (presumably MgF2) produced have largely displaced magnesium hydroxide from
the passive film or are formed as a result of the local pH lowering. This is in accordance with the work
of Duck, who generated a PEO coating on Mg-AZ91 within a KF-containing electrolyte and detected
elevated amounts of MgF compounds directly in the barrier layer (thickness of a few nm) close to the
substrate (EDX analysis on TEM lamella) [38]. Magnesium fluoride is chemically very stable and has a
favourable PMR toward magnesium. Thus, suppressing the current-density peaks described in this
work could be the mode of action of fluoride compounds in commercial electrolyte for the PEO of
magnesium. Parasitic reactions during polarity reversal would be suppressed and thus an improved
layer adhesion would be achieved.

5. Conclusion

• A new method for the quantification of the passivation behaviour of substrate electrolyte
combinations has been established. This procedure requires only low volumes and is suitable for
the further development of PEO processes.

• A depassivation effect that occurs on formed Mg passive films has been described, which
represents a significant difference to the passivation of aluminium materials.

i An electrochemical model was developed to describe this mechanism.
ii The model was used to explain the occurrence of insufficient layer adhesion in the PEO of

magnesium and fluoride-free electrolytes.

• The following categorisation of the passivation mechanisms relevant for the PEO has been proposed:

i physiochemical passivation by adsorption of organic compounds at the substrate/electrolyte
interface

ii chemical passivation by buffering of anodic formed protons
iii electrochemical passivation by formation of chemically stable, electrically insulating,

insoluble reaction products within the passive layer

• A new theory about the mode of action of fluoride compounds in PEO electrolytes for magnesium
has been presented.

This finding can serve as a basis to avoid toxic fluorides in the future, and to develop nontoxic,
REACH-compliant electrolytes for the PEO of magnesium. First of all, however, it is necessary to
validate in further studies using analytical methods whether the assumptions made in this study
regarding passive film composition are correct. One approach could be EDX measurements on TEM
lamella of the produced passive layers. Further more, it should be clarified by ICP analyses of the
electrolyte if anodic metal dissolution of magnesium really takes place during the current-density peaks.
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In the next step, process data analysis of PEO experiments has to clarify whether the mechanisms
described for the pre-breakdown phase really come into play during the plasma electrolytic oxidation.
Afterwards adjusted pulse patterns could be used to minimize the number of critical potential passes.
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