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Abstract: In this study, a simple method to obtain pure β-phase directly from the melt process is
proposed. A series of PVDF and ionic liquid (IL) was prepared by a solvent casting method with
appropriate associated with the subsequent annealing treatment. IL plays a role of filler, which can
create strong electrostatic interaction with PVDF matrix and directly induce β-phase crystallization
on the PVDF during the melt. PVDF film sample is immersed in hot water for annealing treatment
at different temperatures (25 ◦C to 70 ◦C). We found that annealing in high temperatures especially
can not only increase more IL inserted into the amorphous region of polymer matrix to make more
phase transformation, but also accelerate IL removal. Characteristics and performance of the PVDF
films were investigated by use of FTIR, XRD, SEM, and AFM. Piezoelectric coefficient d33 as well as
d31, degree of crystallinity, and sensitivity are measured in experiment to verify the performance of
PVDF film.
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1. Introduction

PVDF as a smart material has been widely used for miscellaneous application fields, such as
sensor and actuator, energy harvesting, and medical devices due to the merits of flexibility, light weight,
high sensitivity, excellent response over a wide frequency, and so on [1–8]. Compared to PZT ceramics,
PVDF does not have the negative defects of brittleness, large stiffness, weight, and thermal conductivity,
etc. [9]. The α-phase is directly obtained from the melt in the form of a compact film, which gives
good mechanical properties and thermal stability but poor piezoelectricity [10,11]. A large fraction of
β-phase implies more successful transformation from α to β phase, which is the goal, and significant
performance index of gaining better piezoelectricity between the two piezoelectric crystalline (β and γ)
phases of PVDF [12,13]. To produce large γ-phase, content has to use thermal treatment at extremely
high temperature around 225 ◦C and 300 MPa, which is higher than the operating in this article [11,14].
Hence, the process of producing a large amount of β-phase introduced in this study is unlikely to have
a significant fraction of γ-phase. How to obtain high percentage of β -phase and electromechanical
properties is always of great concern for most of the sensor application. A few previous studies used
a sheet of commercial raw PVDF film to carry out the later stretching and poling processes. In search of
better stretching ratio, temperature, speed and direction in the process of stretching, and employment
of higher voltage in the process of poling are probably the common ways to increase the content of
β-phase and improve the quality [15–18].

Recently, many researchers have developed inorganic copolymer piezoelectric materials such as
poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)], chlorotrifluoroethylene [P(VDF-CTFE)],
and hexafluoropropylene [P(VDF-CTFE)], which are excellent candidates of piezoelectric and dielectric
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materials for a micro-electro mechanical system [MEMS] [19], microsensor [20], nanogenerator [21],
and energy harvesting [22]. But the copolymer is quite expensive [23]. Instead, an aim in this
study is to fabricate the PVDF film by means of solution casting method. Although the PVDF film
is prepared by solvent casting and by evaporation at room temperature, it is unlikely to directly
obtain enough content of β-phase from the melt. Also, a porous and fragile phenomenon occurs
that would degrade the electromechanical properties and make the subsequent poling process
infeasible [24]. Therefore, searching for appropriate solvent and further treatment in order to preserve
good piezoelectricity is demanding. As known, α-phase is the only result after casting the PVDF films
in solution has trans-gauch conformation (TGTG). If the solution is prepared at 70–90 ◦C by using DMF
as solvent, the viscosity of the solution is decreased, and the thermal energy is strong enough to rotate
the CF2 groups through large-scale conformational change of the trans planar zigzag conformation
(TTT). As a result, β-phase is formed [25].

Ionic liquid (IL) is a salt-like material with good properties of ion conductivity that appears to be
liquid at room temperature [26]. Because of its nano-structure with high conductivity, low volatility,
and good thermal, electrochemical, and chemical stability, IL has the advantage over traditional
solvents and has become widely used in various applications in industry [27]. The IL-based polymers
matrix has high conductivity (10−4 to 10−2 S cm−1) and high electrochemical stability (4–5.7 V) and
thermostability (up to 300 ◦C) can be used for lithium-ion batteries and other solid electrolyte,
dye-sensitized fuel cells and supercapacitors [28–30]. IL/PVDF composites have been developed for
electrolyte in electromechanical actuator based in carbon nanotubes [30,31]. IL-polymer have been
successfully developed in biosensors, optical sensors, and conducting polymer sensors [31,32]. On the
other hand, IL based on quartz crystal polymer and piezoelectric substrate have been investigated for
surface acoustic wave (SAW) with a frequency range of 10–30 MHz [32,33].

Using IL as a filler is an alternative method can produce pure β-PVDF directly from the melt due
to its strong electrostatic interaction upon melt crystallization. Thus, IL easily interacts with the PVDF
chains and effectively promoting the β-phase content [34]. Hence, an attempt to increase β-phase
content is proposed by the use of DMF as a solvent to form the PVDF matrix (PVDF/DMF), and IL as
a filler to support strong interaction with the dipolar moment of PVDF. Moreover, the PVDF film is
immersed in hot water for annealing treatment after the processes of casting, evaporation, and air dry
at room temperature. As we found, the mobility of ion increased, which facilitates the ion-dipole to
easily interact between the CF2 of PVDF and the imidazolium cation of IL [35,36].

A few techniques have investigated the ability of controlling and improving the content of
β and γ phases of PVDF [11,14,37]. As known, IL is easy to melt below temperatures of 100 ◦C,
accompanied with large quantities of cations and anions. While immersing the PVDF film into hot
water, ion mobility is increased that would facilitate the interaction with the molecules and hydrogen
bonding on the contact surface of PVDF film. Therefore, after solution casting, annealing treatment
is proposed not only to wash out IL, but also provide an environment of increasing the interaction
between the PVDF chains and ion liquid. As a result, part of IL is inserted into the amorphous region
of polymer matrix and nonpolar crystal in PVDF, which can induce the PVDF chain to fold or transfer
into polar phase.

In this article, a composite film based on PVDF materials with ionic liquids (IL) as filler to directly
obtain pure β-phase from the melt is developed with good results. The solution casting method
associated with appropriate ratio of DMF and IL as well as annealing treatment is proposed as a fast
and simple way of producing high-quality PVDF thin film with a large fraction of β phase content,
satisfactory for sensor and actuator applications for instance. Temperature control of the hot water
in which PVDF is immersed for annealing treatment is also investigated and addressed with more
detailed observations.
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2. Materials and Methods

2.1. Materials

The commercial PVDF pellets (PVDF, Kynar, 740, Arkema in Taiwan) have a molecular weight
(Mw: 180.000, Tg: −40 ◦C and Tm: 168 ◦C), specific gravity: 1.78 g/cc, melt flow: 1.1 g/10 min,
and an average pellet particle size of 5 mm. The N, N-dimethylformamide (DMF) contains 99.5% of
C3H7NO and the ion liquid (IL) is made of C6H11BF4N2 with stated purity of 98%.

2.2. Fabrication of the PVDF Films Composite

The fabrication process of PVDF film by use of solvent casting method is illustrated in Figure 1.
Firstly, the PVDF pellets was dissolved in the solvent DMF (20 wt% concentration). Then, the IL
(10 wt%) was added and dissolved in PVDF/DMF solution under magnetic stirring at 80 ◦C overnight
in order to make homogeneous mixture. Afterwards, the mixture (PVDF/DMF+IL), named with the
abbreviation PDI, was casted on a glass support using a casting knife of 300 µm working thickness.
The casted membrane film was placed at 90 ◦C in a vacuum oven for solvent evaporation overnight
to remove the solvent. Then, the film was cooled down to 35 ◦C for 30 min, and then left at room
temperature. Secondly, the film was immersed in a water bath to remove excessive solvent IL at
various temperatures (25, 40, 50, 60, and 70 ◦C) for 2 h, and then removed moisture by air dry.
Without operating the above second step, i.e., PDI composite film without immersion in hot water for
annealing treatment (AT), named with the abbreviation PDI no_AT, was prepared for the purpose
of comparison. A few pieces of the fabricated PVDF films with thickness of ±25 µm and area of
10 × 15 mm2 were selected to carry out the following characterization tests.Coatings 2019, 9, x FOR PEER REVIEW 4 of 19 
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Figure 1. Schematic diagram of PVDF fabrication process.

2.3. Measurement and Characterization

A series of examinations of the PVDF film made by PVDF/DMF without/with IL filler were
carried out for comparison. The thickness of the PDI composite film were measured by digitial
thickness gauges (Elcometer 456 model EF1, London, Britain). Thickness of the made PVDF
films were around 23.9–25.9 µm, suitable for the sensor application purpose for example [38].
Fourier transform infrared spectroscopy (FTIR) measurements were performed at room temperature
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using a FTIR (Jasco FT/IR-4200, Tokyo, Japan) spectrometer apparatus with resolution of 4 cm−1

was used to observe the crystallinity changes of the PVDF samples and estimate the fraction of
β-phase in spectra bands in the range of 600–1600 cm−1. X-ray diffraction (XRD: D8 Advance Eco,
Brucker, Billerica, MA, USA) measurements were carried out by using Cu-Kα radiation for X-Ray with
a wavelength of 1.54 Å used to characterize the crystal structure and estimate the degree of crystallinity.
The surface morphology, roughness, and microstructure change of PVDF composites were examined
by scanning electron microscopy (SEM, JEOL-JSM-7600F, Akishima, Japan) and atomic force microscopy
(AFM-SPA-400/NanoNavi by Seiko Instruments, Saitama, Japan). The SEM measurements were carried
out with a magnification range of 2000 × to 50,000 × at room temperature and observed on the condition
of 10 kV acceleration voltage. The PVDF film samples were coated with a layer of Platinum (Pt)
with thickness around 2–3 nm for 30 s at a pressure of ~20 mA in advance in order to enhance the
electronic conductivity by sputter coater (JFC-1600 auto fine coater, JEOL, Tokyo, Japan). Surface image
morphology and roughness were carried out by AFM with scanned area of 5 × 5 µm2 and pixel
resolution of 512 × 512 points was used to observe the surface topography and roughness of PDI
composite films. The contact frequency of cantilever of 285 kHz with spring constant of 26 N/m was
used during the measurements.

2.4. Measurement of the Piezolectricity

The output voltage response of d31 and d33 was measured by means of the extraction
test method and impact force test method based upon the principle of energy conservation,
respectively. Piezoelectric coefficient d33 and d31 of the PVDF composite films were measured by
d33 m and calculated by using extraction test, respectively. The output voltage response and sensitivity
as well as piezoelectric coefficient are important indices, although without poling. The output voltage
response of d33 and d31 were tested by means of an applied impact force as well as extraction force
onto the PVDF film covered by silicon sheet on both sides to protect from damages. The measurement
system is shown schematically in Figure 2a,b.
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Figure 2. Test setup for measurement of piezoelectric coefficient (a) d33, (b) (d31) [39].

Impact force is generated by dropping a steel ball with four different mass (5, 8.3, 23.7, and 43.9 g
with respect to diameters of 6.35, 12.7, 18, and 22 mm) at the height h of 150 mm. On the assumption of
ideal transformation between potential energy (mgh) and kinetic energy, the steel ball, which makes
contact with the PVDF film with kinetic energy, would generate an equivalent impact force F together
with a bouncing back height l. Hence, the impact force is calculated to be 7.25, 12.20, 34.83, and 64.24 N,
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respectively [39–41]. The extraction test was carried out by applying a stretch force on the PVDF film
clamped at both ends [39].

3. Results and Discussion

3.1. FTIR Analysis to β-Phase Fraction

FTIR measurement was used to identify the characteristic bands and to confirm the crystalline
phase of the PVDF sample. Figure 3 presents the FTIR spectra of PVDF films that were prepared
after immersion in water at different temperature for 2 h. The corresponding FTIR spectra show all
the absorption peaks of both the α and β phase in the range of 650–1600 cm−1. In the FTIR spectra,
the characteristic absorption bands of the crystalline α and β phase are labeled by an arrow for easy
identification. According to the previous studies, the absorption peaks of α phase were located at
410, 489, 532, 614, 763, 795, 875, 1,166, 1,209, 1,401, and 1,423 cm−1; the strong peaks of β-phase were
located at 840 and 1,279 cm−1; and the peaks of γ-phase were located at 811 and 1234 cm−1 [14,42,43].
In Figure 3, the effect of immersion in water at different temperatures can be observed from the intensity
of the peak of β phase. It is seen that a noticeable increase of intensity appears in the β-phase peaks of
838 cm−1 and 1,072 cm−1, respectively.Coatings 2019, 9, x FOR PEER REVIEW 6 of 19 
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Figure 3. FTIR spectra without/with ionic liquid (IL) and annealing treatment at different temperatures.

It was observed that the characteristic of absorption bands at 1,072 cm−1 was a little shifted by
increasing the annealing temperature at 60 and 70 ◦C. Annealing temperature is one of the important
factors that significantly influences the crystallize size and growth. During the temperature increase
from room temperature to 70 ◦C, crystallinity in PVDF may change and cause the peak position of
PVDF film to be shifted. In addition, the energy generated by the hot water is enough to rotate CF2

dipoles and enhance the chain mobility, which produces more γ-phase and less fraction as well as
instability of β-phase [42]. It implies that hot water for thermal annealing treatment plays a role of
ignition source instrumental to stimulate the ionic conductivity and speed up the crystallization process
as well as increase polar phase of crystallization for PVDF [36,44]. Moreover, it was found that more
intensity happens in the case of water temperature at 70 ◦C. In addition, intensity of the γ-phase at 811
and 1234 cm−1 is observed with a slight peak indicating transformation from part of the α-phase [34].
The various absorption band of PDI composites film are assigned and summarized in Table 1.
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Table 1. FTIR analysis of PVDF/N, N-dimethylformamide (DMF)+IL (PDI) composite film.

Wave Number (cm−1) Crystalline Phase Group/Vibration

763 α CF2 rocking or In-plane bending [45]
811 γ HC out-of plane [46]
838 β + γ CH2 rocking vibration [47]
875 α CF2 Asymmetric stretching [48]
1072 β CH3 rocking [34,49]
1234 β +γ CF2 Asymmetric stretching [14,34]
1274 β CF2 Antisymmetric stretching [14]
1401 α CH2 wagging [34]

The fraction of the β-phase crystallization on the samples is calculated by [50].

F(β) =
Aβ

(kβ/kα)Aα + Aβ
=

Aβ
(1.26)Aα + Aβ

(1)

where the absorption coefficients are kα = 6.1× 104 and kβ = 7.7× 104 cm2/mol; the value of Aα = 0.003537
and Aβ = 0.057868 are the absorbance bands corresponding to the two peaks at 763 and 838 cm−1 from
the Lambert–Beer law [50].

The calculated fraction of β-phase for all the cases are shown in Figure 4 with expression of error
bars identified as the upper and lower 95% confidence intervals. As seen, hot water acts as a heat source
that transmits energy to the PVDF film to enhance the formation of β-phase crystallization. The fraction
of β-phase is increased as the temperature for annealing is increased, which implies temperature of
hot water is a key factor influential to the content of β-phase [36]. The greatest β-phase fraction of
92.4% was achieved when the PVDF films were immersed in hot water at annealing temperature of
70 ◦C. It is noted that polar β-phase predominantly occurs when temperature falls below 70 ◦C. It is
not suitable to allow temperature over 70 ◦C since a mixture of α and β phase exists between 70 ◦C
and 110 ◦C and only α phase appears when temperature rises above 110 ◦C [50,51].
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As mentioned above, the FTIR spectra of PVDF indicate distinct peaks for α and β phases at
763 cm−1 and 838 cm−1, respectively. The progress of phase transformation can be observed by the
ratio of the absorbance band peaks of β to α phases, which is defined by [52]

Ratio R(β/α) =
Absorbance bands

(
Aβ

)
Absorbance bands (Aα)

(2)

While the ratio is less than 1, the film is predominantly with α phase; on the contrary, the film is
predominantly with β-phase for ratio is greater than 1. In Figure 4, all of the case studies imply a large
amount of β-phase is gained for ration greater than 3.5. Annealing treatment in hot water at 70 ◦C
would obtain the largest fraction of β-phase.

3.2. XRD Diffraction Pattern and Degree of Crystallinity

Figure 5 shows the X-ray diffraction measurement with the same PVDF samples of PVDF/DMF
and PDI composite (PVDF/DMF+IL) immersion into hot water for annealing treatment. The case
of PDI composite without annealing treatment (PDI no_AT) is also presented for comparison.
The measurement results are listed in Table 2, which are close to those addressed in the previous
studies [34,44]. For PVDF/DMF, the peaks appear at 2θ angle of 17.9◦, 18.54◦, 20.12◦, and 26.6◦.
Three characteristic peaks at 2θ angles of 17.9◦, 18.54◦, and 26.6◦ corresponding to the crystal plane
(100), (020), (021) respectively is attributed to the crystalline α-phase [14]. As observed in all of the PDI
composite films, the α-phase peaks at 2θ angle appear at 17.6◦, 26.29◦, and 40.37◦ are attributed to
the α-phase crystal plane (100), (021), and (002), respectively; the β-phase peak at 2θ angle is 20.26◦

attributed to both the β-phase crystal planes (110) and (200); and the γ-phase peak at 2θ angle is 18.5◦

attributed to the γ-phase crystal plane (020) [34].
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Figure 5. X-ray diffraction pattern of PVDF samples at different water temperatures.

The intensity of the β-phase and γ-phase peaks are significantly increased while increasing the
hot water temperature for annealing treatment. On the other hand, the intensity of α-phase peak is
diminished. In particular, a very strong diffraction peak was found at 2θ angle of 20.62◦ corresponding
to the β-phase crystal planes (110) (200) [53–55]. As seen, a large fraction of β-phase is gained when
increasing the immersion water temperature to 70 ◦C. In a previous study, the 2θ angle of β-phase on
crystal planes (110) (200) and γ-phase on crystal plane (110) was 20.26◦ and 20.04◦, respectively [14,44].
Since both locations are very close, it is difficult to distinguish between them. However, the FTIR
spectroscopy shown in Figure 3 implies the content of γ-phase is not so dominant as the β-phase.
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Table 2. Diffraction crystal plane of PVDF/DMF and PDI composite film.

Sample

Crystalline Structure

Present Study Previous Work
Ref. [14,51,53,56–58]

α β γ α β γ

2θ (◦) Crystal
Plane 2θ(◦) Crystal

Plane 2θ(◦) Crystal
Plane 2θ(◦) Crystal

Plane 2θ(◦) Crystal
Plane 2θ(◦) Crystal

Plane

PVDF/DMF
17.9

18.54
26.6

(100)
(020)
(021)

20.12 (110) 18.5 (020) 17.66
18.3
19.9
26.56
27.8
35.7
39

41.1

(100)
(020)
(110)
(021)
(111)
(200)
(002)
(111)

20.6
20.26
20.7
20.8
20.9
36.6

(110/200)
(200)

(110) (200)
(110) (200)

18.30
19.20
20.0

20.04
20.03
20.3
39.0

(020)
(002)
(110)
(110)
(110)
(020)
(211)

PDI no
AT

17.7
26.6

40.37

(100)
(021)
(002)

20.28 (110)/(200) 18.22 (020)

PDI
Composite

25 ◦C

17.6
26.29
40.37

(100)
(021)
(002)

20.62 (110)/200) 18.17
20.3

(020)
(110)

40 ◦C
17.49
26.26
40.39

(100)
(021)
(002)

20.60 (110)/(200) 18.4
20.2

(020)
(110)

50 ◦C
17.5

26.24
40.39

(100)
(021)
(002)

20.62 (110)/(200) 18.8
20.19

(020)
(110)

60 ◦C
17.5

26.29
40.15

(100)
(021)
(002)

20.60 (110)/(200) 18.73
20.40

(020)
(110)

70 ◦C
17.62
26.14
40.37

(100)
(021)
(002)

20.62
36.6

(110)/(200)
(200)

18.20
20.46

(020)
(110)
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The degree of crystallinity (Xc) was calculated as a percentage of the integrated area of all
crystalline peaks to the total integrated area under the XRD peaks. The degree of crystallinity is given
by [59]

Degree of crystallinity (Xc) =
Sc (crystalline phase)

Sc (crystalline phase) + Sa (Amorphous phase)
×100% (3)

where Sc represents area of the peak corresponding to the crystalline α, β, and γ in crystalline phase;
Sa represents the area corresponding to the amorphous phase fraction. The results listed in Table 3
are smoothed by using a curve fitting method and expressed by a Gaussian function [39,60]. It was
found that the maximum crystalline content in the PVDF film is about 46%–53.15% in the process of
various thermal annealing conditions. As can be seen, the degree of crystallinity increased when the
immersion temperature increased. In particular, the degree of crystallinity of PVDF film reaches the
highest value for the case of immersion water temperature of 70 ◦C.

Table 3. Degree of crystallinity and ratio of β/α phase.

Sample Crystallinity Xc (%) Ratio (β/α)

Present Ref. [24,54,61] Present Ref. [54,55]

PVDF/DMF 40 33 3.3 2.12
PDI no_AT 42

PDI composite
−25 ◦C 46.96

37, 41, 48, 54.5, 55.9,
56

3.6

2.7, 3.24,
3.7, 5.8

−40 ◦C 47.79 3.9
−50 ◦C 47.8 4
−60 ◦C 51.24 4.1
−70 ◦C 53.15 4.7

The results of FTIR and XRD measurement indicate that IL can induce the polar phase to obtain
a great number of nuclei. Hence, it facilitates the transformation from α-phase to polar phase via
the interaction between > CF2 groups and cations of IL [34,62]. Also, the annealing treatment would
facilitate the PVDF chains in amorphous area to entirely flop and form more polar crystals [44,62].
To sum up, more β-phase transformation happens, attributed to activation of the ionic liquid and
energy provision from the hot water to accelerate the reaction between solute and solvent. The
immersion water temperature, which is an essential factor of annealing treatment, would affect the
fraction of β-phase.

3.3. Output Voltage Response

Figure 6 shows the output voltage response is measured and presented with an average by a series
of 10 times testing. Employed with the above four different impact force onto the PVDF film was carried
out for searching d33. The output voltage response for each fabricated PVDF film at different annealing
water temperatures with expression of error bars is shown in Figure 6a. The average output voltage
response versus impact force is shown in Figure 6b. Similarly, different annealing water temperature
and stretch force applied to the film for searching d31 are shown in Figure 7a,b, respectively.
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3.4. Sensitivity of PVDF Sensor

Sensitivity and accuracy are the critical factors of a PVDF film sensor that significantly influence
its performance [63,64]. The static sensitivity S is defined as the ratio of the output voltage (V) to the
input impact force F acting on the PVDF film and calculated by [65].

S =
Output Voltage

Input Force
=

V
F

(
Volt

Newton

)
(4)

From the above measurement data in Figures 6 and 7, sensitivity of d33 and d31 of each type
of PVDF film with expression of error bars is shown in Figures 8 and 9, respectively. As seen in
Figure 8a, sensitivity is increased when the annealing water temperature is increased. The maximum
sensitivity is about ± 0.20 V/N for the PDI composite film under annealing temperature of 70 ◦C.
In Figure 8b, it is interesting to observe that different impact load on the PVDF films would affect
the sensitivity. That is, low impact load applied on the PVDF would preserve good sensitivity but
an impact load too large would reduce sensitivity significantly, which provides an index in application.
Similarly, sensitivity of d31 with respect to annealing temperature and extraction force are presented in
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Figure 9a,b, respectively. As expected in general use of PVDF, sensitivity d31 is much higher than that
of d33 [39,66,67].
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3.5. Measurement of Piezoelectric Coefficient (d33 and d31)

The piezoelectric charge constant d33 is highly affected by the amount of β-phase [38,68].
A commercial d33 m (Piezoelectric d33 m Model SINOCERA YE2730) was used to measure the
piezoelectric coefficient d33 of the PDI composite film as shown in Figure 10 with expression of error
bars. As seen, the piezoelectric coefficient is almost linearly increasing as the temperature of hot water
is increased. A maximum piezoelectric coefficient d33 value of 24 pC/N was obtained for the PDI
composite film after immersion in hot water at 70 ◦C for 2 h, which is close to the standard 27 pC/N [36].
The piezoelectric properties d31 was calculated by [39,66,67].

d31 = εr.εo.g31 = (εr.εo).
V
t.σ

= (εr.εo).
Vw
Fe

(5)

where g31 is the piezoelectric voltage coefficient; σ (=Fe/tw) is the tensile stress; Fe is extraction force
measured by the commercial force sensor (PCB piezoelectric, model 208c01); t and w are the thickness
and width of PVDF film, respectively. Same as the d33 results, the piezoelectric coefficient d31 shown in
Figure 10 is nearly proportional to temperature increase of hot water. Also, the maximum d31 occurs at
a temperature of 70 ◦C. As usual, the piezoelectric coefficient d33 is much larger than d31.
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3.6. Surface Morphology

Figure 11 shows the surface morphology and microstructure images provided by SEM.
Surface morphology of the crystallized PVDF film samples was observed from the top surface of
the film samples, i.e., opposite to the surface in contact with the glass substrate (bottom surface).
Figure 11a shows the granular structure of the top surface of PVDF/DMF film in α phase, which shows
a spherulitic structure with porosity (labeled by blue color arrow) when crystalized from solution or
from the melt. The solvent properties, solution casting, film forming process, evaporation rate, and film
thickness also influences the porosity. The presence of pores on the surface of the film will hamper the
deposition of electrode and reduce the electrical response that makes the later poling process difficult.

Surface micrographs of the PDI no_AT film is shown in Figure 11b. The crystalline morphology
structure of the film sample is significantly influenced by the addition of IL in polymer matrix.
Spherulitic microstructure was found existing in film sample. As seen in the images, numerous numbers
of different shape and size of IL particles are randomly distributed on the surface film, which implies
not all the IL are mixed into the polymer matrix. However, the addition of IL into the polymer matrix
would apparently reduce porosity.

For further investigation, selected examples of the surface morphologies of the PDI composite
films prepared by immersion in water at temperature of 25 ◦C and 70 ◦C are shown in Figure 11c,d,
respectively. As can be seen, the surface of PDI composite films displays relatively smooth surface
morphology indicating homogenous distribution in the composition and good compatibility with
polymer matrix [69]. In Figure 11c, it can be observed that the spherulitic microstructure structure is
similar to that of the PDI no_AT shown in Figure 11b. However, the majority of the IL were removed
while immersing in warm water. Under such condition, the results may come from not high enough
solubility of IL and weak interaction with the PVDF chains. While increasing hot water temperature
to 70 ◦C, the spherulites size become smaller and more compact with only miniature-sized porous
structure on the surface of the film sample as shown in Figure 11d. It indicates that IL as an anion has
strong electrostatic connection with the PVDF polymer chain and would raise a large amount of very
small spherulites. The strong electrostatic interaction between the dipolar moment of PVDF matrix
and the IL would lead to an increase of β-phase content.
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Figure 11. SEM images of (a) PVDF/DMF, (b) PDI no_AT, and (c,d) PDI annealed at 25 ◦C and 70 ◦C.

3.7. Atomic Force Microscopy (AFM)

In Figure 12, three-dimensional surface image morphology carried out by AFM was used to
observe the surface topography of PDI composite films. AFM imaging was examined in contact mode
in which the tip is placed in contact with the surface of the PDI composite film at room temperature.
Figure 12a presents the three-dimensional topography images of the fabricated PVDF/DFM film.
The dark-color solid line (—) and bright-color dotted line (····) domains represent the valley (depth) and
peak (height) on the surface of samples respectively [39]. Figure 12b–f shows the surface morphology
of the PDI composite films that were immersed in hot water at different annealing temperature.
The surface morphology image of the sample becomes smoother, which is mainly due to the enhanced
interaction between the IL and the amorphous phase of the matrix polymer as well as the fast washout
of IL in high annealing temperature especially [70]. Figure 12f shows the surface of the PDI composite
film is smoother with small pores as well as small diameter of spherulites after immersion in hot



Coatings 2020, 10, 44 14 of 19

water at 70 ◦C for 2 h. Furthermore, particle spherulites were not found on the surface morphology,
indicating that more particle aggregation of IL was removed on the hot water.

Coatings 2019, 9, x FOR PEER REVIEW 14 of 19 

 

In Figure 12, three-dimensional surface image morphology carried out by AFM was used to 
observe the surface topography of PDI composite films. AFM imaging was examined in contact mode 
in which the tip is placed in contact with the surface of the PDI composite film at room temperature. 
Figure 12a presents the three-dimensional topography images of the fabricated PVDF/DFM film. The 
dark-color solid line ( ̶ ̶ ̶ ) and bright-color dotted line (····) domains represent the valley (depth) and 
peak (height) on the surface of samples respectively [39]. Figure 12b–f shows the surface morphology 
of the PDI composite films that were immersed in hot water at different annealing temperature. The 
surface morphology image of the sample becomes smoother, which is mainly due to the enhanced 
interaction between the IL and the amorphous phase of the matrix polymer as well as the fast washout 
of IL in high annealing temperature especially [70]. Figure 12f shows the surface of the PDI composite 
film is smoother with small pores as well as small diameter of spherulites after immersion in hot 
water at 70 °C for 2 h. Furthermore, particle spherulites were not found on the surface morphology, 
indicating that more particle aggregation of IL was removed on the hot water. 

 

 
Figure 12. AFM Images (a) PVDF/DMF film, PDI composite film at (b) 25°C (c) 40°C (d) 50°C (e) 60°C 
(f) 70°C 

In general, surface roughness data give valuable information of surface morphology [71]. A large 
number of peaks and valleys appeared in the AFM image, which would affect the surface roughness 
values significantly [72]. Values of surface roughness of the PVDF/DMF and PDI composite films 
were directly read on the AFM, respectively, and shown in Figure 13 with the expression of error 
bars. From the surface roughness analysis, it is seen that the PVDF/DMF film has large-scale 
roughness compared to the PDI composite films mainly because of the addition of IL. Also, the 
surface roughness is decreased as annealing water temperature is increased. In particular, the PDI 
composite film immersed in hot water at a temperature of 70 °C would result in lower roughness 
than the other treatments. Both the AFM and SEM results are in a good agreement and consistency. 

Figure 12. AFM Images (a) PVDF/DMF film, PDI composite film at (b) 25 ◦C (c) 40 ◦C (d) 50 ◦C (e)
60 ◦C (f) 70 ◦C

In general, surface roughness data give valuable information of surface morphology [71]. A large
number of peaks and valleys appeared in the AFM image, which would affect the surface roughness
values significantly [72]. Values of surface roughness of the PVDF/DMF and PDI composite films
were directly read on the AFM, respectively, and shown in Figure 13 with the expression of error bars.
From the surface roughness analysis, it is seen that the PVDF/DMF film has large-scale roughness
compared to the PDI composite films mainly because of the addition of IL. Also, the surface roughness is
decreased as annealing water temperature is increased. In particular, the PDI composite film immersed
in hot water at a temperature of 70 ◦C would result in lower roughness than the other treatments.
Both the AFM and SEM results are in a good agreement and consistency. It implies that significant
synergetic effects on both the formation of polar crystal PVDF by melt crystallization and by annealing
treatment in hot water is instrumental to complete the β-phase crystallization and reduce porous pure
β-PVDF film effectively [36,47].
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In this study, PVDF film prepared by using the solution-casting method mixed with solvent
DMF and filler ionic liquid is investigated. Besides that, after casting and evaporation, the composite
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