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Abstract: Perovskite solar cells have gained increasing interest in recent times owing to the rapidly
enlarged device efficiency and tunable optoelectronic properties in various applications. In perovskite
solar cells, interface engineering plays an important role in determining the final device efficiency and
stability. In this study, we adopted TiCl4 treatment to reduce the surface roughness of the metal oxide
layer and improve the perovskite film quality to obtain better device performance. After proper TiCl4
treatment, the efficiencies of TiCl4–TiO2- and TiCl4–ZnO-based devices were significantly enhanced
up to 16.5% and 17.0%, respectively, compared with those based on pristine TiO2 and ZnO (13.2%
and 10.2%, respectively).
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1. Introduction

Perovskite solar cells (PSCs) have attracted continuously increased interest owing to their unique
properties and high performance [1–10]. In order to further enhance device efficiency and stability, some
additional interface and compositional engineering approaches are necessary [11–18]. Some interface
engineering approaches have previously been investigated to optimize energy level alignment and
relieve charge accumulation [19–21]. Generally, for interface transport layers, a high-quality film
with properties including sufficient charge extraction capability, good film conductivity, and proper
energy level should be guaranteed [19,22]. Hence, various interface transporting layers have been
studied. Among them, metal oxides (e.g., ZnO, SnO2, and TiO2) have been widely investigated as
electron-transporting layers (ETLs) in PSCs [23–37], particularly TiO2 ETL. The surface and electronic
properties of TiO2 play important roles in determining the final device performance, including power
conversion efficiency (PCE), hysteresis behavior, and stability [20,38,39]. In order to enhance device
performance and reduce hysteresis behaviors encountered in TiO2-based devices, various techniques
have been used to optimize the TiO2 surface or electronic properties. This includes the addition
of fullerene molecules, amino acids, or C60-SAM, which are commonly applied to optimize the
charge transfer process [28,29,40,41]. Besides this, TiCl4 soaking treatment has been investigated
in dye-sensitized solar cells to enhance device performance [42]. TiCl4 treatment has also been
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applied in PSC devices to fill the voids at the TiO2/perovskite layer interfaces and smooth the TiO2

surface [39,43,44].
In this study, to investigate the mechanism of TiCl4 and the role it plays with TiO2 and

phenyl-C61-butyric acid methyl ester (PCBM) in PSCs, we investigated the effects of TiCl4 treatment
on the quality of perovskite thin film and the corresponding device performance. Results showed that,
after TiCl4 treatment, the perovskite film quality was significantly enhanced; moreover, the charge
transfer and extraction became more efficient. Finally, compared to pristine TiO2- and ZnO-based
devices (13.2% and 10.2%), the efficiencies of both TiCl4–TiO2- and TiCl4–ZnO-based devices were
significantly improved up to 16.5% and 17.0%, respectively, with simultaneously enhanced open-circuit
voltage (Voc), short-circuit current density (Jsc), and fill factor (FF).

2. Results and Discussion

Surface morphologies of ETLs with and without TiCl4 treatment were investigated by
tapping-mode atomic force microscopy (AFM) (Dimension Icon AFM, Bruker, Billerica, MA, USA).
The surface roughness of the TiO2 surface decreased from 18.0 to 13.9 nm after TiCl4 treatment (Figure 1).
After depositing the PCBM layer, the surface roughness was maintained without much change. This
indicates that the surface roughness is mainly determined by TiCl4 treatments. These properties may
affect perovskite crystallization and formation as well as the crystal size.

Figure 1. Atomic force microscopy (AFM) images of (a) pristine TiO2 electron-transporting layer (ETL),
(b) with TiCl4 treatment, and (c) with TiCl4 and PCBM treatment.

The energy levels of TiO2/PCBM electron-transporting layers with and without TiCl4 treatment
were investigated by ultraviolet photoelectron spectroscopy (UPS) (Escalab 250Xi, Thermo Scientific,
Waltham, MA, USA). In Figure 2, it can be seen that the TiO2/PCBM work function decreased from
4.18 to 4.09 eV after TiCl4 treatment. The decreased work function would result in better energy level
alignment and more efficient electron transfer between the conduction band of perovskite and the
Fermi level of ETL. Moreover, the potential difference between two electrode contacts, such as TiO2

and spiro-OMeTAD, was also enlarged due to the decreased work function, hence increasing the Voc

of the device [33].
In order to illustrate the effect of TiCl4 treatment on the properties of perovskite thin film, the thin

film morphologies of the perovskites upon ETLs with and without TiCl4 treatment were investigated.
As shown in Figure 3, the perovskite crystal size was enhanced, indicating a favorable crystal growth
process on the TiCl4-treated surface, which may have been caused by the low surface roughness value.
The improved crystalline quality was also confirmed by the XRD patterns. As shown in Figure 4,
strong diffraction intensity at around 14.6◦, 28.9◦, and 32.3◦ were observed and assigned to (110),
(220), and (310) crystal planes of tetragonal perovskite phase, respectively. The diffraction pattern at
13.1◦ originated from PbI2 because of the excess PbI2 over CH3NH3I. These results are consistent with
those previously reported [8,9]. Moreover, the diffraction intensity of the perovskite thin films with
additional TiCl4 treatment exhibited slight enhancement. This indicates that the thin film crystallinity
was increased, resulting in more efficient charge transport and collection.



Coatings 2020, 10, 46 3 of 9Coatings 2019, 9, x FOR PEER REVIEW 3 of 11 

 

 
Figure 2. Ultraviolet photoelectron spectroscopy (UPS) spectra of ETL layers with and without TiCl4 
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Figure 2. Ultraviolet photoelectron spectroscopy (UPS) spectra of ETL layers with and without
TiCl4 treatment.

Figure 3. SEM images of perovskite films deposited on TiO2 (a) and TiCl4-treated TiO2 ETLs (b).

Figure 4. XRD patterns (a) and zoomed-in XRD patterns (b) of perovskite films deposited on TiO2 and
TiCl4-treated TiO2 ETLs. “#” and “&” represent the characteristic peaks of fluorine-doped tin oxide
(FTO) and TiO2, respectively.

The film absorption spectra of perovskite films deposited on TiO2 and TiCl4-treated ETLs were
investigated by UV–Vis spectroscopy. Both films exhibited high absorption intensity over the entire
UV–visible range, and the absorption band edge was around 1.61 eV (Figure 5). Compared with pristine
TiO2 ETL, the absorption of the perovskite film based on TiCl4-treated TiO2 ETL was significantly
enhanced, indicating enhanced crystallinity of the resulting thin film.

To further investigate the photophysical properties of the thin films, steady-state
photoluminescence (PL) and time-resolved PL (TR-PL) measurements of perovskite thin films were
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further investigated. The perovskite film based on TiCl4-treated TiO2 ETL showed larger PL intensity
decay compared to the pristine TiO2-based perovskite film (Figure 6), indicating a faster charge transfer
process between TiO2 and perovskite thin films [30]. Furthermore, the PL lifetimes of perovskite films
on glass were also measured (Figure 7). By fitting the TR-PL curves with biexponential function,
two decay parts—fast decay and slow decay—could be obtained [14]. The average lifetimes derived
from the fitting curves were around 25.7 and 29.8 ns for perovskite films with and without TiCl4
treatment, respectively. The decreased PL lifetime is related to the efficient charge carrier transfer
induced quenching process [27]. This is essential for efficient charge extraction and collection of
the device.

Figure 5. UV–vis spectra of perovskite films deposited on TiO2 and TiCl4-treated TiO2 ETLs.

Figure 6. Photoluminescence (PL) spectra of perovskite films deposited on TiO2 and TiCl4-treated
TiO2 ETLs.

The effect of TiCl4 treatment on PSC device performance was studied based on a planar structure
with a configuration of FTO/TiO2/PC60BM/CH3NH3PbI3−xClx/spiro-OMeTAD/Ag. Figure 8 exhibits
the current density − voltage (J − V) curves of PSC devices with and without TiCl4 treatment, and
Table 1 summarizes the corresponding device parameters. In Figure 8, a PCE of 13.2% (Voc of 1.04 V,
Jsc of 19.1 mA/cm2, and FF of 0.66) can be seen for the device with pristine TiO2. By comparison, all the
parameters, i.e., Voc, Jsc, and FF, for the device with TiCl4 treatment were enhanced simultaneously,
resulting in an improved average PCE of 16.5% (Voc of 1.08 V, Jsc of 22.4 mA/cm2, and FF of 0.68).
The device series resistance (Rs) and shunt resistance (Rsh) were also calculated to further understand
the improvement in performance. Compared to the device without TiCl4 treatment, the Rs value
of the device with TiCl4 treatment decreased to 3.7 Ω·cm2, while the Rsh increased to 6.9 kΩ·cm2.
The decreased Rs and increased Rsh are responsible for the Jsc and FF enhancement [7]. It needs to be
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mentioned that, when the high-temperature TiO2 was replaced with the low-temperature ZnO layer,
the device also showed similar improvement. The ZnO with TiCl4 treatment revealed an improved
PCE of 17.0% with a Voc of 1.08 V, Jsc of 23.2 mA/cm2, and FF of 0.67, which was much higher than
those of the device with pristine ZnO.

Figure 7. Time-resolved PL (TR-PL) spectra of perovskite films deposited on TiO2 and TiCl4-treated
TiO2 ETLs.

Figure 8. Current density − voltage (J− V) characteristics of devices based on TiO2 (a) and ZnO (b)
ETLs with and without TiCl4 treatment.

Table 1. Device parameters of perovskite solar cells (PSCs) with and without TiCl4 treatment.

Interlayer Voc (V) Jsc (mA/cm2) FF PCE (%) Rs (Ω cm2) Rsh (kΩ cm2)

TiO2/PCBM 1.04 19.1 0.66 13.2 5.9 4.1
TiO2–TiCl4/PCBM 1.08 22.4 0.68 16.5 3.7 6.9
ZnO/PCBM 0.93 20.7 0.53 10.2 10.2 1.5

ZnO–TiCl4/PCBM 1.08 23.2 0.67 17.0 5.1 2.8

The device hysteresis behavior is also a significant parameter to determine the final performance of
the device. It can be affected by many factors, such as carrier trapping, ion motion, charge accumulation
at interfaces, and so on [45–48]. The device hysteresis behaviors under different scan directions were
measured (Figure 9). The device did not exhibit serious hysteresis behavior before and after TiCl4
treatment, indicating that TiCl4 has less effect than PCBM, which plays a major role in determining the
final hysteresis behavior.

In order to further investigate the mechanism involved in performance enhancement, transient
photocurrent and photovoltage measurements of perovskite solar cells were performed. Figure 10a
shows the transient photocurrent decay of perovskite devices measured at short-circuit condition.
After TiCl4 treatment, the devices exhibited faster decay with shorter lifetime (1.02 µs) compared to
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the pristine TiO2-based device (1.78 µs). This indicates that the device with TiCl4 treatment possessed
more efficient charge transfer process. The transient photovoltage was used to determine the charge
recombination process (Figure 10b). It can be clearly seen that the device with TiCl4 treatment exhibited
much longer lifetime (2.32 ms) compared to the pristine TiO2-based device (1.66 ms). This indicates
that the charge recombination process was efficiently suppressed. Hence, the Jsc and FF exhibited
significant improvement.

Figure 9. Hysteresis behavior of devices based on TiO2 ETL without (a) and with (b) TiCl4 treatment.

Figure 10. (a) Transient photocurrent and (b) photovoltage decay characteristics of perovskite solar
cells based on TiO2 ETL with and without TiCl4 treatment.

3. Conclusions

In conclusion, we investigated the effect of TiCl4 treatment on perovskite thin film formation
and PSC device performance. The results showed that TiCl4 treatment had a beneficial effect on the
properties of perovskite thin film. It could enhance thin film crystallinity and improve charge transfer
and extraction. Finally, the PCE was enhanced from 13.2% to 16.5% for devices based on TiO2 ETL and
from 10.2% to 17.0% for devices based on ZnO ETL. This is important for understanding interfacial
treatment and further improves device efficiency and stability.
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