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Abstract: β-Ca3(PO4)2 type phosphors Ca9Tb(PO4)7:Mn2+ were fabricated by high temperature solid
state reaction. Under 377 nm light excitation, the Ca9Tb(PO4)7 host displays the green emission
attributable to the characteristic emission of Tb3+ ions peaking at 488, 542, 586, and 620 nm,
respectively. The red broadband emission is observed when Ca9Tb(PO4)7 is doped with Mn2+ ions.
The emission is attributed to the energy transfer from Tb3+ to Mn2+ ions; this facilitates the realization
of the tunable green–red emission. The energy transfer mechanism from Tb3+ to Mn2+ is defined as
quadrupole–quadrupole interaction. Furthermore, the thermal stability of Ca9Tb(PO4)7:Mn2+ samples
has been studied, and it can maintain half the emission intensity exceeding 424 K. This demonstrates
their potential applications in white light LEDs (w-LEDs).
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1. Introduction

Phosphate-based phosphors can form various crystal field environments that impose on the
emitting center [1]. β-Ca3(PO4)2 and its derivatives are important compounds that have been widely
researched for use in white light LEDs (w-LEDs), temperature sensing and plasma display panels.
Their advantages include high luminescent efficiency, as well as good physical and chemical stability.
Recently, researchers have developed numerous single-component phosphate phosphors with tunable
color emission and white light emission that can be used in UV-excited w-LEDs which have been developed
by researchers, such as Sr9Mg1.5(PO4)7/Eu2+, (Ca,Sr)9(PO4)7:Eu2+/Mn2+, Ca2Sr(PO4)2:Eu2+/Mn2+,
Ca9Bi(PO4)7:Ce3+/Tb3+/Mn2+, Ca8MgLu(PO4)7:Ce3+/Tb3+/Mn2+, (Ca,Mg,Sr)9(PO4)7:Eu2+/Mn2+ and
Ca9−x−y−zMgxSryBazCe(PO4)7:Eu2+/Mn2+ [2–8]. Furthermore, β-Ca3(PO4)2 and its derivatives have
garnered interest for application in temperature sensing, owing to the excellent thermal stability of Mn2+

emission which originates from the energy compensation of stored electrons [9,10]. To manufacture an
efficient solid-state lighting equipment, it is crucial for the phosphors to possess the following characteristics:
adjustable emission color to regulate the ratio of each color in the spectra, environmental friendliness,
and appreciable thermal stability to maintain increased luminous efficiency at high temperature.

Phosphors doped with Mn2+ have exhibited a broad emission band ranging from 500 to
700 nm, which is determined by the matrix crystal field. Green emission is usually displayed in
weak crystal fields (tetrahedrally coordinated sites) and red emission is demonstrated in strong
crystal fields (octahedral coordinated sites) [11–13]. In addition, the Mn2+ ion usually exhibits red
emission in Ca9Ln(PO4)7 structure compounds. However, the absorption and emission bands of
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Mn2+ d–d are relatively weak because of their parity and spin confinement transitions. Therefore,
it is necessary to enhance their emission intensity via energy transfer using sensitizers like Ce3+,
Tb3+, Eu2+ ions. Moreover, the efficient sensitization of Mn2+ emission and tunable color should be
realized, for example, Ca8BaCe(PO4)7:Tb3+/Mn2+, Ca9Y(PO4)7:Ce3+/Mn2+, Ca9Ce(PO4)7:Eu2+/Mn2+

and 0.1Ca9Y(PO4)7-0.9Ca10−zNa1+z(PO4)7:Eu2+,Mn2+ [3,4,10,14–16]. However, the Ce3+ and Eu2+ ions
are typically formed in a reducing atmosphere, and the Tb3+ ions are formed in an air atmosphere with
a lower, more stable consumption. In addition, Tb3+ ions have previously been used as one of the
matrix ions, and as a sensitizer to enhance the red emission [17,18]. A series of the whitlockite structure
Ca9Ln(PO4)7 (Ln = lanthanide) materials with matrix luminescence originating from the β-Ca3(PO4)2

derivants are receiving increasing interest in this field of research [19]. In this Ca9Ln(PO4)7 group,
Ln includes all the non-radioactive rare earth (Eu, Ho, Tb, Dy, Pr, Sm, Yb, Nd, Er and Tm) elements.
These matrix materials exhibit the characteristic emission of Ln ions. Therefore, the possibility of using
Tb3+ ions as sensitizers to improve the luminescence properties of Mn2+ in the whitlockite structure
can be considered. Based on this, it can be concluded that Ca9Tb(PO4)7 (CTP) will be an important
candidate for strengthening the Mn2+ emission.

In this study, we have reported green–red tunable color Mn2+-doped CTP phosphors synthesized
via high-temperature solid method. The CTP host displays a characteristic green emission of Tb3+

ion upon 377 nm light excitation. In addition, the red emission is observed while Mn2+ doped into
CTP, owing to the energy transfer from Tb3+ to Mn2+ ions. Additionally, the fluorescence lifetimes
have been studied systematically. The Mn2+ emission reaches the maximum at x = 0.3, and then
monotonically decreases with an increase in the Mn2+ concentrations, owing to the concentration
quenching. Besides, the thermal stability of the phosphors CTP:Mn2+ phosphors we prepared has
been researched: they can maintain half the strength even at temperatures above 424 K, indicating that
these whitlockite structure phosphors have promising applications in w-LEDs.

2. Experimental

2.1. Materials and Synthesis

Whitlockite structure luminescent materials of CTP:Mn2+ were synthesized by high-temperature
solid-state method. The raw materials were CaCO3 (99.7%), Tb4O7 (99.99%), (NH4)2HPO4 (99.7%) and
MnCO3 (99.7%), and they were weighed according to the stoichiometric ratio of Ca9−xTb(PO4)7:xMn2+

(x = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7), ground thoroughly, and mixed in an agate mortar and ground
thoroughly to obtain the mixtures. Firstly, the mixtures were pre-sintered in a tube furnace at 500 ◦C for
2 h. The intermediate products were then reground thoroughly and transferred to a high-temperature
tube furnace, sintered at 1200 ◦C for 4 h in the ambient atmosphere. Finally, the obtained products
were ground to a fine powders for the following measurements.

2.2. Characterization

The X-ray diffffraction (XRD) patterns were performed on a D8 ADVANCE X-ray diffractometer
(Bruker, Billerica, MA, USA) with Cu Kα irradiation (λ = 1.5406 nm). Photoluminescence excitation
(PLE) and photoluminescence (PL) spectra were collected on an Edinburgh FLS 980 Fluorescence
Spectrophotometer (Edinburgh Instruments, Edinburgh, Britain). The temperature-dependent PL
spectra were also measured on the Edinburgh FLS 980 Fluorescence Spectrophotometer equipped
with the variable temperature accessories. SEM images were characterized using a scanning electron
microscope (Sipra 55 Sapphire, Zeiss, Oberkochen, German), and the elemental mapping was collected
via EDX spectroscopy (Oxford X-max 20, Oxford, London, UK).
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3. Results and Discussion

3.1. Phase Characterization and SEM Analysis

The phase purity of the CTP:Mn2+ samples was verified using XRD measurements; the representative
XRD patterns are shown in Figure 1. Ca9Tb(PO4)7 can not be found in the Joint Committee on Powder
Diffraction Standards (JCPDS); however, the obtained samples are indexed to the JCPDS data PDF#46-0402
(Ca9Y(PO4)7), demonstrating that the obtained phosphors are crystallized in a single phase. There is
no any clear impure phase that occurs after the Mn2+ ion was doped into the CTP host. These results
demonstrate that Mn2+ ion doping can preserve the crystal structure. The CTP host has three types of
Ca2+ ions positions with six-fold, eight-fold and nine-fold coordination, respectively.

In addition, Figure 1b indicates that certain diffraction peaks move towards a large angle direction
while the content of Mn2+ ions increase. This movement can be attributed to the Mn2+ ions doping.
Based on the charge balance and effective ionic radius, the Ca2+ ion (1.00 Å, coordination (CN) = 6;
1.12 Å, CN = 8; 1.18 Å, CN = 9), Mn2+ ion (0.83 Å, CN = 6; 0.96 Å, CN = 8), we suggest the simultaneous
substitution of Ca2+ ions with Mn2+ ions at three sites. Therefore, the shift of the diffraction peaks to a
larger angle direction can be interpreted by the Bragg’s equation 2d × sinθ = nλ, when the Mn2+ ions
with a smaller radius replace the Ca2+ ions with a larger radius.
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Figure 1. (a) Typically XRD patterns of CTP:xMn2+ together with the standard data, (b) The XRD
patterns ranging from 30.8 to 31.4◦.

The SEM images and EDS element mapping for the morphology investigations of the CTP:Mn2+

phosphor are shown in Figure 2. The CTP:Mn2+ phosphor displays appreciable crystallinity and the
crystal shape is irregular with an approximate size of 10 µm. The element mapping images exhibit the
uniform distribution of Ca, Tb, P, O, and Mn on the as-prepared phosphor, demonstrating that the
Mn2+ ion was successfully doped into the CTP matrix.

3.2. Luminescence Performance and Energy Transfer of CTP:Mn2+ Phosphor

The PL and PLE spectra of CTP host are shown in Figure 3. It is evident from a series of peaks
that the Tb3+ ions are effectively excited, displaying how the different relative intensity obtained the
maximum value under 377 nm light excitation. The intense green light peaking at 488, 542, 586, 620 nm
are attributed to the transition from the 5D4 level to 7F6, 7F5, 7F4 and 7F3 level, respectively [20–23].
Monitoring at 542 nm, the PLE spectrum shows a series of narrow 4f–4f transition lines of Tb3+ in
the range of 300–400 nm, which is ascribed to the electron transition from lower energy level 7F6 to
the excited level including 5H7 (316 nm), 5L6 (340 nm), 5G4 (351 nm), 5L9 (358 nm), 5D2 (367 nm),
5D3 (377 nm), and 5D4 (482 nm) levels, respectively [17,24,25].
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Figure 3. Photoluminescence excitation (PLE) and photoluminescence (PL) spectra of the CTP host.

Red emission is observed after the Mn2+ ion was doped into the CTP host, which is ascribed to
the 4T1(4G)→6A1(6S) transition of the Mn2+ ions, as shown in Figure 4a. The green emission clearly
decreases as the Mn2+ ion concentration increases, which could be ascribed to the energy transfer from
sensitizer (Tb3+) to activator (Mn2+). In addition, the red emission of Mn2+ ions initially increases
and reaches its maximum when the Mn2+ content is fixed at 0.3, then starts to decrease owing to the
concentration quenching as the concentration continues to increase. Green–red tunable color is realized
with the Mn2+ content increasing in the CTP host—the corresponding Commission Internationale
de l’Eclairage (CIE) coordinate diagram and photographs are shown in Figure 4b. Furthermore,
the energy transfer diagram from Tb3+ to Mn2+ ions in the CTP host is illustrated in Figure 5.
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Figure 5. Energy-transfer mechanism for Tb3+ to Mn2+ in the CTP matrix.

To explain the energy transfer from Tb3+ to Mn2+ ions, the fluorescence lifetime of CTP:xMn2+

(x = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7) is indicated in Figure 6a. The fluorescence lifetime of the
CTP matrix can be fitted using the monoexponential decay function [26,27]:

I(t) = A exp(−t/τ) (1)

where I(t) is the PL intensity of the Tb3+ ion at t time, A is the constant, t stands for the time and τ is
the decay time of Tb3+ ion. The decay time of the Tb3+ ions will gradually decrease with an increase in
Mn2+ ions, then this decay process can be expressed as the average lifetime, calculated by using the
following function:

τ =

∫
∞

0 I(t)tdt∫
∞

0 I(t)dt
(2)

The average lifetimes of Tb3+ ions with doping concentrations of Mn2+ ions are calculated to be 2.15,
1.81, 1.54, 1.29, 1.04, 0.98, 0.60, 0.14 and 0.08 ms at x = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7, respectively.
Hence, the estimated average lifetimes clearly explain the energy transfer from the Tb3+ to Mn2+ ion,
which is consistent with the reduction in the PL intensity of Tb3+ ions. The following function is used
to estimate the energy transfer efficiency [7,9,17]:

η = 1− τ/τ0 (3)

where τ0 and τ stand for the lifetimes of the Tb3+ ions without and with Mn2+ ions, respectively.
The calculated energy transfer efficiencies are depicted in Figure 6b. In addition, the efficiency of energy
transfer monotonically increases with the increase in Mn2+ ions content, reaching 96.3% at x = 0.7.
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Time-resolved spectra are typically employed to explicitly identify the luminescent centers in
luminous systems [28,29]. The time-resolved spectroscopy of the sample CTP:0.1Mn2+ is determined
for the further verification of energy transfer from the Tb3+ to Mn2+ ion in the CTP host, as shown
in Figure 7a. Two emission bands that belong to Tb3+ and Mn2+ ions are clearly observed, and the
relative intensity between the Tb3+ and Mn2+ ions decreases with an increase in the decay times
increasing as depicted in Figure 7b. In addition, the intensity of Tb3+ ions remains unchanged after
10 ms, and the intensity of Mn2+ ions is persisting to reduce over time, indicating that the energy is
gradually transferred from Tb3+ to the Mn2+ ions and the energy transfer process is completed after
10 ms. These results establish the energy transfer from Tb3+ to Mn2+ ions.
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Generally, the exchange interaction and electric multipole multipole interaction can lead to a
nonradiative energy transfer between the sensitizer and activator [2–8,10,14–16]. If the exchange
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is the reason for energy transfer, the emission intensity of Mn2+ ions will exhibit the following
relationship [30,31]:

ln(I0/I) ∝ C (4)

where I0 and I represent the emission intensity of the Tb3+ ions in the absence and presence of
Mn2+ ions, respectively. C is the total contents of Tb3+ and Mn2+ ions in the CTP matrix. If electric
multipole–multipole interaction is the primary cause of energy transfer from Tb3+ to Mn2+ ions,
the emission intensity of Mn2+ ions will be determined using the following function:

ln(I0/I) ∝ ln C (5)

the slope of the function is α/3, where α equals to 6, 8, 10 which stand for dipole–dipole,
dipole–quadrupole and quadrupole–quadrupole interactions, respectively. Thus, the relationships of
ln(I0/I) and lnC are depicted in Figure 8. It could be observed that the slope of linear fitting curve is
3.2974 in Figure 8, thus, the α is close to 10. This result illustrates that the energy transmission between
the Tb3+ and Mn2+ ion is mainly caused by quadrupole–quadrupole interaction.
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3.3. Temperature-Dependent PL Performance of CTP:Mn2+ Phosphor

Thermal stability is one significant factor for phosphors adopted in w-LEDs [32,33]. Normally,
the emission intensity of phosphors should be maintained at a temperature above 423 K (150 ◦C) because
the light-emitting diodes generate heat for long durations of time. Typically, the emission intensity
monotonically decreases with an increase in temperature, and displays lower luminous efficiency.
A series of phosphors with good thermal stability have been reported in recent years [10,34–36].
To investigate the thermal stability of a CTP:Mn2+ phosphor, the temperature-dependent (303 to 573 K)
PL spectra of the CTP:0.3Mn2+ phosphor was collected, as shown in Figure 9a. It can be easily observed
that the emission intensity can maintain a half level even with a temperature up to 424 K.

To further study the thermal stability of the CTP:Mn2+ phosphor, the corresponding PL intensity of
Tb3+ and Mn2+ ions for each temperature points are depicted in Figure 9b. Significantly, the CTP:0.3Mn2+

phosphor we obtained has maintained the half emission intensity at 424 K, a result which demonstrates
the good thermal stability for the CTP:Mn2+ phosphor. The relationship of ln(I0/I−1) on 1/kT of the
CTP:0.3Mn2+ phosphor is shown in Figure 10, and the value of activation energy (Ea) is defined as
0.1846 eV. In conclusion, the as-prepared tunable green–red CTP:Mn2+ phosphors have promising
application in w-LEDs.
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In sum, the color-tunable green-red Mn2+ doped Ca9Tb(PO4)7 phosphors have synthesized via 
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transmission from Tb3+ to Mn2+ ions has been investigated, and it is found to be dominated by the 
quadrupole-quadrupole interaction. Meanwhile, the Ca9Tb(PO4)7:Mn2+ phosphor indicates good 
thermal stability, maintained the approximately half emission level at 424 K (150 °C), which 
demonstrates that the Ca9Tb(PO4)7:Mn2+ phosphor can be potentially applied to w-LEDs. 
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4. Conclusions

In sum, the color-tunable green-red Mn2+ doped Ca9Tb(PO4)7 phosphors have synthesized via
traditional solid phase method. Under 377 nm light excitation, the Ca9Tb(PO4)7 matrix shows green
emission with several peaks belonging to the transition from 5D4 level to 7F6, 7F5, 7F4 and 7F3 level,
respectively. Red emission is clearly observed as the Mn2+ ions doping into Ca9Tb(PO4)7. Color-tuning
from green to red is realized by varying the Mn2+ contents. The sensitization of Tb3+ to Mn2+ renders
the energy transfer from Tb3+ to Mn2+ ions effectively. The energy transmission efficiency reaches a
maximum of 96.3% at x = 0.7. In addition, the theoretical mechanism for energy transmission from Tb3+

to Mn2+ ions has been investigated, and it is found to be dominated by the quadrupole-quadrupole
interaction. Meanwhile, the Ca9Tb(PO4)7:Mn2+ phosphor indicates good thermal stability, maintained
the approximately half emission level at 424 K (150 ◦C), which demonstrates that the Ca9Tb(PO4)7:Mn2+

phosphor can be potentially applied to w-LEDs.
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