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Abstract: The peristaltic flow of velocity second slip boundary conditions and inclined magnetic field
of Jeffrey fluid by means of heat and mass transfer in asymmetric channel was inspected in the present
study. Leading equations described the existing flow were then simplified under lubrication approach.
Therefore, exact solutions of stream function, concentration and temperature were deduced. Further,
the numerical solutions of pressure rise and pressure gradient were computed using Mathematica
software. Furthermore, the effect of the second slip parameter was argued via graphs. It has been
depicted that this kind of slip is mandatory and very imperative to foresee the physical model. On the
other hand, false results will be obtained.

Keywords: velocity second slip; wave forms; peristaltic flow; exact solutions; magnetic field; heat
and mass transfer

1. Introduction

The peristaltic motion induced by channel or tube boundaries has a main role of fluid transport
in living organisms and industrial pumping. Additionally, it has attracted attention in the fields of
engineering and physiology. This transport is a means of fluid flow in an elastic path by the processes
of contraction and expansion. In particular, such flows of viscous and non-Newtonian fluids are
widely familiar in several biological systems including the human body in the transport of urine
from the kidney to the bladder; chyme movement in the gastrointestinal tract, bile ducts, ureter,
esophagus; spermatozoa in ducts efferent of the male reproductive tract; blood circulation in blood
vessels; and movement of ovum in female fallopian tubes. Technical roller and finger pumps also
function under this type of mechanism. In addition, with the existing of heat transfer, peristalsis
is imperative in many processes such as oxygenation and hemodialysis. Further, heat transfer is
also noteworthy in the treatment of diseased tissues in cancer. The cram of magnetohy drodynamic
(MHD) peristaltic flow is useful as it is used in the reduction of bleeding during surgeries, targeted
transfer of drugs via magnetic particles as drug carries, and MRI (magnetic resonance imaging) to
diagnose diseases. It also has a pivotal role in the motion of physiological fluids including blood and
blood pump machines. Furthermore, mass transfer in peristaltic flow occurs during the chemical
breakdown of food, amalgamation of gastric juices with food, diffusive and ionic flows by means of
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membrane channels, diffusive oxygen transmission in tissue, drug delivery inside the body, and in
other digestion processes.

There area lot of models for non-Newtonian fluids due to the complexity of fluids behaviour, like
Carreau [1–3], Herschel [4,5], Oldroyd [6,7], Williamson [8], Johnson [9–11], Casson [12], Couette [13]
and further as in [14–21]. Amongst these, the Jeffrey fluid model is considered as the simplest linear
model that presents non-Newtonian fluid properties in a way which may enable the researchers
to attain exact and analytical solutions. See, for example [22–25]. Kothandapani and Srinivas [26]
have investigated peristaltic transport for Jeffrey fluid under consequences of a magnetic field
in an asymmetric channel under the premise of a low Reynolds number and a long wavelength.
Tripathi et al. [27] studied MHD peristaltic flow of Jeffrey fluid by means of a finite length cylindrical
tube. Further, Nadeem et al. [28] examined the peristaltic flow of MHD Jeffrey fluid in eccentric
cylinders. Khan et al. [29] investigated peristaltic transport for Jeffrey fluid with variable viscosity via
a porous medium in an asymmetric channel. Srinivas and Pushparaj [30] have presented non-linear
peristaltic flow in an inclined asymmetric channel.

In 1827, Navier [31] stated that shear stress at surface is linearly proportional to slip at surface.
Fluids revealing slip effects are vital in polishing internal cavities and artificial heart valves. In particular,
the application of this condition in peristaltic flows has perfect relevance in the field of polymers and
physiology. Studies towards this point of research have been recently taken into account and a wide
range of analytical and numerical studies have been reported in [32,33] and [34]. In a porous channel,
effects of wall slip conditions and heat transfer on peristaltic transport of MHD Newtonian fluid with
elastic wall properties have been discussed by Sirinivas et al. [35]. Hayat et al. [36] introduced a
mathematical model in order to study the slip effects of heat and mass transfer on peristaltic transport of
MHD power-law fluid and second grade fluid in the channel by flexible walls. Further, Hayat et al. [37]
and [38] examined the influence of slip conditions and wall properties in the planar channel on MHD
peristaltic flow of Maxwell fluid, and Williamson fluid in the non-uniform channel by heat and mass
transfer, respectively. Nadeem and Akram [39] presented effects of partial slip on peristaltic flow of
MHD Newtonian fluid in an asymmetric channel. They obtained the solutions using the method
of Adomian decomposition and showed that trapping reduces with an increase of the velocity slip
parameter, while pressure rise increases with an increase in the slip parameter. Hayat et al. [40,41]
have analyzed effects of the slip condition on peristaltic flow of Phan-Thien-Tanner and of an Oldroyd
6-constant fluid, respectively. Mishra and Rao [42] investigated the effects of peristaltic flow of
Newtonian fluid in an asymmetric channel. Akram and Nadeem [43] studied consequences with
different waveforms of partial slip and nanofluid on peristaltic transport of non-Newtonian fluid.
Recently, Hina et al. [44] investigated the peristaltic flow of pseudoplastic fluid with wall properties in
a curved channel by heat or mass transfer.

In their important study, Roşca and Pop [45] showed that the second order slip flow model is
essential to predict flow characteristics precisely. Very recently, Aly [46,47] and Aly and Vajravelu [48]
have studied the effect of second velocity slip on fluid flow. In these studies, it was reported that these
type of boundary conditions is compulsory and should be taken into consideration, otherwise, false
results will be gained. As mentioned above, there are a considerable number of published papers
regarding the effect of the first slip parameter, however, very less consideration has been given to
peristaltic flows in the presence of the velocity second slip condition. Recently, Aly and Ebaid [49]
presented an exact solution for the outcome of second slip on peristaltic flow of nanofluid in an
asymmetric channel.

The intent of the current study is, therefore, to examine the effect of velocity second slip in
non-Newtonian fluids by heat and mass transfer in the presence of an inclined magnetic field over an
inclined tapered asymmetric channel, as many researchers have recently givenconsiderable attention
to this geometry, for example [50–52]. As per our knowledge, no effort has been reported yet to discuss
this multidimensional analysis, even in the absence of heat and mass transfer; hence, this study may
be helpful in this direction of research. The present governing equations for motion, concentration
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and energy are simplified by assumptions of long wavelength approximation. Then, exact solutions
of reduced equations are outlines. Therefore, with help of Mathematica software, many graphical
outcomes are plotted and reported for various involved physical parameters of interest.

2. Mathematical Formulation

The peristaltic motion of non-Newtonian incompressible fluid in a vertical tapered asymmetric
channel, under effects of a constant magnetic field is considered. It is assumed that a wave train
is moving with velocity c along non-uniform walls. In addition, we also assume that the channel
andmagnetic field are inclined at angles α and Θ, respectively. Further, upper and lower walls of
the channel are sustained at temperature T0 and T1 , respectively. For the present flow, U and V are
velocities in X and Y directions, respectively, in fixed frame. The upper and lower walls H1 and H2,
respectively, of tapered asymmetric channel in fixed frame are defined as:

Y = H1 = d1 + k∗X + a1 cos
[

2π
λ (X − ct)

]
Y = H2 = −d2 − k∗X − b1 cos

[
2π
λ (X − ct) + ϕ

] (1)

where a1 and b1 are amplitudes of waves; λ is wave length; d1 + d2 is width of channel; k∗(k∗ << 1)
is non-uniform parameter; c is velocity of propagation; t is time; phase difference φ varies in range
0 ≤ ϕ ≤ π; ϕ = 0 corresponds to symmetric channel by waves out of phase and φ = π waves are in
phase; and further, a1, b1, d1, d2 and φ satisfy the condition [24].

a2
1 + b2

1 + 2a1b1 cosφ ≤ (d1 + d2)
2.

An equation that governs flow in the presence of gravity consequences and an inclined magnetic
field are defined as [25].

∂U
∂X

+
∂V
∂Y

= 0 (2)

ρ
(
∂U
∂t + U ∂U

∂X + V ∂U
∂Y

)
= −

∂p
∂X + ∂

∂X (SXX) +
∂
∂Y (SXY) − σB2

0 cosθ(U cosθ−V sinθ)
+ρg sinα (3)

ρ
(
∂V
∂t + U ∂V

∂X + V ∂V
∂Y

)
= −

∂p
∂Y + ∂

∂X (SYX) +
∂
∂Y SYY + σB2

0 sin Θ(U cos Θ −V sin Θ)

−ρg cosα
(4)

Cp

(
∂T
∂t + U ∂T

∂X + V ∂T
∂Y

)
=

K1
ρ

(
∂2T
∂X2 +

∂2T
∂Y2

)
+ υ

(
1

1+λ1

(
1 + λ2

(
∂
∂t + U ∂

∂X + V ∂
∂Y

))(
2
(
∂U
∂X

)2
+ 2

(
∂V
∂Y

)2
+

(
∂U
∂Y + ∂V

∂X

)2
)) (5)

∂C
∂t

+ U
∂C
∂X

+ V
∂C
∂Y

= Dm

(
∂2C
∂X2 +

∂2C
∂Y2

)
+

DmKT

Tm

(
∂2T
∂X2 +

∂2T
∂Y2

)
(6)

where ρ, p, ν, σ, g, K1 , Cp , T, Dm, Tm, KT and C represent constant density, pressure, kinematic
viscosity, electrical conductivity, acceleration caused by gravity, thermal conductivity, specific heat,
temperature, coefficient of mass diffusivity, mean temperature, thermal diffusion ratio and concentration
of fluid, respectively.

For the Jeffrey fluid model, extra stress tensor S is given as [26].

S =
µ

1 + λ1

( .
γ+ λ2

..
γ
)

(7)
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where λ1 is ratio of relaxation to retardation times;
.
γ is shear rate; µ is viscosity of fluid; λ2 is retardation

time; and dots indicate differentiation with respect to time. Extra stress tensor S in component form is
defined as:

SXX =
2µ

1+λ1

(
1 + λ2

(
∂
∂t + (U ∂

∂X + V ∂
∂Y )

))
∂U
∂X

SXY =
µ

1+λ1

(
1 + λ2

(
∂
∂t + (U ∂

∂X + V ∂
∂Y )

)) (
∂U
∂Y + ∂V

∂X

)
SYY =

2µ
1+λ1

(
1 + λ2

(
∂
∂t + (U ∂

∂X + V ∂
∂Y )

))
∂V
∂Y

Furthermore, we know that the wave frame (x,y) and fixed frame (X,Y) are related by the
following transformations:

x = X − ct, y = Y, u = U − c, v = V, and p(x) = p(X, t). (8)

Let us define the following non-dimensional quantities:

−
x = x

λ ,
−
y =

y
d1

,
−
u = u

c ,
−
v = v

c , δ =d1
λ , d =d2

d1
,
−
p =

d2
1p

µcλ ,
−

t = ct
λ , h1 = H1

d1
,

h2 = H2
d2

, a = a1
d1

, b = b1
d1

, Re = cd1
v ,

−

Ψ = Ψ
cd1

, Fr = c2

gd1
, θ = T−T0

T1−T0
,

Sr =ρDmKt(T1−T0)
Tmµ(C1−C0)

, Sc = µ
ρDm

, Ec = c2

Cp(T1−T0)
, Pr =

ρνCp
K1

,
−

S = Sd1
µc ,

M =
√

σ
µB0d1, Φ = C−C0

C1−C0

(9)

where Re is Reynolds number; Fr is Froude number; Sr is Soret number; Sc is Schmidt number;
Ec is Eckret number; Pr is Prandtl number; M is Hartmann number; θ is temperature of fluid in
dimensionless form; and Φ is concentration of fluid in dimensionless form.

With the help of Equations (7) and (8), Equations (2)–(6), in terms of stream function Ψ (dropping
the bars, u = ∂Ψ

∂y , v = −δ∂Ψ
∂x ), take following form:

Reδ
(
ΨyΨxy −ΨxΨyy

)
= −

∂p
∂x + δ ∂∂x (Sxx) +

∂
∂y

(
Sxy

)
−

M2 cos Θ
((

Ψy + 1
)

cos Θ + δΨx sin Θ
)
+ Re

Fr sinα
(10)

Reδ3
(
−ΨyΨxx + ΨxΨxy

)
= −

∂p
∂y + δ2 ∂

∂x

(
Syx

)
+ δ ∂∂y

(
Syy

)
+

M2δ sin Θ
((

Ψy + 1
)

cos Θ + δΨx sin Θ
)
− δRe

Fr cosα
(11)

Reδ
(
Ψyθx −Ψxθy

)
= 1

Pr

(
θyy + δ2θxx

)
+ Ec

(1+λ1)

(
1 +

λ2 cδ
d1

(
Ψy

∂
∂x −Ψx

∂
∂y

))
(
4δ2Ψ2

xy +
(
Ψyy − δ2Ψxx

)2
) (12)

Reδ
(
ΨyΦx −ΨxΦy

)
=

1
Sc

(
δ2Φxx + Φyy

)
+ Sr

(
δ2θxx + θyy

)
(13)

where extra stress tensor forJeffrey fluid in component form is defined as:

Sxx = 2δ
1+λ1

(
1 +

λ2 cδ
d1

(
Ψy

∂
∂x −Ψx

∂
∂y

))
Ψxy

Sxy = 1
1+λ1

(
1 +

λ2 cδ
d1

(
Ψy

∂
∂x −Ψx

∂
∂y

)) (
Ψyy − δ2Ψxx

)
Syy = − 2δ

1+λ1

(
1 +

λ2 cδ
d1

(
Ψy

∂
∂x −Ψx

∂
∂y

))
Ψxy

(14)
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Using Equation (14) and assumptions of long wavelength approximation, Equations (10)–(13)
reduce in the form:

−
∂p
∂x

+
∂
∂y

(
1

1 + λ1

∂2Ψ
∂y2

)
−M2 cos2 Θ

(
Ψy + 1

)
+

Re
Fr

sinα = 0 (15)

−
∂p
∂y

= 0 (16)

1
Pr
∂2θ

∂y2 +
Ec

(1 + λ1)

(
∂2Ψ
∂y2

)2

= 0 (17)

1
Sc
∂2Φ
∂y2 + Sr

∂2θ

∂y2 = 0. (18)

Elimination of pressure from Equation (15) to (16) gives:

∂2

∂y2

(
1

1 + λ1

∂2Ψ
∂y2

)
−M2 cos2 Θ

∂2Ψ
∂y2 = 0 (19)

1
Pr
∂2θ

∂y2 +
Ec

(1 + λ1)

(
∂2Ψ
∂y2

)2

= 0 (20)

1
Sc
∂2Φ
∂y2 + Sr

∂2θ

∂y2 = 0. (21)

The system of PDEs given above in Equation (19) through (21) is solved subject to the following
boundary conditions:

Ψ = F
2 at y = h1 = 1 + kx + a cos 2πx

Ψ = −F
2 at y = h2 = −d− kx− b cos(2πx + ϕ)

∂Ψ
∂y = −

η∗
1

(1+λ1 )
∂2Ψ
∂y2 −

η∗
2

(1+λ1)
∂3Ψ
∂y3 − 1 at y = h1

∂Ψ
∂y =

η∗
1

(1+λ1)
∂2Ψ
∂y2 +

η∗
2

(1+λ1)
∂3Ψ
∂y3 − 1 at y = h2

(22)

θ+ β∂θ∂y = 0 at y = h1

through(13)θ− β∂θ∂y = 1 at y = h2

(23)

Φ + γ∂Φ
∂y = 0 at y = h1

through(13)Φ − γ∂Φ
∂y = 1 at y = h2

(24)

where F is flux in wave frame; η∗
1
,η∗

2
,β and γ represent 1st-order slip parameter, 2nd-order slip parameter,

thermal slip parameter, and concentration slip parameter, respectively; h1 and h2 are thedimensionless
form of surfaces of peristaltic walls.

3. Exact Solution of Problem

Exact solution of Equation (19) satisfying boundary conditions (22) can be deduced as:
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Ψ = 1
L∞

(
2 cosh((h1 − h2)m)

(
(−h1 − h2 + 2y)

(
Fη1m2 + 1

)
− η2m2(F + h1 − h2)

)
+2(η2m2(F− h2)(cosh(m(y− h1)) + cosh(m(y− h2)) − 1) − Fη1m(sinh(m(y− h1))

+sinh(m(y− h2))) + F cosh(m(y− h1)) − F cosh(m(y− h2)) + h1(η2m2(cosh(m(y− h1))

+ cosh(m(y− h2)) − 1) − η1m(sinh(m(y− h1)) + sinh(m(y− h2))) + cosh(m(y− h1))

− cosh(m(y− h2)) + 1) + h2(η1m(sinh(m(y− h1)) + sinh(m(y− h2))) − cosh(m(y− h1))

+ cosh(m(y− h2)) + 1) − 2y) + m(h1 + h2 − 2y)(Fη2
2
m4
− η1

(
Fη1m2 + 2

)
−F)sinh((h1 − h2)m),

(25)

where m = M cos Θ, η1 =
η∗

1
(1+λ1 )

,η2 =
η∗

1
(1+λ1 )

and L
∞

is a function of x defined in the Appendix A.

Now making use of Equation (25) in Equation (20), the exact solution of Equation (20) is derived as:

θ =
m2PrEc(F+h1−h2)

2

L0

(
2
(
2m2y2(cosh((h1 − h2)m) − 1) + cosh(m(−h1 − h2 + 2y))

)
+m(η1(η1m(4m2y2(cosh((h1 − h2)m) + 1) − cosh(2m(y− h1)) − cosh(2m(y− h2))

−2 cosh(m(−h1 − h2 + 2y))) + 2(4m2y2sinh((h1 − h2)m) + sinh(2m(y− h1))

−sinh(2m(y− h2)))) + η2
2
m3(−(2(2m2y2(cosh((h1 − h2)m) + 1)

+ cosh(m(−h1 − h2 + 2y))) + cosh(2m(y− h1)) + cosh(2m(y− h2))))

+2η2m(η1m(sinh(2m(y− h1)) + sinh(2m(y− h2)) + 2sinh(m(−h1 − h2 + 2y)))
− cosh(2m(y− h1)) + cosh(2m(y− h2)))) − cosh(2m(y− h1))

− cosh(2m(y− h2))) + A1 y + A0 ,

(26)

where A0 ,A1 are functions of x and their values are computed by means of Equation (23) as:

A0 = 1
8(2β+h1−h2) (λ1+1)

(8(β+ h1) (λ1 + 1)+
1

L5
(m2EcPr(F + h1 − h2)

2L9L6
2
− 2m2EcPrL11(β− h2) (F + h1 − h2)

2L6L4

+m2EcPr(F + h1 − h2)
2L10 L4

2)),

(27)

A1 =
4m4EcPr(F+h1−h2)

2

8(λ1+1) (2β+h1−h2) L8

(
η2

2
(h1 + h2)m4(2β+ h1 − h2) (cosh((h1 − h2)m) + 1)

−2(h1 + h2) (2β+ h1 − h2)(η1m cosh( 1
2 (h1 − h2)m) + sinh( 1

2 (h1 − h2)m))
2

−4η2 cosh( 1
2 (h1 − h2)m)(2βm cosh((h1 − h2)m) + sinh((h1 − h2)m))

(η1m cosh(((h1 − h2)m)) + sinh( 1
2 (h1 − h2)m))) −

8(λ1+1)
8(λ1+1) (2β+h1−h2)

.

(28)

With the help of Equation (26), exact solution of the concentration profile in Equation (21) is
concluded as:

Φ =
m2PrScSrEc(F+h1−h2)

2

L0

(
−2(2m2y2(cosh((h1 − h2)m) − 1) + cosh(m(−h1 − h2 + 2y)))

+m(η1(η1m(2(cosh(m(−h1 − h2 + 2y)) − 2m2y2(cosh((h1 − h2)m) + 1)) + cosh(2m(y− h1))

+ cosh(2m(y− h2))) − 2(4m2y2sinh((h1 − h2)m) + sinh(2m(y− h1)) − sinh(2m(y− h2))))

+η2
2
m3(2(2m2y2(cosh((h1 − h2)m) + 1) + cosh(m(−h1 − h2 + 2y))) + cosh(2m(y− h1))

+ cosh(2m(y− h2))) − 2η2m(η1m(sinh(2m(y− h1)) + sinh(2m(y− h2))

+2sinh(m(−h1 − h2 + 2y))) − cosh(2m(y− h1)) + cosh(2m(y− h2))))

+ cosh(2m(y− h1)) + cosh(2m(y− h2))) + A3 y + A2

(29)

where A2 ,A3 are functions of x and their values are computed by means of Equation (24) as:

A2 = 1
8(2γ+h1−h2) (λ1+1)

(8(γ+ h1) (λ1 + 1) + 1
L5

(
m2PrScSrEc(F + h1 − h2)

2L2L4
2

+m2PrScSrEc(F + h1 − h2)
2L1L2

6
− 2m2PrScSrEcL7(F + h1 − h2)

2L3L4))
(30)
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A3 =
4m4PrScSrEc(F+h1−h2)

2

8(λ1+1) (2γ+h1−h2) L8

(
η2

2
(h1 + h2)m4(2γ+ h1 − h2) (−(cosh((h1 − h2)m) + 1))

+2(h1 + h2) (2γ+ h1 − h2)(η1
m cosh( 1

2 (h1 − h2)m) + sinh( 1
2 (h1 − h2)m))

2

+4η2 cosh( 1
2 (h1 − h2)m)(2γm cosh((h1 − h2)m) + sinh((h1 − h2)m))

(η1 m cosh( 1
2 (h1 − h2)m) + sinh( 1

2 (h1 − h2)m))) −
8(λ1+1)

8(λ1+1) (2γ+h1−h2)
.

(31)

It should be noted that L0 − L11 appeared in Equation (26) through (31) and are functions of x
defined in the Appendix A.

4. Different Wave Shapes

Non-dimensional expressions for six considered wave forms are given as [43]. Expressions for
sinusoidal, multisinsoidal, triangular, square, trapezoidal and sawtooth waves are derived from the
Fourier series.

Sinusoidal wave:

h1(x) = 1 + kx + a sin 2πx, h2(x) = −d− kx− b sin(2πx + ϕ)

Multisinsoidal wave:

h1(x) = 1 + kx + a sin 2nπx, h2(x) = −d− kx− b sin(2nπx + ϕ)

Triangular wave:

h1(x) = 1 + kx + a
[

8
π3

∞∑
m = 1

(−1)m+1

(2m−1)2 sin(2π(2m− 1) x)
]

h2(x) = −d− kx− b
[

8
π3

∞∑
m = 1

(−1)m+1

(2m−1)2 sin(2π(2m− 1) x + ϕ)

]
Trapezoidal wave:

h1(x) = 1 + kx + a
[

32
π2

∞∑
m = 1

sin π
8 (2m−1)

(2m−1)2 sin(2π(2m− 1) x)
]

h2(x) = −d− kx− b
[

32
π2

∞∑
m = 1

sin π
8 (2m−1)

(2m−1)2 sin(2π(2m− 1) x + ϕ)

]
Square wave:

h1(x) = 1 + kx + a
[

4
π

∞∑
m = 1

(−1)m+1

(2m−1) cos(2(2m− 1)πx)
]

h2(x) = −d− kx− b
[

4
π

∞∑
m = 1

(−1)m+1

(2m−1) cos(2(2m− 1)πx + ϕ)

]
Sawtooth wave:

h1(x) = 1 + kx + a
[

8
π3

∞∑
m = 1

sin(2πmx)
m

]
h2(x) = −d− kx− b

[
8
π3

∞∑
m = 1

sin((2πmx)+ϕ)
m

]
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5. Special Cases

If η
1
= η2 = β = γ = k = 0, results of Nadeem and Akram [24] can be recovered as a special

case for present study. In addition to the vanishing of these values and in absence of heat and mass
transfer, the following results can be obtained as further special cases:

• Kothandapani and Srinivas [26], when Θ = α = 0,
• Srinivas and Pushparaj [30], for Θ = λ1 = 0 and
• Mishra and Rao [42], at Θ = M = α = λ1 = 0.

6. Results and Discussion

In the proceeding section, numerical results of current problems are conferred through
graphs. Mathematica software is utilized to analyze expressions for pressure gradient and pressure
rise numerically.

Figures 1–4 are displayed to observe behaviour of pressure rise for diverse values of Jeffrey
parameter λ1 , non-uniform parameter k, Reynolds number Re and inclination angle Θ. It is noted from
Figure 1; Figure 2 that behaviour of pressure rise decreases in retrograde pumping (∆p > 0, Q < 0),
peristaltic pumping (∆p > 0, Q > 0) and free pumping (∆p = 0) regions with an increase in λ1 and k,
whereas the behaviour of pressure rise is quite opposite in the co-pumping region (∆p < 0, Q > 0).
In this region, with an increase in λ1 and k, pressure rise increases. Figure 3 presents the behaviour
of pressure rise for diverse values of Re. From this figure, we depicted that pressure rise increases
in all pumping regions with an increase in values of Re. It is shown from Figure 4 that in the
retrograde pumping (∆p > 0, Q < 0) region, pressure rise increases with an increase in Θ, whereas in
the co-pumping region (∆p < 0, Q > 0), behaviour of pressure rise decreases with an increase in Θ.
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Figure 1. Variation of ∆p with Q for different values of λ1 for fixed a = 0.7, α = 0.2, b = 0.7, d = 1.5,
Θ = π

6 , M = 0.5, Re = 0.4, ϕ = π
4 , Fr = 0.6, η1 = 0.3, η2 = 0.4, k = 0.5.



Coatings 2020, 10, 30 9 of 21
Coatings 2019, 9, x FOR PEER REVIEW 11 of 24 

 

-1 -0.5 0 0.5 1 1.5 2 2.5 3
-1.5

-1

-0.5

0

0.5

1

1.5

Q


p

 

 

k = 0.0

k = 0.1

k = 0.3

k = 0.5

Sinusoidal wave

Fig. 2

 

Figure 2. Variation of p  with Q  for different values of k  for fixed 0.7a  , 0.2  ,

0.7b  , 1.5d  ,
6
  , 0.5M  , Re 0.4 ,

4
  , 0.6Fr  ,

2
0.4  ,

1
0.5  ,

1
0.1  . 

-1 -0.5 0 0.5 1 1.5 2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Q


p

 

 

Re = 0.0

Re = 0.2

Re = 0.4

Re = 0.6

Sinusoidal wave

Fig. 3

 

Figure 3. Variation of p  with Q  for different values of Re  for fixed 0.7a  , 0.2  ,

0.7b  , 1.5d  ,
6
  ,

1
0.4  , 0.5M  ,

4
  , 0.6Fr  ,

1
0.3  ,

2
0.4  ,

0.5k  . 

-1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

Q


p

 

 

 = /3

 = /5

 = /7

 = /9

Sinusoidal wave

Fig. 4

 

Figure 2. Variation of ∆p with Q for different values of k for fixed a = 0.7, α = 0.2, b = 0.7, d = 1.5,
Θ = π

6 , M = 0.5, Re = 0.4, ϕ = π
4 , Fr = 0.6, η2 = 0.4, η1 = 0.5, λ1 = 0.1.
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Figure 3. Variation of ∆p with Q for different values of Re for fixed a = 0.7, α = 0.2, b = 0.7, d = 1.5,
Θ = π

6 , λ1 = 0.4, M = 0.5, ϕ = π
4 , Fr = 0.6, η1 = 0.3, η2 = 0.4, k = 0.5.
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Figure 4. Variation of ∆p with Q for different values of Θ for fixed a = 0.7, α = 0.2, b = 0.7, d = 1.5,
λ1 = 0.7, M = 1, R = 0.3, ϕ = π

4 , Fr = 0.6, η1 = 0.3, η2 = 0.4, k = 0.5.

Figures 5–8 are plotted in order to notice the behaviour of pressure gradient for various values of
α, Jeffrey parameter λ1 , Hartmann number M and non-dimensional slip parameters η1 and η2 . It is
illustrated that for x ∈ [0, 0.2] and x ∈ [0.8, 1], the pressure gradient is small so that flow can easily
pass without the compulsion of a large pressure gradient, whereas in region x ∈ [0.2, 0.8], the pressure
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gradient increases with an increase in α, and it decreases with an increase in λ1 , M, η1 and η2 , so
more pressure gradient is necessary to maintain the flux to pass. Figure 9 shows the behaviour of the
pressure gradient for diverse wave forms. It has been observed from Figure 9 that pressure gradient is
maximum for square waves.
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Figure 5. Variation of dp/dx with x for different values of α for fixed a = 0.7, b = 0.7, d = 1.5,
Fr = 0.6, Θ = π

3 , M = 0.5, Re = 0.4, ϕ = π
4 , η1 = 0.4 η2 = 0.5, λ1 = 0.3, k = 0.1, Q = 1.
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Figure 7. Variation of dp/dx with x for different values of M for fixed a = 0.7, α = 0.3, b = 0.5,
d = 1.8, Θ = π

3 , Re = 0.4, ϕ = π
4 , Fr = 0.6, η1 = 0.5, η2 = 0.4, k = 0.5, λ1 = 0.1, Q = 1.
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Figure 8. Variation of dp/dx with x for different values of η1 and η2 for fixed a = 0.7, α = 0.2, b = 0.7,
d = 1.5, Fr = 0.6, Θ = π

3 , M = 0.5, Re = 0.4, ϕ = π
4 , λ1 = 0.3, k = 0.1, Q = 1.
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Figure 9. Variation of dp/dx with x for different wave forms for fixed a = 0.9, α = 0.3, b = 0.1,
d = 2, Θ = π

3 , M = 0.5, Re = 0.4, ϕ = π
4 , Fr = 0.6, η1 = 0.5, η2 = 0.4, λ1 = 0.5, k = 0.1.

The behaviour of temperature profiles for diverse values of Ec,λ1 and Pr are shown in Figures 10–12.
It has been observed from Figure 10 that the temperature profile increases with an increase in Ec.
This phenomena is physically valid as Ec shows a direct connection with temperature profile. Figure 11
depicts variation of the temperature profile for diverse values of λ1 . It has been observed from Figure 11
that the temperature profile decreases with an increase in λ1 . It has been observed from Figure 12
that the temperature profile increases with an increase in values of Pr. This happens due to the direct
relation of Pr with the temperature profile.

Figures 13–15 demonstrate theconcentration profile for diverse values of Ec, λ1 , Sr and Sc. It has
been observed from Figure 13, Figure 14 that concentration profiles show opposite behaviour in
comparison with the temperature profile. This observable fact physically holds as the temperature
profile shows its inverse relationship with the concentration profile. It has been observed from
Figure 13 that the concentration profile decreases with an increase in values of Ec. It has been depicted
from Figure 14 that with an increase in λ1 that the concentration profile increases. Figure 15 shows
the concentration profile for diverse values of Sr and Sc. It has been shown in Figure 15 that the
concentration profile decreases with an increase in Sr and Sc.
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Figure 10. Temperature profile for different values of Ec  for fixed 0.5a  , 1.2b  , 1.5d  ,
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Figure 10. Temperature profile for different values of Ec for fixed a = 0.5, b = 1.2, d = 1.5, ϕ = π
4 ,

β = 0.0009, η1 = 0.009, η2 = 0.001, k = 0.2, λ1 = 0.2, M = 0.1, Pr = 1, Q = 4, x = 1.
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Figure 11. Temperature profile for different values of λ1 for fixed a = 0.5, b = 1.2, d = 1.5, ϕ = π
4 ,

β = 0.0009, η1 = 0.009, η2 = 0.001, k = 0.2, M = 0.1, Pr = 1, Q = 4, Ec = 0.2, x = 1.
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Figure 12. Temperature profile for different values of Pr for fixed a = 0.5, b = 1.2, d = 1.5, ϕ = π
4 ,

β = 0.0009, η1 = 0.009, η2 = 0.001, λ1 = 1, k = 0.2, M = 0.1, Q = 4, Ec = 0.2, x = 1.
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Figure 13. Concentration profile for different values of Ec for fixed a = 0.5, b = 1.2, d = 1.5, ϕ = π
4 ,

γ = 0.0009, η1 = 0.009, η2 = 0.001, k = 0.2, λ1 = 0.2, M = 0.1, Pr = 1, Q = 4, Sc = 0.3,
Sr = 0.4, x = 1.
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In addition, an interesting observable fact in peristaltic flow is trapping. This is basically a 

pattern of an internally circulating bolus of fluid via closed stream lines. The trapping phenomena is 

discussed for different values of 
1
 , M , 

1
  and 

2
 . It has been observed from Figures 16–18 that 

the size of the trapping bolus decreases with an increase in values of
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 , M , 

1
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2
 Figure 19 

shows the behaviour of stream lines for diverse wave forms. It has been observed that in all 

considered wave forms that the trapped bolus increases in size and its size is smaller in the case of 

the triangular wave when compared with the other three wave forms. Figure 20 shows comparison 

of the present work with existing literature. It is observed in this figure that the exact solution of the 

Figure 14. Concentration profile for different values of λ1 for fixed a = 0.5, b = 1.2, d = 1.5, ϕ = π
4 ,

γ = 0.0009, η1 = 0.009, η2 = 0.001, k = 0.2, M = 0.9, Pr = 1, Q = 5, Sc = 0.6, Sr = 0.4,
Ec = 0.8, x = 1.
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Figure 15. Concentration profile for different values of Sr and Sc for fixed a = 0.5, b = 1.2, d = 1.5,
ϕ = π

4 , γ = 0.0009, η1 = 0.009, η2 = 0.001, λ1 = 0.9, k = 0.2, M = 0.8, Pr = 0.5, Q = 5,
Ec = 0.8, x = 1.

In addition, an interesting observable fact in peristaltic flow is trapping. This is basically a pattern
of an internally circulating bolus of fluid via closed stream lines. The trapping phenomena is discussed
for different values of λ1 , M, η1 and η2 . It has been observed from Figures 16–18 that the size of the
trapping bolus decreases with an increase in values of λ1 , M, η1 and η2 . Figure 19 shows the behaviour
of stream lines for diverse wave forms. It has been observed that in all considered wave forms that the
trapped bolus increases in size and its size is smaller in the case of the triangular wave when compared
with the other three wave forms. Figure 20 shows comparison of the present work with existing
literature. It is observed in this figure that the exact solution of the present work and existing literature
satisfies the boundary conditions. Moreover, the magnitude value of the velocity profile is maximum
in the case of the present work and Nadeem and Akram [24]. In order to show the comparison of the
present work with existing literature in tabular form, Table 1 is constructed.
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Table 1. Shows the comparison of the present work with existing literature in tabular form.

y Present Work Nadeem
andAkram [24]

Kothandapani and
Srinivas [26]

Srinivas and
Pushparaj [30]

Mishra and
Rao [42]

−1.109 −1.000 −1.000 −1.000 −1.000 −1.000
−1.009 −0.932753 −0.714278 −0.678228 −0.757937 −0.862651
−0.909 −0.8743 −0.505606 −0.459713 −0.565103 −0.736612
−0.809 −0.825682 −0.352378 −0.310456 −0.410812 −0.621188
−0.709 −0.785355 −0.239918 −0.208522 −0.287568 −0.516378
−0.609 −0.752035 −0.157452 −0.138929 −0.189381 −0.422183
−0.509 −0.724664 −0.097082 −0.0914497 −0.11148, −0.338602
−0.409 −0.702372 −0.0530242 −0.0591067 −0.0500785 −0.265636
−0.309 −0.684449 −0.0210585 −0.0371466, −0.00219338 −0.203285
−0.209 −0.670326 0.00187701 −0.0223419 0.0345026 −0.151548
−0.109 −0.659554 0.0179793 −0.0125168 0.0617927 −0.110426
−0.009 −0.65179 0.0287909 −0.00622739 0.081003 −0.0799192
0.091 −0.646787 0.0353474 −0.00254937 0.0930671 −0.0600266
0.191 −0.644387 0.0382767 −0.000942165 0.0985713 −0.0507487
0.291 −0.644513 0.0378597 −0.00116958 0.0977831 −0.0520854
0.391 −0.647169 0.0340561 −0.00326504 0.0906641 −0.0640367
0.491 −0.65244 0.0265019 −0.00753651 0.0768684 −0.0866028
0.591 −0.660492 0.0144732 −0.0146117 0.0557255 −0.119783
0.691 −0.671583, −0.00318205 −0.0255305 0.0262081 −0.163579
0.791 −0.686065 −0.0281551 −0.0418976 −0.0131183 −0.217989
0.891 −0.704397 −0.0628381 −0.0661183 −0.0641648 −0.283014
0.991 −0.727164 −0.110553 −0.101752 −0.129412 −0.358653
1.091 −0.755089 −0.175871 −0.154037 −0.212031 −0.444907
1.191 −0.789059 −0.265049 −0.230655 −0.316035 −0.541775
1.291 −0.830155 −0.386629 −0.342868 −0.446481 −0.649259
1.391 −0.879684 −0.552257 −0.507167 −0.609706 −0.767357
1.491 −0.939219 −0.777798 −0.747697 −0.813642 −0.896069
1.591 −1.000 −1.000 −1.000 −1.000 −1.000
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7. Conclusions

In this research, we have investigated the effect of velocity second slip on non-Newtonian fluids
by heat and mass transfer in the presence of an inclined magnetic field over an inclined tapered
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asymmetric channel. Governing equations of motion, energy and concentration were simplified via
assumptions of long wavelength approximation. Then, exact solutions of reduced equations were
calculated. Graphical results were plotted and reported for various involved physical parameters of
concern. The main results can be typified as:

• The results presented in [24,26,30,42] were considered as special cases of the present work.
• The pressure rise decreases in retrograde, peristaltic and free pumping regions and increases

in co-pumping regions, with an increase in relaxation to retardation times λ1 and non-uniform
parameter k.

• The pressure rise increases in all pumping regions with an increase in Reynolds number Re.
• The pressure gradient increases with an increase in α and decreases with an increase in λ1 ,

Hartmann number M, slip parameter η1 and η2 .
• The temperature profile increases with an increase in values of Eckret number Ec and decreases

with an increase in relaxation to retardation times λ1 .
• The concentration profile decreases with an increase in Soret number Sr and Schmidt number Sc.
• The size of the trapping bolus decreases with an increase in values of relaxation to retardation

times λ1 , Hartmann number M, slip parameter η1 and η2 .
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Nomenclature

U , V Velocities in X and Y directions in fixed frame Fr Froude Number
P Pressure Sr Soret number
a1 and b1 amplitudes of waves d1 + d2 width of channel
k∗(k∗ << 1) non-uniform parameter λ wavelength
λ1 ratio of relaxation to retardation times λ2 retardation time
b amplitude of the wave Sc Schmidt number
Re Reynolds number Ec Eckret number
δ dimensionless wave number Pr Prandtl number
M Hartmann number µ viscosity
Q volume flow rate Ψ Stream function

ν kinematic viscosity Φ
concentration of fluid in
dimensionless form

θ temperature of fluid in dimensionless form C Concentration of fluid
σ electrical conductivity KT thermal diffusion ratio
K1 thermal conductivity Cp specific heat
Tm mean temperature Dm coefficient of mass diffusivity
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Appendix A
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∞
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