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Abstract: Corynebacterium jeikeium is a commensal bacterium that colonizes human skin, and it is
part of the normal bacterial flora. In non-risk subjects, it can be the cause of bad body smell due
to the generation of volatile odorous metabolites, especially in the wet parts of the body that this
bacterium often colonizes (i.e., groin and axillary regions). Importantly, in the last few decades,
there have been increasing cases of serious infections provoked by this bacterium, especially in
immunocompromised or hospitalized patients who have undergone installation of prostheses or
catheters. The ease in developing resistance to commonly-used antibiotics (i.e., glycopeptides) has
made the search for new antimicrobial compounds of clinical importance. Here, for the first time,
we characterize the antimicrobial activity of some selected frog skin-derived antimicrobial peptides
(AMPs) against C. jeikeium by determining their minimum inhibitory and bactericidal concentrations
(MIC and MBC) by a microdilution method. The results highlight esculentin-1b(1-18) [Esc(1-18)] and
esculentin-1a(1-21) [Esc(1-21)] as the most active AMPs with MIC and MBC of 4–8 and 0.125–0.25 µM,
respectively, along with a non-toxic profile after a short- and long-term (40 min and 24 h) treatment of
mammalian cells. Overall, these findings indicate the high potentiality of Esc(1-18) and Esc(1-21) as
(i) alternative antimicrobials against C. jeikeium infections and/or as (ii) additives in cosmetic products
(creams, deodorants) to reduce the production of bad body odor.

Keywords: Corynebacterium jeikeium; antibiotic resistance; antimicrobial peptides; minimum inhibitory
concentration; minimum bactericidal concentration; hemolysis; cytotoxicity; cosmetics

1. Introduction

Corynebacteria are Gram-positive, aerobic, catalase-positive, generally non-motile rods, and this
genus comprises Corynebacterium diphtheriae and other different species defined as nondiphtheriae
corynebacteria (diphtheroids) [1,2]. Corynebacterium jeikeium (commonly known as group JK
corynebacterium by the Centers for Disease Control and Prevention) is part of the human skin
flora as Staphylococcus epidermidis and is among the most common bacteria isolated from hospitalized
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patients [3–5]. In particular, its colonization affects groin and axilla where the moist environment
favors the formation of malodor substrates leading, in some cases, to an unpleasant body smell [6,7].
C. jeikeium is ubiquitous and largely innocuous, and importantly, it offers substantial epidermal
protection thanks to the production of bacteriocin-like compounds that are used to counteract
possible pathogenic competitors [8]. However, in the last few decades, C. jeikeium has become the
etiological agent of infections associated with skin wounds and implanted medical devices, as well
as of nosocomial infections especially in hospitalized patients [1]. Indeed, in these latter, due to
the impaired immune system, “helpful” microorganisms belonging to the commensal flora and
regularly living within the host can turn into opportunistic pathogens leading to the appearance
of infections with an illness state [9–13]. Considering the rising enhancement of people recovering
from chemotherapy treatments or with a compromised defense mechanism, the number of these
nosocomial infections (encompassing endocarditis, pneumoniae, peritonitis, and enteritis) is actually
extremely alarming [14,15]. The first line therapies to combat C. jeikeium-associated infections include
glycopeptides vancomycin or teicoplanin. Unfortunately, the inappropriate usage of these antibiotics
and the high selective pressure have made this bacterium resistant to vancomycin, teicoplanin,
linezolid, quinupristin-dalfopristin, daptomycin, and tigecycline [16]. Hence, new agents with
antimicrobial activity are urgently needed. Naturally-occurring antimicrobial peptides (AMPs)
represent a valid alternative to traditional antibiotics, as they are active against a broad spectrum of
microbes, from Gram-positive and Gram-negative bacteria to fungi and viruses [17–23]. Furthermore,
compared to conventional drugs, they have further biological functions, such as a wound-healing,
antidiabetic, anti-inflammatory, and immune-modulatory activities [24–31]. Amphibian skin secretion
is considered a rich source of broad-spectrum AMPs, and over the years, numerous peptides have been
isolated and classified into the corresponding families, such as esculentins, temporins, and bombinins
H [32,33]. Recently, we characterized the potent effectiveness of two derivatives of the N-terminal
part of two frog skin AMPs, i.e., esculentin-1a and -1b, namely esculentin-1a(1-21) (Esc(1-21)) and
esculentin-1b(1-18) (Esc(1-18)), respectively, especially against alarming human pathogens, such as
Pseudomonas aeruginosa and Candida albicans, either in vitro or in vivo [34–36]. Here, for the first time,
we explore the efficacy of these two alpha-helical peptides against C. jeikeium by determining their
minimum inhibitory concentrations (MIC) and compare this activity with that of other peptide isoforms
belonging to different AMP families (i.e., the alpha-helical temporin A, temporin B, temporin G,
and bombinin H2). The minimum bactericidal concentration (MBC) of both esculentin derivatives is
also determined, along with mechanistic studies to gain insight into their mode of action. Moreover,
to evaluate the safety profile of these peptides for the development of new antimicrobials, their hemolytic
activity on mammalian erythrocytes and their effect on the viability of three different mammalian cell
lines are also investigated.

2. Results

2.1. Antimicrobial Activity of Frog Skin-Derived AMPs

Esc(1-18) and Esc(1-21), collectively named esculentin peptides, as well as the frog skin-derived
AMPs temporin A, temporin B, temporin G, and bombinin H2 (Figure 1) were tested against the
reference strain C. jeikeium ATCC BAA-949 to assess the MIC, i.e., the lowest peptide concentration
able to visually inhibit microbial growth after 20 h of incubation at 37 ◦C.

As reported in Table 1, esculentin peptides showed the strongest efficacy in inhibiting C. jeikeium
growth with MICs of 4 µM and 0.125 µM for Esc(1-18) and Esc(1-21), respectively. This result was quite
surprising, considering that esculentin peptides have a well-documented preferential activity towards
Gram-negative bacteria [36,37]. In comparison, MICs ranging from 8 to 16 µM were obtained for the
other selected AMPs. Unlike temporins and bombinin H2, esculentin peptides are lysine-rich AMPs
with a higher cationicity and lower hydrophobicity, as indicated by the corresponding grand average
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of hydropathicity index (GRAVY; Table 1), which is used to represent the hydrophobicity value of a
peptide [38].Antibiotics 2020, 9, x 3 of 13 
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Table 1. Antimicrobial activity (MIC) of different frog skin AMPs against C. jeikeium. The net charge at
neutral pH and grand average of hydropathicity (GRAVY) of each peptide are also indicated. GRAVY
values were provided by https://web.expasy.org [39].

Peptide Sequence MIC (µM) Net Charge GRAVY

Esc(1-18) GIFSKLAGKKLKNLLISG-NH2 4 +5 0.383
Esc(1-21) GIFSKLAGKKIKNLLISGLKG-NH2 0.125 +6 0.338

Temporin A FLPLIGRVLSGIL-NH2 8 +2 1.808
Temporin B LLPIVGNLLKSLL-NH2 8 +2 1.638
Temporin G FFPVIGRILNGIL-NH2 16 +2 1.577

Bombinin H2 IIGPVLGLVGSALGGLLKKI-NH2 8 +3 1.525

Interestingly, when the most active esculentin peptides were tested for their bactericidal activity,
they were found to cause almost the complete killing of the bacterial population with an MBC (i.e.,
the lowest peptide concentration able to cause a ≥3 log reduction in the number of bacterial cells) 2-fold
higher than the corresponding MIC, i.e., 8 µM and 0.25 µM for Esc(1-18) and Esc(1-21), respectively.

2.2. Membrane Permeabilization

Esculentin peptides are known to display an antibacterial activity mainly through a membrane-
perturbing mechanism of action. To verify their ability to perturb the cytoplasmic membrane of
Gram-positive bacteria, such as C. jeikeium, a Sytox Green assay was performed. Sytox Green is a
fluorescent probe unable to cross intact membranes, and its fluorescence intensity significantly increases
upon binding to nucleic acids. As shown in Figure 2, the rapid increase of the fluorescent signal
immediately after peptide addition to the bacterial cells (arrow) indicated that the perturbation of the
membrane was the result of the peptide-induced membrane damage, allowing the internalization
of the probe with a consequent binding to the bacterial DNA. Both esculentin AMPs manifested a
dose-dependent fast kinetic membrane destabilization with a total perturbation of the phospholipid
bilayer already within the first minutes of treatment at the highest concentration of 32 µM. According
to the MIC and MBC values, the most active Esc(1-21) exhibited a stronger effect compared to Esc(1-18),
even at a concentration as low as 0.5 µM with about 60% membrane damage within the first 2 min.
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Figure 2. Membrane perturbation assay performed with the Sytox Green dye. The percentage of
membrane damage was calculated with respect to the maximum membrane permeabilization obtained
with the highest peptide concentration (32 µM) and the addition of 1 mM EDTA + 0.5% Triton X-100.
Arrows indicate the addition of the peptide. Data points are the mean of triplicate measurements from
a single experiment representative of three independent experiments. Controls (Ctrl) are cells not
treated with the peptides.

https://web.expasy.org
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2.3. Cytotoxicity

2.3.1. Hemolytic Activity

To evaluate the potential cytotoxicity of esculentin peptides in the short term, they were tested for
the ability to lyse mammalian red blood cells after 40 min of treatment at 37 ◦C. Both AMPs caused a
weak and similar hemolysis with an ~10% release of hemoglobin at a concentration of 64 µM, which is
significantly higher than the antimicrobial dosages, thus suggesting their safety profile for short-term
treatment (Figure 3).
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Figure 3. Effect of Esc(1-18) and Esc(1-21) on mammalian red blood cells after 40 min of incubation
at 37 ◦C. The percentage of hemolysis was calculated with respect to the control (cells treated with
vehicle). Data are the means ± standard error of the mean (SEM) of three independent experiments.

2.3.2. Peptides’ Effect on the Metabolic Activity of Mammalian Cells

Since the long-term cytotoxicity of Esc(1-21) was extensively described in earlier studies [40,41],
we similarly investigated the potential cytotoxic effect of Esc(1-18) after a long time interval (24 h)
against three different mammalian cell lines, i.e., the human immortalized keratinocytes (HaCaT
cells), the human alveolar epithelial A549 cells, and the murine RAW 264.7 macrophages, by the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (see Materials and Methods).
Figure 4 shows the percentage of cell viability after 24 h of exposure to Esc(1-18) in the concentration
range of 2–64 µM. Even at the highest peptide concentration tested, only a weak reduction in the
percentage of metabolically-active cells was observed (about 20%) compared to the untreated control
samples. Similar data were previously collected for viability assays performed with Esc(1-21) at the
same concentrations, except for the greater cytotoxicity against macrophages at 64 µM (i.e., about 50%
cell viability) [41]. Lacking the harmful effect of esculentin peptides, particularly for Esc(1-18) at the
antimicrobial concentrations (MIC and MBC values), suggested they are safe compounds, also for
long-term treatment.
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3. Discussion

Having been considered harmless and protective to humans, C. jeikeium has turned into a
relevant etiological agent of dangerous infections, especially in hospitalized people or patients
under chemotherapy. These include skin and wound infections, meningitis, enteritis, osteomyelitis,
pyelonephritis, prosthetic joint infections, peritonitis, pneumonia, and liver abscess in patients with
AIDS [42–50]. Unfortunately, current antibiotic therapies are often ineffective due to the onset of
antibiotic resistance [51,52]. Interestingly, AMPs are promising hits to open the door for the generation
of a new class of antimicrobials. In recent years, we thoroughly investigated the activity of Esc(1-18) and
Esc(1-21) against a large number of microorganisms. However, no studies have been conducted so far
for these peptides, as well as for other AMPs, against C. jeikeium. Here, for the first time, we analyzed
the effect of some frog skin AMPs against this bacterium and selected the esculentin peptides as
the most active molecules with an MIC of 0.125 and 4 µM for Esc(1-21) and Esc(1-18), respectively.
This outcome is in sharp contrast with the weaker activity of Esc(1-21) previously recorded against
other Gram-positive bacteria (e.g., Staphylococcus aureus, S. epidermidis), where MICs ranging from 1 to
64 µM were found [37]. Note that both the higher cationicity and lower hydrophobicity of esculentin
peptides compared to the other AMPs used for comparison (Table 1) would promote the peptide
interaction with the anionic phospholipid headgroups of the bacterial membrane, thus explaining the
higher antimicrobial activity of esculentin peptides. However, we cannot exclude the contribution of
other chemical/physical features of the peptides (i.e., amphipathicity, length, oligomeric state) for the
final outcome. Analogously, among esculentin peptides, the significantly higher antibacterial activity
of Esc(1-21) compared to the shorter analog Esc(1-18) is likely due to the higher net positive charge and
longer size of the former. Indeed, a minimum length for a peptide in alpha-helical conformation to
span and perturb a phospholipid bilayer (∼30 Å thick) is 20 amino acids. Both esculentin peptides
displayed the capability to kill C. jeikeium at a concentration two-fold higher than the MIC. Remarkably,
despite the obtained MICs being comparable to those of traditional antibiotics [53,54], we have to take
into account the additional advantageous features owned by these AMPs. As an example, we already
demonstrated the ability of Esc(1-21) to promote re-epithelialization of a pseudo-wound by stimulating
the migration of human keratinocytes, a relevant property for the therapeutic development of these
peptides. Indeed, besides contributing to the elimination of C. jeikeium skin/wound-associated infections,
the peptide would help to repair the damaged epithelial tissue. In addition, the membrane-perturbing
activity makes these AMPs even more interesting compounds, as bacteria are less prone to develop
resistance to them. This is because the acquisition of resistance to AMPs would imply a complete
reorganization of the bacterial membrane; an energetically unfavorable process not compatible with
bacterial survival [55–60]. Moreover, in contrast with mammalian AMPs, esculentin peptides can
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preserve antimicrobial activity in the presence of biological fluids [37]. Esc(1-21) was found to
induce a complete permeabilization of the bacterial membrane at a concentration range from 2 to
32 µM. Differently, only 50% of the membrane perturbation had been previously achieved by this
peptide against other Gram-positive bacteria (i.e., Streptococcus agalactiae ATCC 13813) at the higher
concentration of 50 µM [36]. Finally, both esculentin peptides displayed a non-toxic profile on different
types of mammalian cells, e.g., erythrocytes, keratinocytes, alveolar epithelial cells, and macrophages,
either after a short- or long-term treatment. Importantly, HaCaT cells are a reliable and helpful
in vitro model to determine the toxicity of various agents on the skin layer because keratinocytes
represent 95% of the epidermal cells [61,62]. In comparison, the evaluation of the peptides’ effect
against lung epithelial cells, i.e., the A549 alveolar cell line, and immune cells, like macrophages,
is of great interest for their crucial role in orchestrating both immune defense and inflammatory
responses [63–65]. It is noteworthy that esculentin peptides may be developed not only as alternative
antimicrobials against C. jeikeium infections, but also as additives in cosmetic products (e.g., creams,
deodorants) aimed at countering the colonization of C. jeikeium and, as a result, axillary malodor
formation. In fact, this bacterium is involved in the generation of volatile odorous metabolites,
attributed to the bacterial degradation of skin lipids and specific odor precursors that are responsible
for the unpleasant human body smell, in sweat secretions [6,7,66]. Frequent showers and different
soaps cannot solve the problem of the so-called “wild axilla”, thus provoking serious psychological
concerns. Patients suffering from bad smell can adopt various atypical behaviors minimizing social
interactions. This can lead to anxiety, decreased self-esteem, and low quality of life due to social
difficulties, e.g., avoiding intimacy [67,68]. Overall, the potent antimicrobial action of esculentin
peptides, especially of Esc(1-21) [MIC, 0.125 µM], and their safety profile make them attractive
molecules for therapeutic and/or cosmetic application. Based on the amino acid sequence analysis
conducted through bioinformatic platforms (https://webs.iiitd.edu.in/raghava/algpred/submission.html
and https://web.expasy.org/protparam, [39,69]), it has been predicted that esculentin peptides are
devoid of allergenic properties and have an estimated half-life time in mammalian reticulocytes
(in vitro) of about 30 h, which is a compatible time for possible daily usage. This is also consistent
with our recent in vivo efficacy studies showing: (i) an antimicrobial efficacy of Esc(1-21), 36 h after
intra-tracheal administration in murine models of acute bacterial lung infection; and (ii) the absence
of immunogenicity in mice [70,71]. In the work of Rahnamaeian and Vilcinskas, the authors already
emphasized the feasibility of short-sized AMPs as cosmetic ingredients of topical formulations such as
creams, lotions, shampoos, and wound dressings to deter dermatological pathogens [72]. As proof of
this, Haisma and coworkers designed cream/gel formulations (e.g., a water-in-oil cream with lanolin,
an oil-in-water cream with polyethylene glycol hexadecyl ether, and a hypromellose gel) containing
the LL-37-derived AMP P60.4Ac to successfully eradicate methicillin-resistant S. aureus from colonized
human epidermal models [73]. Taken all together, the data presented in this work demonstrated for the
first time the high potentiality of esculentin peptides as a new choice to fight the undesirable infections
caused by C. jeikeium in both healthy and susceptible individuals.

4. Materials and Methods

4.1. Microorganism and Cell Lines

The microorganism used in the study was the reference strain C. jeikeium ATCC BAA-949.
The culture media used for bacterial growth and the various assays were tryptone soy broth and
agar (TSB and TSA, respectively) supplemented with 0.1% Tween 80 (TSB+ and TSA+). Furthermore,
the following cell cultures were employed: the human immortalized keratinocyte cell line, HaCaT (from
AddexBio, San Diego, CA, USA), the human type II alveolar epithelial cell line A549, and the murine
RAW 264.7 macrophage cell line (from the American Type Culture Collection, Manassas, Va). The three
cell lines were cultured in Dulbecco’s Modified Eagle’s Medium supplemented with 4 mM glutamine
(for HaCaT cells) or 2 mM glutamine (for the A549 and RAW 264.7 cell lines), 10% heat-inactivated

https://webs.iiitd.edu.in/raghava/algpred/submission.html
https://web.expasy.org/protparam
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fetal bovine serum (FBS), and 0.1 mg/mL of penicillin and streptomycin at 37 ◦C and 5% CO2, in 25 cm2

or 75 cm2 flasks. In the case of macrophages, sodium pyruvate and non-essential amino acids were
also added to the culture medium.

4.2. Peptides

Esc(1-18), Esc(1-21), temporin A, temporin B, temporin G, and bombinin H2 were purchased
from Biomatik (USA/Canada). Each peptide was assembled by stepwise solid-phase synthesis and
purified via reverse-phase high-performance liquid chromatography to a purity of 98% using a gradient
of acetonitrile in 0.1% aqueous trifluoroacetic acid (from 28% to 100% in 30 min) at a flow rate of
1.0 mL/min. Molecular masses were verified by electron spray ionization mass spectrometry.

4.3. Antimicrobial Assays

The MIC of the different AMPs against C. jeikeium ATCC BAA-949 were determined following
the previously described procedure with some modifications [57]. The bacterium was grown in TSB+

up to an optical density (O.D.) of 0.8 (λ = 590 nm) and diluted to reach a concentration of 2× 106

colony forming units (CFU) per mL. Aliquots (50 µL) of this dilution were added to 50 µL of TSB+

supplemented with 2-fold serial dilution of peptides previously dispensed in the wells of a 96 well
plate. Controls were bacteria not treated with the peptides. The plate was then incubated for 20 h at
37 ◦C, and the MIC was defined as the lowest peptide concentration that visually inhibits microbial
growth (absence of turbidity) after 20 h incubation. For determining the MBC of the most potent
peptides, i.e., Esc(1-18) and Esc(1-21), aliquots from MIC, 2×MIC and 4×MIC wells were spread onto
TSA+ plates for CFU counting after an overnight incubation. MBC was defined as the lowest peptide
concentration able to cause a ≥3 log reduction in the number of cells of the initial inoculum after 20 h
of incubation.

4.4. Membrane Permeabilization: Sytox Green Assay

To assess the ability of Esc(1-21) and Esc(1-18) to perturb the cytoplasmic membrane permeability
of C. jeikeium ATCC BAA-949, the Sytox Green assay was performed as previously reported, with
some modifications [35]. Approximately 1× 107 CFU/mL were incubated with 1 µM Sytox Green in
PBS for 5 min in the dark. After peptide addition, changes in fluorescence intensity (λ exc = 485 nm,
λ ems = 535 nm) caused by the binding of the dye to intracellular DNA were monitored for 30 min in
the microplate reader (Infinite M200, Tecan, Salzburg, Austria) at 37 ◦C and plotted as the percentage
of membrane perturbation relative to that obtained after treating bacteria with the highest peptide
concentration (32 µM) and the addition of 1 mM EDTA + 0.5% Triton X-100 (final concentration).
The peptide concentrations ranged from 0.125 to 32µM. Controls were cells not treated with the peptides.

4.5. Hemolytic Assay

The short-term cytotoxicity of Esc(1-18) and Esc(1-21) was evaluated against sheep red blood
cells (OXOID, SR0051D) by adapting the already described procedure [74]. Erythrocytes (O.D. of 0.5
at λ = 500 nm) in 0.9 % (w/v) NaCl were incubated for 40 min at 37 ◦C with 4-fold serial dilutions
of Esc(1-18) and Esc(1-21) (0.06–64 µM). Complete lysis was obtained by resuspending erythrocytes
in distilled water. All samples were centrifuged for 5 min at 900× g, and the amount of hemoglobin
released in the supernatant by lysed red blood cells was measured at 415 nm using a microplate reader
(Infinite M200; Tecan, Salzburg, Austria).

4.6. Cytotoxicity Test on Mammalian Cell Lines

The long-term cytotoxicity of Esc(1-18) was investigated by the MTT assay according to [41],
as previously carried out for Esc(1-21). MTT (Sigma-Aldrich, St. Luis, MO, USA) is a yellow dye that,
upon intracellular entry, is converted into insoluble and dark purple formazan crystals by mitochondrial
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dehydrogenases. This reduction occurs only in metabolically-active cells; therefore, the colorimetric
absorbance is directly proportional to the cell viability. About 4 × 104 cells, suspended in DMEM
supplemented with glutamine (at the concentration indicated for each cell line) and 2% FBS without
antibiotic, were plated in triplicate wells of a microtiter plate. After overnight incubation at 37 ◦C and
5% CO2, the medium was replaced by fresh serum-free medium containing the peptide at different
concentrations. Cells not treated with the peptide were used as controls. After 24 h of incubation at
37 ◦C in a 5% CO2 atmosphere, the medium was removed, and MTT solution in Hank’s buffer (final
concentration 0.5 mg/mL) was added to each well. The plate was incubated for 4 h at 37 ◦C and 5%
CO2. Afterwards, the formazan crystals were dissolved by adding acidified isopropanol, and the
absorbance of each well was measured at 570 nm using the microplate reader (Infinite M200; Tecan,
Salzburg, Austria) (cell viability was calculated by assuming a percentage of 100% for control cells
without any peptide treatment).

4.7. Statistical Analysis

Unless otherwise specified, all experiments were performed three times, and the obtained values
were reported as the mean ± SEM.

5. Conclusions

AMPs are an effective alternative to conventional antibiotics in the battle to defeat microbial
pathogens, due to their membrane-active microbicidal activity and to further biological properties.
In the last few decades, C. jeikeium raised concerns in the clinical field because of the increased
occurrence of its infections, especially in immunocompromised or hospitalized subjects. In non-risk
patients, this bacterium normally colonizes skin (e.g., axilla), causing a bad smell. Here, for the
first time, we characterized the efficacy of two derivatives of esculentin-1 peptides, i.e., Esc(1-18)
and Esc(1-21), against C. jeikeium and highlighted their high potentiality as new antimicrobials with
negligible cytotoxicity. Beyond the clinical relevance that these peptides can have in the scenario
of antibiotic resistance, they represent excellent candidates to be used at low concentrations in the
production of cosmetics designed to reduce bad body odors.
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