Synthesis and Antibacterial Aspects of Graphitic C3N4@Polyaniline Composites
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Methods and Studies
2.3. Bacterial Disinfectant Studies of [email protected]
2.3.1. Bacterial Inoculum Preparation
2.3.2. Bacterial Disinfectant [email protected]3N4 Stock Solution Preparation
2.3.3. Media Plates Preparation for Antimicrobial Assessment
2.3.4. Zone Inhibition Assay
2.3.5. Bacterial Viability Assay in Light and Dark Incubation
2.4. Synthesis of g-C3N4 and [email protected]3N4 Nanocomposite
3. Results and Discussion
3.1. Scanning Electron Microscopy
3.2. X-ray Diffraction
3.3. DC Electrical Conductivity
3.4. Antimicrobial Assessment
3.4.1. Zone Inhibition Assay
3.4.2. Photocatalysis Effect on Bacterial Viability
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 1977, 578–580. [Google Scholar] [CrossRef]
- Ansari, M.O.; Mohammad, F. Thermal stability, electrical conductivity and ammonia sensing studies on p-toluenesulfonic acid doped polyaniline:titanium dioxide (pTSA/Pani:TiO2) nanocomposites. Sens. Actuators B-Chem. 2011, 157, 122–129. [Google Scholar] [CrossRef]
- Ansari, M.O.; Kumar, R.; Ansari, S.A.; Ansari, S.P.; Barakat, M.A.; Alshahrie, A.; Cho, M.H. Anion selective pTSA doped [email protected] oxide-multiwalled carbon nanotube composite for Cr(VI) and Congo red adsorption. J. Colloid Interface Sci. 2017, 496, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Dhivya, C.; Vandarkuzhali, S.A.A.; Radha, N. Antimicrobial activities of nanostructured polyanilines doped with aromatic nitro compounds. Arab. J. Chem. 2019, 12, 3785–3798. [Google Scholar] [CrossRef][Green Version]
- Kumar, R.; Ansari, M.O.; Alshahrie, A.; Darwesh, R.; Parveen, N.; Yadav, S.K.; Barakat, M.A.; Cho, M.H. Adsorption modeling and mechanistic insight of hazardous chromium on para toluene sulfonic acid [email protected] nanocomposites. J. Saudi Chem. Soc. 2019, 23, 188–197. [Google Scholar] [CrossRef]
- Ansari, M.O.; Oves, M.; Salah, N.; Asad, M.; Kumar, R.; Hasan, P.M.Z.; Alshahrie, A.; Darwesh, R. DC electrical conductivity retention and antibacterial aspects of microwave-assisted ultrathin [email protected] composite. Chem. Pap. 2020, 74, 3887–3898. [Google Scholar] [CrossRef]
- Ahmad, N.; Sultana, S.; Kumar, G.; Zuhaib, M.; Sabir, S.; Khan, M.Z. Polyaniline based hybrid bionanocomposites with enhanced visible light photocatalytic activity and antifungal activity. J. Environ. Chem. Eng. 2019, 7, 102804. [Google Scholar] [CrossRef]
- Poyraz, S.; Cerkez, I.; Huang, T.S.; Liu, Z.; Kang, L.; Luo, J.; Zhang, X. One-step Synthesis and Characterization of Polyaniline Nanofiber/Silver Nanoparticle Composite Networks as Anti-bacterial Agents. ACS Appl. Mater. Interface 2014, 6, 20025–20034. [Google Scholar] [CrossRef]
- Farias, E.A.O.; Dionisio, N.A.; Quelemes, P.V.; Sergio, H.L.; José, M.E.M.; Edson, C.S.F.; Ivan, H.B.; José Roberto, S.A.L.; Carla, E. Development and characterization of multilayer films of polyaniline, titanium dioxide and CTAB for potential antimicrobial applications. Mater. Sci. Eng. C 2014, 35, 449–454. [Google Scholar] [CrossRef]
- Hussein, M.A.; El-Shishtawy, R.M.; Alamry, K.A.; Asiri, A.M.; Mohamed, S.A. Efficient water disinfection using hybrid polyaniline/graphene/carbon nanotube nanocomposites. Environ. Technol. 2019, 40, 2813–2824. [Google Scholar] [CrossRef]
- Mohsen, R.M.; Morsi, S.M.M.; Selim, M.M.; Ghoneim, A.M.; El-Sherif, H.M. Electrical, thermal, morphological, and antibacterial studies of synthesized polyaniline/zinc oxide nanocomposites. Polym. Bull. 2019, 76, 1–21. [Google Scholar] [CrossRef]
- Almoisheer, N.; Alseroury, F.A.; Kumar, R.; Almeelbi, T.; Barakat, M.A. Synthesis of Graphene Oxide/Silica/Carbon Nanotubes Composite for Removal of Dyes from Wastewater. Earth Syst. Environ. 2019, 3, 651–659. [Google Scholar] [CrossRef]
- Kumar, R.; Laskar, M.A.; Hewaidy, I.F.; Barakat, M.A. Modified Adsorbents for Removal of Heavy Metals from Aqueous Environment: A Review. Earth Syst. Environ. 2019, 3, 83–93. [Google Scholar] [CrossRef]
- Liu, C.; Wang, L.; Xu, H.; Wang, S.; Gao, S.; Ji, X.; Xu, Q.; Lan, W. “One pot” green synthesis and the antibacterial activity of g-C3N4/Ag nanocomposites. Mater. Lett. 2016, 164, 567–570. [Google Scholar] [CrossRef]
- Sun, L.; Du, T.; Hu, C.; Chen, J.; Lu, J.; Lu, Z.; Han, H. Antibacterial Activity of Graphene Oxide/g-C3N4 Composite through Photocatalytic Disinfection under Visible Light. ACS Sustain. Chem. Eng. 2017, 5, 8693–8701. [Google Scholar] [CrossRef]
- Qamar, M.A.; Shahid, S.; Javed, M.; Iqbal, S.; Sher, M.; Akbar, M.B. Highly efficient g-C3N4/Cr-ZnO nanocomposites with superior photocatalytic and antibacterial activity. J. Photochem. Photobiol. Chem. 2020, 401, 112776. [Google Scholar] [CrossRef]
- Thakur, D.; Ta, Q.T.H.; Noh, J.S. Photon-Induced Superior Antibacterial Activity of Palladium-Decorated, Magnetically Separable Fe3O4/Pd/mpg-C3N4 Nanocomposites. Molecules 2019, 24, 3888. [Google Scholar] [CrossRef][Green Version]
- Ngullie, R.C.; Alaswad, S.O.; Bhuvaneswari, K.; Shanmugam, P.; Pazhanivel, T.; Arunachalam, P. Synthesis and Characterization of Efficient ZnO/g-C3N4 Nanocomposites Photocatalyst for Photocatalytic Degradation of Methylene Blue. Coatings 2020, 10, 500. [Google Scholar] [CrossRef]
- Robertson, J.; Nikolaidis, M.G.; Nieuwoudt, M.K.; Swift, S. The antimicrobial action of polyaniline involves production of oxidative stress while functionalisation of polyaniline introduces additional mechanisms. PeerJ 2018, 6, e5135. [Google Scholar] [CrossRef]
- Nikolaidis, M.R.G.; Bennett, J.R.; Swift, S.; Easteal, A.J.; Ambrose, M. Broad spectrum antimicrobial activity of functionalized polyanilines. Acta Biomater. 2011, 2, 4204–4209. [Google Scholar] [CrossRef]
- Zengin, H.; Aksin, G.; Zengin, G.; Kahraman, M.; Kilic, I.H. Preparation and Characterization of Conductive Polyaniline/Silver Nanocomposite Films and Their Antimicrobial Studies. Polym. Eng. Sci. 2019, 59, E182–E194. [Google Scholar] [CrossRef]
- Huang, J.; Ho, W.; Wang, X. Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination. Chem. Comm. 2014, 50, 4338–4340. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Yu, H.; Quan, X.; Chen, S.; Zhang, Y.; Zhao, H.; Wang, H. Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation. Appl. Catal. B Environ. 2014, 152, 46–50. [Google Scholar] [CrossRef]
- Murugesan, P.; Narayanan, S.; Matheswaran, M. Photocatalytic performance and antibacterial activity of visible light driven silver iodide anchored on Graphitic-C3N4 binary composite. Environ. Nanotechnol. Monit. Manag. 2018, 10, 253–263. [Google Scholar] [CrossRef]
- Kumar, R.; Barakat, M.A.; Alseroury, F.A. Oxidized g-C3N4/polyaniline nanofiber composite for the selective removal of hexavalent chromium. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Barakat, M.A.; Anjum, M.; Kumar, R.; Alafif, Z.; Oves, M.; Ansari, M.O. Design of ternary Ni(OH)2/graphene oxide/TiO2 nanocomposite for enhanced photocatalytic degradation of organic, microbial contaminants, and aerobic digestion of dairy wastewater. J. Clean. Prod. 2020, 258, 120588. [Google Scholar] [CrossRef]
- Ansari, M.O.; Mohammad, F. Thermal stability of HCl-doped-polyaniline and TiO2 nanoparticles-based nanocomposites. J. Appl. Polym. Sci. 2012, 124, 4433–4442. [Google Scholar] [CrossRef]
- Alshahrie, A.; Ansari, M.O. High Performance Supercapacitor Applications and DC Electrical Conductivity Retention on Surfactant Immobilized Macroporous Ternary Polypyrrole/[email protected] Nanocomposite. Electron. Mater. Lett. 2019, 15, 238–246. [Google Scholar] [CrossRef]
- Yuan, X.; Zhou, C.; Jing, Q.; Tang, Q.; Mu, Y.; Du, A. Facile Synthesis of g-C3N4 Nanosheets/ZnO Nanocomposites with Enhanced Photocatalytic Activity in Reduction of Aqueous Chromium(VI) under Visible Light. Nanomaterials 2016, 6, 173. [Google Scholar] [CrossRef][Green Version]
- Tahir, M.; Cao, C.; Butt, F.K.; Butt, S.; Idrees, F.; Ali, Z.; Aslam, I.; Tanveer, M.; Mahmood, A.; Mahmood, N. Large scale production of novel g-C3N4 micro strings with high surface area and versatile photodegradation ability. CrystEngComm 2014, 16, 1825–1830. [Google Scholar] [CrossRef][Green Version]
- Ansari, M.O.; Kumar, R.; Alshahrie, A.; Abdel-wahab, M.S.; Sajith, V.K.; Ansari, M.S.; Jilani, A.; Barakat, M.A.; Darwesh, R. CuO sputtered flexible [email protected] thin films:A recyclable photocatalyst with enhanced electrical properties. Compos. B Eng. 2019, 175, 107092. [Google Scholar] [CrossRef]
- Oves, M.; Shahadat, M.; Ansari, S.A.; Aslam, M.; Ismail, I.I.M. Polyaniline Nanocomposite Materials for Biosensor Designing, Electrically Conductive Polymer and Polymer Composites. In Book Synthesis to Biomedical Applications; Khan, A., Jawaid, M., Khan, A.A.P., Asiri, A.M., Eds.; Wiley-VCH Verlag: Weinheim, Germany, 2018; pp. 113–135. [Google Scholar]
- Khan, A.A.P.; Khan, A.; Rahman, M.M.; Asiri, A.M.; Oves, M. Chemical sensor development and antibacterial activities based on polyaniline/gemini surfactants for environmental safety. J. Polym. Environ. 2018, 26, 1673–1684. [Google Scholar] [CrossRef]
- Thakur, B.; Amarnath, C.A.; Mangoli, S.H.; Sawant, S.N. Polyaniline nanoparticle based colorimetric sensor for monitoring bacterial growth. Sens. Actuators B Chem. 2015, 207, 262–268. [Google Scholar] [CrossRef]
- Bushra, R.; Shahadat, M.; Ahmad, A.; Nabi, S.A.; Umar, K.; Oves, M.; Raeissi, A.S.; Muneer, M. Synthesis, characterization, antimicrobial activity and applications of polyanilineTi (IV) arsenophosphate adsorbent for the analysis of organic and inorganic pollutants. J. Hazard. Mater. 2014, 264, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Faraji, M.; Mohaghegh, N.; Abedini, A. Ternary composite of TiO2 nanotubes/Ti plates modified by g-C3N4 and SnO2 with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity. J. Photochem. Photobiol. B Biol. 2018, 178, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Bushra, R.; Arfin, T.; Oves, M.; Raza, W.; Mohammad, F.; Khan, M.A.; Ahmad, A.; Ameer, A.; Muneer, M. Development of PANI/MWCNTs decorated with cobalt oxide nanoparticles towards multiple electrochemical, photocatalytic and biomedical application sites. New J. Chem. 2016, 40, 9448–9459. [Google Scholar] [CrossRef]
- Koli, V.B.; Delekar, S.D.; Pawar, S.H. Photoinactivation of bacteria by using Fe-doped TiO2-MWCNTs nanocomposites. J. Mater. Sci. Mater. Med. 2016, 27, 177. [Google Scholar] [CrossRef]
Microorganisms | Zone of Inhibition (mm) | ||
---|---|---|---|
g-C3N4 | [email protected]3N4 | Tetracycline | |
Escherichia coli | 14 ± 0.5 | 16 ± 0.5 | 20 ± 1.0 |
Streptococcus pneumoniae | 15 ± 0.5 | 18 ± 1.0 | 20 ± 1.0 |
Microorganisms | Minimum Inhibitory Concentration (MIC) | |||
---|---|---|---|---|
g-C3N4 | [email protected]3N4 | |||
Dark | Sunlight | Dark | Sunlight | |
Escherichia coli | 75 | 50 | 60 | 30 |
Streptococcus pneumoniae | 100 | 75 | 60 | 25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oves, M.; Ansari, M.O.; Darwesh, R.; Hussian, A.; Alajmi, M.F.; Qari, H.A. Synthesis and Antibacterial Aspects of Graphitic C3N4@Polyaniline Composites. Coatings 2020, 10, 950. https://doi.org/10.3390/coatings10100950
Oves M, Ansari MO, Darwesh R, Hussian A, Alajmi MF, Qari HA. Synthesis and Antibacterial Aspects of Graphitic C3N4@Polyaniline Composites. Coatings. 2020; 10(10):950. https://doi.org/10.3390/coatings10100950
Chicago/Turabian StyleOves, Mohammad, Mohammad Omaish Ansari, Reem Darwesh, Afzal Hussian, Mohamed F. Alajmi, and Huda A. Qari. 2020. "Synthesis and Antibacterial Aspects of Graphitic C3N4@Polyaniline Composites" Coatings 10, no. 10: 950. https://doi.org/10.3390/coatings10100950