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Abstract: In this work, short-channel semitransparent indium-tin-oxide (ITO)/Au electrode pairs
were fabricated via inkjet printing and lift-off technology. The printed hydrophobic coffee stripes not
only define the channel length of ITO/Au electrode pairs, but also help the realization of uniform
short-channel In0.95Ga0.05Ox thin-film transistors (TFTs). The patterned semitransparent ITO/Au
films, with the assistance of inkjet printing, exhibit an excellent conductivity compared to that of
printed ITO films, and the short-channel In0.95Ga0.05Ox TFTs based on the semitransparent ITO/Au
source/drain electrodes exhibit a maximum mobility of 2.9 cm2 V−1 s−1. This work proposes a method
to prepare patterned high-conductive electrodes for TFTs with the assistance of inkjet printing.
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1. Introduction

Metal-oxide thin-film transistors (MO-TFTs) have received much attention for their extensive
application prospects in large-area electronics. In contrast to amorphous silicon (a-Si) TFTs, MO-TFTs
exhibit excellent characteristics, including a relatively high mobility, good uniformity, mechanical stress
tolerance, and a high transparency for visible light, showing their great potential to be applied in flexible
and large-area displays [1,2]. More recently, to lower the fabrication cost, much attention is focused on the
development of low-temperature, solution-processed MO-TFTs [3,4]. Inkjet printing, as a cost-effective,
noncontact, and directly patternable solution-based processing technique, is attractive in the production
of MO-TFTs. Over the past decade, researchers have made constant attempts to fabricate MO-TFTs via
inkjet printing, but it is still difficult to directly print uniform MO-TFTs [5–7].

To date, most of the reports on inkjet-printed MO TFTs are only focused on the semiconductor
layers and demonstrated that the electrical performance of printed oxide semiconductors is comparable
with the one based on other solution processing methods such as spin coating [8–10]. Besides, there are
some reports on printing source/drain (S/D) electrodes for MO-TFTs. The ideal materials of S/D
electrodes applied for MO-TFTs require good conductivity and low-resistance contact to channel layers.
Hong et al. [11] reported that oleic acid-capped Ag nanoparticles as S/D in MO-TFTs improve the
field-effect mobility, which was ascribed to the effective suppression of the significant Ag migration.
However, the existence of organic species between the Ag electrodes and oxide semiconductor may
play a tarp role, which is bad for the electrical performance of the TFTs. Scheideler et al. [12] showed the
high performance, aqueous-printed InOx TFTs with printed aluminum-doped cadmium oxide (ACO)
S/D electrodes. However, the intrinsic toxicity of ACO makes it a nonideal candidate for transparent
conducting materials. For the MO-TFTs based on the vacuum process, indium-tin-oxide (ITO) is an
ideal material for S/D electrodes because of its acceptable electrical conductivity and ohmic contact
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with the oxide semiconducting layer [13,14]. Printed ITO as S/D electrodes integrated in MO-TFTs
have also been reported, but the conductive films exhibit inferior electrical conductivity compared
with those based on vacuum techniques [15,16]. Therefore, it is necessary to seek a feasible way to
improve the conductivity of printed MO conductors.

The channel length is a critical parameter that determines the device density and the operation
speed of the devices. The transition frequency f T, an important quantity to evaluate the speed of TFT,
is defined as [17]

fT =
µe(V GS−Vth)

4πL2
Cch

Cch+Cp
(1)

where µe is the field-effect mobility, Cch is the channel capacitance, and Cp is the parasitic capacitance.
According to the equation, the response speed of TFTs is inversely proportional to the square of the
channel length (L). Thus, the operating speed of TFTs can be improved by decreasing the channel
length. Nowadays, the channel length of TFTs in the flat panel displays (FPDs) is generally less than
10 µm. However, it is difficult to directly print uniform S/D electrodes with such a small-scale channel
length using a common inkjet printer for the positional inaccuracy and the influence of the surrounding
environment [18].

In this work, we demonstrate uniform short-channel In0.95Ga0.05Ox TFTs via inkjet printing.
The ITO/Au conductive film patterned via inkjet printing and lift-off technology, which showed
excellent electrical conductivity, was utilized for S/D electrodes. The hydrophobic coffee stripes
prepared by solvent etching were utilized to define short-channel ITO/Au electrode pairs and fabricate
the In0.95Ga0.05Ox TFTs. The semitransparent ITO/Au electrode pairs exhibit an average channel length
of less than 2 µm. The In0.95Ga0.05Ox TFTs based on the semitransparent ITO/Au S/D electrodes showed
a maximum mobility of 2.9 cm2 V−1 s−1 and an Ion/Ioff ratio of bigger than 106.

2. Experiment

2.1. Solution and Inks Preparation

CTL-107MK solute and CT-SOLV180 solvent were mixed with a volume ratio of 1:10 to prepare
Cytop solution. Methoxyethanol and ethylene glycol were mixed with a volume ratio of 1:1 to prepare
the solvent mixture for ITO and In0.95Ga0.05Ox precursor ink. The total concentration of ITO ink is
0.5 M with a Sn/(In + Sn) molar ratio of 5%, while the concentration of In0.95Ga0.05Ox ink is 0.2 M with
a Ga/(In+Ga) molar ratio of 5%. The Al0.5Zr0.5Ox precursor ink (0.4 M) was synthesized by dissolving
ZrO(NO3)2·xH2O and Al(NO3)3·xH2O into deionized water. All of the solution and inks were stirred
at room temperature for 12 h and filtered through a 0.22 µm syringe filter before use.

2.2. Fabrication of Short-Channel ITO/Au Electrode Pairs

The short-channel ITO/Au electrode pairs patterned via inkjet printing and lift-off technology are
shown in Figure 1. Firstly, a 10 nm-thick Au layer was deposited on glass using thermal evaporation
(Figure 1a). Then, the ultrathin Cytop layer was spin-coated on the Au film with a rotation speed
of 4000 rpm (Figure 1b). Next, the Cytop layer was etched by printing pure Cytop solvent using an
inkjet printer (DMP-2800), and narrow stripes formed due to the coffee-ring effect (Figure 1c). After the
sample was annealed at 120 ◦C in air condition for 10 min, an additional Cytop layer was deposited on
the sample based on the same processes (Figure 1d). Subsequently, the narrow stripes, which were
perpendicular to the pre-produced stripes, were obtained by etching the Cytop layer (Figure 1e).
After that, the undesired residual of Cytop between stripes was removed by oxygen plasma treatment
(Figure 1f), and the wettability of the Au film was improved by UV irradiation. Next, the ITO precursor
ink was selectively printed onto the hydrophobic stripe patterns to prepare isolated precursor islands
(Figure 1g). After that, the sample was annealed at 350 ◦C for 1 h in air. To pattern the ITO/Au film for
short-channel ITO/Au electrode pairs (Figure 1h), the sample was sonicated in deionized water for
10 min.
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semiconductor films on short-channel ITO/Au electrode pairs; (j) Printed Al0.5Zr0.5Ox films as 
dielectric layer; (k) Printed ITO films as gate electrodes. 
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The thickness of film was characterized by a surface profiler (Veeco Instruments Inc., New York, 
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Figure 1. (a) Ultrathin Au layer deposited on glass substrate; (b) Cytop layer deposited on Au film;
(c) Hydrophobic coffee stripes formed by solvent etching; (d) Second Cytop layer deposited on the
substrate; (e) Perpendicular hydrophobic coffee stripes formed by solvent etching; (f) Hydrophobic
stripe patterns on Au film; (g) Selectively printing indium-tin-oxide (ITO) ink on hydrophobic stripe
patterns; (h) Short-channel ITO/Au electrode pairs on glass substrate; (i) Printed In0.95Ga0.05Ox

semiconductor films on short-channel ITO/Au electrode pairs; (j) Printed Al0.5Zr0.5Ox films as dielectric
layer; (k) Printed ITO films as gate electrodes.

2.3. Devices Fabrication

Herein, a top-gate, bottom-contact structure was employed to produce In0.95Ga0.05Ox TFTs
via inkjet printing. The short-channel ITO/Au S/D electrodes were prepared as described above,
and fabrication processes of other functional layers, including the semiconductor layer, the dielectric
layer, and the gate electrode, were performed following previous work [19]. Briefly, the ultrathin Cytop
layer was spin-coated on the sample with a rotation speed of 4000 rpm (40 s). Then, Cytop solvent
was printed to etch the Cytop layer and forms hydrophobic stripe patterns. After that, the undesired
residual of Cytop between stripes was removed by oxygen plasma treatment, and the wettability of
the substrate was improved by UV irradiation. Next, the oxide precursor ink was printed onto the
hydrophobic stripe patterns and then annealed at a certain temperature to form the functional layer.
As shown in Figure 1i, In0.95Ga0.05Ox semiconductor films with a width of ~50 µm and a thickness of
~11 nm were printed on the short-channel ITO/Au electrode pairs. Next, the Al0.5Zr0.5Ox dielectric
films with a width of ~120 µm and a thickness of ~120 nm were printed to fully cover the semiconductor
layer (Figure 1j). Finally, ITO films with a width of ~75 µm and a thickness of ~45 nm were printed as
gate electrodes (Figure 1k).

2.4. Characterization

The thickness of film was characterized by a surface profiler (Veeco Instruments Inc., New York,
NY, USA). Optical transmission spectra of thin films were measured by a UV–2600 spectrophotometer
(Shimadzu, Tokyo, Japan). The surface morphologies of prepared films were measured using an
atomic force microscope (AFM, Bruker, Multimode 8, Madison, WI, USA). Polarizing microscope
images were characterized using an optical microscope (Nikon Eclipse E600 POL, New York, NY,
USA). A semiconductor parameter analyzer (Keithley 4200-SCS, Cleveland, OH, USA) was employed
to characterize the electrical properties of printed TFTs in air condition. A contact angle analyzer
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(Biolin Scientific, Theta Lite 101, Gothenburg, Sweden) was employed to measure the surface tension of
inks. The mobility (µ) and subthreshold slope (SS) of TFTs were calculated using the following equations:

IDS =
WµCi

2L
(VGS−Vth)

2 (2)

SS =
∂VGS

∂log(I DS

) (3)

where Ci is the areal capacitance, Vth is the threshold voltage, W and L correspond to the channel
width and length, respectively.

3. Results and Discussion

Figure 2 shows the optical transmittance of the prepared Au film and ITO/Au film. It was found
that both of the Au and ITO/Au films are semitransparent, and the transmittance at the visible-light
wavelengths (400−700 nm) increased after the single layer of Au was covered by ITO layer. It means
that both of the parasitic absorption and the reflectance in the whole visible wavelength range are
reduced, because the interference of the incident light at the interfaces was destroyed [20]. The sheet
resistance of 10 nm-thick Au film is ~12.0 Ω/square and the calculated resistivity is ~1.2 × 10−5 Ω·cm,
which is about an order of magnitude higher than that of bulk film (2.44 × 10−6 Ω·cm). The higher
resistivity of the ultrathin Au film was ascribed to the existence of nano holes, resulting from the
island growth mode of the film [21,22]. The ITO/Au film with a thickness of ~40 nm exhibits a sheet
resistance of ~9.8 Ω/square and the resistivity is ~3.9 × 10−5 Ω·cm. The increase in resistivity of ITO/Au
composite electrodes is due to the relatively high resistivity of the printed ITO film (~2.4 × 10−1 Ω·cm)
annealed at 350 ◦C. Interestingly, the single layer of 10 nm-thick Au annealed at 350 ◦C shows infinite
resistance, and it can be removed by ultrasonic treatment in deionized water, whereas the film without
annealing still adheres to glass substrates under the same treatment.
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Figure 2. Optical transmission spectra of the Au film and ITO/Au film.

Figure 3a,b shows the AFM images of Au films without and with annealing, respectively.
The surface root mean square (RMS) value of Au film without annealing is 1.62 nm, while that of the
annealed Au film is 17.4 nm. The overlapped nanoscale Au particles (average particle size of ~40 nm)
grow into isolated sub-microscale Au particles (average particle size of ~350 nm) after annealing,
which leads to the great increase in the RMS value and infinite resistance of the Au film. Thanks to
the relatively large gap between the isolated sub-microscale Au particles, the water will fill the gap
during ultrasonic treatment. As a result, the sub-microscale Au particles can be easily stripped from
the substrate with the help of cavitation bubble collapse under ultrasonic bath [23]. Figure 3c shows
the microscope image of prepared short-channel ITO/Au electrode pairs, while Figure 3d shows an
enlarged image of a pair of electrode with a channel length of 1.67 µm. The average channel length
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measured from 12 pairs of electrodes is ~1.82 µm. It can be clearly seen that the region of the Au layer
uncovered by ITO was thoroughly removed and the patterned ITO/Au films have smooth boundaries
as well as uniform channel length. It suggests that the ITO layer can prevent the water from permeating
into the Au layer and thus protecting the Au layer covered by the ITO layer from being lifted off.
The current versus voltage plot (Figure 3e) collected from the ITO/Au electrode pair exhibits a current
level of 1 × 10−12 A, indicating that the short-channel electrode pairs are electrically isolated.
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Pure aqueous inks are more favorable for printing oxide dielectric compared to organic inks,
because the printed oxide dielectric films prepared using aqueous ink are generally free of nanopores
and carbon impurities. However, the relatively low viscosity of aqueous inks leads to difficulties in the
regulation of the spreading and pinning of the droplet. Hydrophobic coffee patterns are employed
here to control the spreading of aqueous inks. Interestingly, as shown in Figure 4, the different aqueous
oxide precursor deposited on the hydrophobic stripe patterns exhibits different pinning behavior.
The deposited AlOx and Al0.5Zr0.5Ox precursor inks can well pin on the inner periphery of a coffee
stripe, whereas deposited ZrOx precursor ink shows unpinning behavior on one side of a coffee stripe
and forms nonuniform patterns. The different behavior of the aqueous inks is associated with the
interaction between metal cations and the water molecules. As shown in Figure 4d, the surface tension
of AlOx precursor ink (aqueous Al(NO3)3) increases with an increasing solute concentration, which is
associated with the formation of Al3+ complexes (Al3+

−nH2O). The strength of the interaction between
Al3+ and H2O is higher than that between water molecules. However, the surface tension of ZrOx

precursor ink shows a decreasing trend with an increasing solute concentration, indicating that [ZrO]2+

has a lower binding strength with water molecules comparing with that of the neighboring water
molecules. Accordingly, the unpinning behavior of the ZrOx precursor ink is ascribed to a relatively low
binding strength of [ZrO]2+ with the hydroxyl group (–OH) grown on the glass substrate. Due to the
existence of Al3+ in the Al0.5Zr0.5Ox precursor ink, the deposited Al0.5Zr0.5Ox precursor films exhibit
well-defined patterns on the deposited AlOx precursor films. Herein, Al0.5Zr0.5Ox was employed as
the dielectric material to fabricate short-channel In0.95Ga0.05Ox TFTs.
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Figure 4. Polarizing microscope images of printed (a) AlOx precursor film, (b) ZrOx precursor film and
(c) Al0.5Zr0.5Ox precursor film (bar = 300 µm). (d) Surface tension versus concentration for aqueous
Al(NO3)3 and ZrO(NO3)2 inks.

To characterize the dielectric properties of the printed Al0.5Zr0.5Ox films, capacitors based on
the 120 nm-thick Al0.5Zr0.5Ox dielectric films were fabricated. Figure 5 shows leakage current as a
function of electric fields, while the inset presents areal capacitance versus frequency. The capacitor
exhibits acceptable dielectric properties with a high breakdown electric field (>7 MV cm−1), and a
low leakage current density ~10−6 A cm−2 at 2 MV cm−1. The areal capacitance at 1 kHz is ~220 nF
cm−2, and the calculated dielectric constant is ~11, which is higher than the value of solution-processed
AlOx films, but smaller than that of solution-processed ZrOx films [24,25]. The frequency dependence
of areal capacitance is ascribed to the hydroxyl groups in printed Al0.5Zr0.5Ox film. The orientation
polarization of hydroxyl groups is in the range of 10−9 to 10−5 s, approximately [26]. As a result,
the hydroxyl groups gradually fail to respond with external high-frequency signals, inducing the
frequency-dependent capacitance of printed Al0.5Zr0.5Ox films.
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dielectric films.

Figure 6a shows microscope image of printed short-channel In0.95Ga0.05Ox TFTs. The good
uniformity of each TFT in the array indicates that the nonuniform deposition of films induced by the
interaction of adjacent droplet islands was eliminated, which is associated with the effective limitation
of the ink spreading by the hydrophobic coffee stripes. Figure 6b shows the typical output curve of the
short-channel TFT, while Figure 6c shows the corresponding transfer curve. There is no current crowding
effect at the low VDS region in the output curve, indicating good ohmic contact between the ITO/Au S/D
electrodes and the In0.95Ga0.05Ox channel layer. The transfer curve exhibits little clockwise hysteresis,
indicating that some of the accumulated electrons are trapped in the dielectric/channel interface [25,27],
which is associated with the relatively high thickness of the Al0.5Zr0.5Ox films (~120 nm). The mobility
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extracted from the transfer curves of 12 devices is in the range of 2.2 ± 0.7 cm2 V−1 s−1, and the Ion/Ioff

ratio of the devices is larger than 106. These results indicate that the application of the short-channel
semitransparent ITO/Au electrode pairs in the oxide TFTs is feasible.

Coatings 2020, 10, x FOR PEER REVIEW 7 of 9 

 

that the application of the short-channel semitransparent ITO/Au electrode pairs in the oxide TFTs is 
feasible. 

 
Figure 6. (a) Polarizing microscope image of printed short-channel In0.95Ga0.05Ox thin-film transistors 
(TFTs). The inset is a close-up image of one printed TFT. Typical (b) output and (c) transfer curves of 
the printed TFT. 

4. Conclusions 

In summary, inkjet-printed short-channel In0.95Ga0.05Ox TFTs based on semitransparent ITO/Au 
S/D electrodes were demonstrated. The semitransparent ITO/Au stacked films exhibits an excellent 
electrical conductivity (~1.2 × 10−5 Ω·cm) compared with that of printed ITO films (~2.4 × 10−1 Ω·cm). 
With the help of hydrophobic coffee stripes, the short-channel semitransparent ITO/Au electrodes 
pairs were fabricated with an average channel length of less than 2 µm, and the uniform top-gate 
In0.95Ga0.05Ox TFTs were also fabricated based on the short-channel ITO/Au electrodes pairs. The 
In0.95Ga0.05Ox TFTs exhibits a maximum mobility of 2.9 cm2 V−1 s−1 and an Ion/Ioff ratio of large than 106. 
This work proposes a method to prepare patterned high-conductive electrodes for TFTs with the 
assistance of inkjet printing. 

Author Contributions: Conceptualization, Y.L. and S.Z.; Formal analysis, Y.L.; Funding acquisition, S.Z.; 
Writing—original draft, Y.L.; Writing—review and editing, S.Z. All authors have read and agreed to the 
published version of the manuscript. 

Funding: This work was supported by the National Natural Science Foundation of China (Grant No. 61774010) 
and the Shenzhen Municipal Scientific Program (Grant No. JCYJ20180504165449640). 

Acknowledgments: The authors thank Linfeng Lan for his great support. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
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the printed TFT.

4. Conclusions

In summary, inkjet-printed short-channel In0.95Ga0.05Ox TFTs based on semitransparent ITO/Au S/D
electrodes were demonstrated. The semitransparent ITO/Au stacked films exhibits an excellent electrical
conductivity (~1.2 × 10−5 Ω·cm) compared with that of printed ITO films (~2.4 × 10−1 Ω·cm). With the
help of hydrophobic coffee stripes, the short-channel semitransparent ITO/Au electrodes pairs were
fabricated with an average channel length of less than 2 µm, and the uniform top-gate In0.95Ga0.05Ox

TFTs were also fabricated based on the short-channel ITO/Au electrodes pairs. The In0.95Ga0.05Ox

TFTs exhibits a maximum mobility of 2.9 cm2 V−1 s−1 and an Ion/Ioff ratio of large than 106. This work
proposes a method to prepare patterned high-conductive electrodes for TFTs with the assistance of
inkjet printing.
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