
antibiotics

Article

Potent and Specific Antibacterial Activity against
Escherichia coli O157:H7 and Methicillin Resistant
Staphylococcus aureus (MRSA) of G17 and G19
Peptides Encapsulated into Poly-Lactic-Co-Glycolic
Acid (PLGA) Nanoparticles

Nicolás Gómez-Sequeda 1, Jennifer Ruiz 1, Claudia Ortiz 1,2,*, Mauricio Urquiza 3

and Rodrigo Torres 4

1 Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Universidad Industrial de Santander,
Bucaramanga 680002, Colombia; nicosebasemi@gmail.com (N.G.-S.); jennifer.ruiz@correo.uis.edu.co (J.R.)

2 Escuela de Microbiología, Facultad de Salud, Universidad Industrial de Santander,
Bucaramanga 680002, Colombia

3 Departamento de Química, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
mauriciourquiza@yahoo.com

4 Departamento de Ciencias Básicas, Facultad de Salud, Universidad Industrial de Santander,
Bucaramanga 680002, Colombia; rodrigo.torres@ecopetrol.com.co

* Correspondence: ortizc@uis.edu.co; Tel.: +57-7-645-6325

Received: 22 May 2020; Accepted: 1 July 2020; Published: 7 July 2020
����������
�������

Abstract: Antimicrobial peptides constitute an excellent alternative against conventional antibiotics
because of their potent antimicrobial spectrum, unspecific action mechanism and low capacity to
produce antibiotic resistance. However, a potential use of these biological molecules as therapeutic
agents is threatened by their low stability and susceptibility to proteases. In order to overcome
these limitations, encapsulation in biocompatible polymers as poly-lactic-glycolic-acid (PLGA) is a
promising alternative for increasing their stability and bioavailability. In this work, the effect of new
synthetic antimicrobial peptides GIBIM-P5S9K (G17) and GAM019 (G19) encapsulated on PLGA
and acting against methicillin resistant Staphylococus aureus (MRSA) and Escherichia coli O157:H7 was
studied. PLGA encapsulation allowed us to load around 7 µg AMPs/mg PLGA with an efficiency of
90.5%, capsule sizes around 290 nm and positive charges. Encapsulation improved antimicrobial
activity, decreasing MIC50 from 1.5 to 0.2 (G17NP) and 0.7 (G19NP) µM against MRSA, and from
12.5 to 3.13 µM for E. coli O157:H7. Peptide loaded nanoparticles could be a bacteriostatic drug with
potential application to treat these bacterial E. coli O157:H7 and MRSA infections, with a slow and
gradual release.
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1. Introduction

Using a broad spectrum of antibiotics has led to the emergence of multidrug resistant (MDR)
microorganisms, intensifying public health problems such as bacterial infections with the consequent
spreading in the population. The World Health Organization (WHO) includes methicillin resistant
Staphylococcus aureus (MRSA) and enterohemorrhagic Escherichia coli as high and critical risk pathogens,
which are included in the report “Global priority list of antibiotic resistant bacteria for research,
discovery and development of new antibiotics” WHO [1,2].These pathogens are responsible for the
majority of nosocomial and community-associated infections, occupying the first and second place

Antibiotics 2020, 9, 384; doi:10.3390/antibiotics9070384 www.mdpi.com/journal/antibiotics

http://www.mdpi.com/journal/antibiotics
http://www.mdpi.com
http://www.mdpi.com/2079-6382/9/7/384?type=check_update&version=1
http://dx.doi.org/10.3390/antibiotics9070384
http://www.mdpi.com/journal/antibiotics


Antibiotics 2020, 9, 384 2 of 14

among the most common drug-resistant pathogens with 15 and 12% of the total cases, respectively.
MRSA and E. coli O157:H7 present multiple mechanisms of antibiotic resistance, making the infections
associated to these pathogens difficult to treat. Recently, there has been the emergence of ‘super
resistant bugs’, multidrug-resistant forms with an increased level of resistance or those resistant to
multiple antibiotics such as MRSA, which is estimated to cause over 10,600 deaths per year [3]. E. coli
O157:H7 is the most important Shiga toxin-producing E. coli (STEC) serotype in relation to public
health, being responsible for over 63,000 illnesses per year and an annual cost of 405 million dollars,
related to productivity, medical care, and premature deaths [4,5].

In this sense, antimicrobial peptides (AMPs) have emerged as new antimicrobial compounds
acting over a broad variety of both conventional and new microbial targets, and they represent a
promising therapeutic option against proliferation of antibiotic-resistant pathogens [6,7]. In addition,
these AMPs are effector molecules of the innate immune system; usually cationic (positive net charge
between +2 and +9 at physiological pH) with sizes lower than 10 kDa. AMPs differ from most
antibiotics due to their multiple mechanisms of action and broad action spectrum [8]. Among the
advantages that AMPs can offer are: (I) wide antimicrobial activity against several microorganisms
such as Gram negative and Gram positive bacteria, fungi and viruses [9]; (II) their both rapid and
direct action allows them to kill microorganisms mediated by bacterial membrane destabilization [10];
(III) lipid bilayer structures of bacterial membranes restrict antimicrobial resistance against AMPs [11].

However, therapeutic use of AMPs is restricted because their susceptibility to degradation or
inactivation by pH changes, protease activity or high ionic strength [10]. Moreover, AMPs can display
low stability in blood plasma [12] and high hemolytic activity [13]. Therefore, nanoencapsulation of
bioactive compounds in biodegradable polymers has been explored in order to enable its therapeutic
use [14]. These biopolymers offer multiple advantages; they can protect active ingredients against both
chemical and enzymatic degradation, site specific delivery, protection, controlled release, enhanced
therapeutic efficiency and reduction of side effects [14]. Encapsulation in polymeric nanoparticles is
one of the most promising strategies for improving AMP stability and delivery. PLGA nanoparticles
have been utilized as a drug delivery system due to their good biocompatibility and adjustable
biodegradability [15,16].

For instance, GIBIM-P5S9K (G17), a new antimicrobial peptide, designed through a genetic
algorithm optimization strategy, has showed a wide range of activity against MRSA, E. coli O157:H7
and P. aeruginosa. In addition, previous studies have shown that a nanoencapsulated preparation of
G17 displays both low erythrocyte hemolysis and cytotoxicity, and it is stable in human sera [17]. In this
work, GAM019 (G19), an analogue of the G17 peptide was synthesized by solid-phase chemistry and
encapsulated in PLGA at different peptide/biopolymer ratios in order to obtain the best physicochemical
properties of surface charge, size, encapsulation efficiency and also improve its antimicrobial activity
against MRSA and E. coli O157:H7.

2. Results and Discussion

2.1. Peptide Synthesis and Characterization

In this work, a new peptide sequence (G19) was generated by changing Gly by Ala and Phe by
Trp in the G17 peptide sequence in order to increase the alpha-helix stability of this peptide and the
aromatic interaction (Table 1). The G17 peptide was previously designed by using a genetic algorithm
optimization strategy, using the CAMP database and physicochemical descriptors such as isoelectric
point, charge, hydrophobicity and instability index; this peptide has a high antimicrobial activity
previously demonstrated against E. coli O157:H7 and MRSA [18]. Using the AMP prediction software
in the CAMPR3 web pages [19], the G19 peptide sequence exhibited a 97.3% probability of being
antimicrobial, with an instability index of 24.68, indicating that the peptide has a good stability [20],
and a GRAVY value in which G19 (0.735) is higher than G17 (0.382) (Table 1). Both peptides, G17 and
G19, were synthesized via the solid-phase method and purified by RP-HPLC; peptides G17 and G19
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presented a molecular mass in silico of 1804 and 1864 Da respectively, which was corroborated by
MALDI-TOF experimentally (1804.71 and 1864.12 KDa, respectively; see Supplementary Materials File
Figure S1). G19 showed an alpha helix in its secondary structure as determined by circular dichroism,
similar to G17 (Supplementary Materials File Figure S2).

Table 1. Physicochemical properties of peptide G17 and G19 calculated using ExPASy ProtParam tool
and CAMP R3 software.

Peptide Sequence Net
Charge

MW
(Da) m/z PAP (%) pI II GRAVY

G17 ATKKCGLFKILKGVGKI 5 1804.31 1804.19 96 10.20 18.06 0.382
G19 ATKKCALWSILKAVAKI 4 1844.33 1864.19 97.3 10.04 24.68 0.735

MW: Molecular Weight; PAP: Predict Antimicrobial Peptides; pI: Isoelectric Point; II: Instability Index; GRAVY:
Grand Average of Hydropathy.

According to the current model of AMP-interaction with the cell membrane, there are at least
two interacting regions in these peptides; a positive charged region and a hydrophobic one. Both G17
and G19 are able to form amphipathic helices in vitro according to the CD spectra (Supplementary
Materials File Figure S2), with at least two regions; one hydrophobic and another positive domain.
The positive domain in peptide G17 is higher than peptide G19, because G17 contains an additional
Lys residue in the G17 sequence. Changes of Phe and Lys in the position 8 and 9 present in peptide
G17 by Trp and Ser in peptide G19 could be responsible for the differences in the specificity of both
peptides (Table 1). The hydrophobic region of the peptides G19 and G17 favors the interaction with
the cell membranes, increasing the probability for peptides G17 and G19 to be more antibacterial and
potentially hemolytic [18,21]. Encapsulation is an excellent strategy that is able to minimize possibly
undesirable characteristics of synthetic AMPs [22]. For this reason, both peptides were encapsulated
into PLGA nanoparticles in order to improve their interaction with the bacterial membrane before the
peptide is released, and at the same time decrease their cytotoxicity, reduce degradation and enhance
peptide bioavailability in sites of bacterial infection [18,23,24].

2.2. Physicochemical Properties of AMP-NPs

In nanoparticle systems, the size and surface charge of the nanoparticle are crucial parameters that
affect the releasing rate, encapsulation efficiency, pharmacokinetics and even the antimicrobial activity
of the pharmaceuticals. Therefore, it is essential to find the optimal balance between these variables
to improve the biological activity of the nanoparticle [25,26]. Several experiments were carried out
in order to obtain different AMP/PLGA ratios and determine the best physicochemical properties of
the NPs; results are shown in Table 2. In both experiments, a poly dispersion index (PDI) <0.3 was
obtained, demonstrating a narrow distribution and a good reproducibility of the method [27].

It was observed that at 2 µg G17/mg PLGA ratio (mean size = 1022 ± 317.18 nm, zeta potential
= −2.06 ± 0.21 mV, Figure 1A) and 0.5 µg G19/mg PLGA ratio (mean size = 1976 ± 496.56 nm, zeta
potential = −11.8 ± 0.95 mV, Figure 1B), the zeta potential of the nanoparticle is increased, approaching
0 mV and as a consequence a decrease of the repulsion between the nanoparticles, which generates the
biggest agglomerations. However, at concentrations where it was higher than 4 µg of AMP/mg PLGA,
the nanoparticles were stabilized, obtaining sizes smaller than 310 nm, positive surface charge and
poly dispersion index (PDI) < 0.3, which demonstrate a narrow distribution and a good reproducibility
of the method (Table 2, Figure 1A,B) [27].

The G17NP shape was perfectly spherical (Figure 2A), which is consistent with the shape of PLGA
nanoparticles obtained in previous studies [18]. However, the images with lower magnification showed
different populations of nanoparticles, with non NP agglomerations (Figure 2B). On the other hand,
the G19NP exhibited a spherical shape with non-agglomerations (Figure 2C), sizes around 290 nm
(Figure 2D) and consistent with the hydrodynamic sizes determined by DLS. These nanoparticles were
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similar not only in size and shape but also dispersion to those obtained by Water et al. 2015 and Cruz
et al. 2017 [18,28].

Table 2. Physicochemical properties of different AMP-NPs at different peptide/polymer ratios.

NP
(µg AMP

/mgPLGA)
Ratio

Mean Zeta Potential
(mV) Mean Size (nm) Mean PDI

Mean
Encapsulation
Efficiency (%)

Mean Peptide
Loading (µg

AMP/mg
PLGA)

Empty
NP 0 −21.97 ± 1.25 270.87 ± 2.96 0.11 ± 0.03 - - - -

G17NP

16 8.56 ± 0.30 293.20 ± 1.61 0.24 ± 0.03 49.50 ± 0.70 7.92 ± 0.11
8 7.26 ± 1.11 284.50 ± 3.61 0.22 ± 0.02 90.59 ± 0.67 7.25 ± 0.05
4 3.99 ± 0.23 303.33 ± 18.65 0.27 ± 0.07 76.10 ± 1.87 3.04 ± 0.07
2 −2.06 ± 0.21 1022.40 ± 317.18 0.83 ± 0.27 67.58 ± 0.83 1.35 ± 0.02
1 −14.10 ± 0.56 322.27 ± 4.25 0.22 ± 0.02 83.79 ± 0.14 0.84 ± 0.00

0.50 −19.03 ± 0.64 339.53 ± 1.86 0.12 ± 0.08 86.19 ± 3.59 0.43 ± 0.02
0.25 −20.80 ± 0.46 285.37 ± 1.61 0.08 ± 0.04 87.64 ± 3.66 0.22 ± 0.01
0.12 −23.37 ± 0.45 266.30 ± 4.35 0.12 ± 0.04 88.48 ± 3.01 0.11 ± 0.00

G19NP

16 12.90 ± 0.60 291.67 ± 3.38 0.16 ± 0.11 50.85 ± 1.20 8.14 ± 0.19
8 12.87 ± 1.02 291.77 ± 1.59 0.26 ± 0.06 90.60 ± 0.94 7.25 ± 0.07
4 12.90 ± 0.80 257.83 ± 2.84 0.13 ± 0.05 80.48 ± 1.76 3.22 ± 0.07
2 3.03 ± 0.30 290.70 ± 3.67 0.08 ± 0.04 79.27 ± 2.26 1.59 ± 0.04
1 −1.86 ± 0.37 432.63 ± 6.66 0.16 ± 0.04 51.10 ± 4.98 0.51 ± 0.05

0.50 −11.80 ± 0.95 1976.00 ± 496.56 0.82 ± 0.12 41.05 ± 3.18 0.21 ± 0.02
0.25 −15.77 ± 0.40 353.67 ± 5.93 0.17 ± 0.02 89.92 ± 6.88 0.22 ± 0.02
0.12 −18.73 ± 0.40 324.87 ± 7.27 0.12 ± 0.05 89.45 ± 4.39 0.11 ± 0.01

AMP-NP: Encapsulated Antimicrobial peptide; AMP: Antimicrobial peptide; PLGA: Poly-lactic-glycolic-acid;
PDI: poly dispersion index.
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Nanoparticles obtained in this work were comparable in sizes with those obtained for other
authors, being, e.g., six times smaller than those obtained by Li et al., 2017 [29], using the electrospray
technique, but between 11% and 23% smaller using double emulsion techniques [18,28]. Nevertheless,
our nanoparticles encapsulated more peptide (up to 35%) compared to the nanoparticles obtained
by Cruz et al. 2017 [18] and with similar percentages of encapsulation (greater than 90%) to those
reported in other studies [28,29]. It has been proved that the cationic nanoparticles efficiently interact
with the anionic lipids of bacterial membranes [18,30]. In this work, it was possible to obtain cationic
nanoparticles (with zeta potential for G17NP = 7.26 mV and G19NP = 12.87 mV) without using cationic
polymers such as polyethylenimine or chitosan for their coating, since these polymers have shown
cytotoxic activity against eukaryotic cells [31,32].

2.3. Encapsulation Efficiency and Load Capacity of the G17NP and G19NP

The effect of the AMP/PLGA ratio on encapsulation efficiency and peptide loading was analyzed
(Figure 3); it was found that AMP-NP with either negative or positive zeta potential values is possible
to avoid agglomeration, and a high encapsulation efficiency and peptide loading can be obtained
(around 90%). On the other hand, at the ratio of 2 µg G17/mg PLGA and 0.5 µg G 19/mg PLGA, a low
encapsulation efficiency was obtained (67 and 41%, respectively). At these ratios, the zeta potential of
the nanoparticles approaches 0 mV, generating high instability of the AMP-NP. In this way, the effect
of the zeta potential on the NP size and encapsulation efficiency showed similar results to those
previously reported by other authors [33,34].
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Finally, at the rate of 16 µg/mg of PLGA, although it was also the rate with the lowest encapsulation
efficiency (40.50% G17NP and 50.85% G19NP), it is possible that at this point, the transport system had
become saturated, causing an excess of free peptide.

2.4. In Vitro Release of Antimicrobial Peptides from PLGA-NP

A fresh batch of nanoparticles was synthesized using the best peptide/polymer ratio (8 µg AMP/mg
PLGA) for the in vitro peptide releasing profile. More than 44.0 ± 1.1% of G17 and 45.0 ± 1.1% of G19
were released in the first 60 min from these nanoparticles. Subsequently, a controlled release of these
peptides was observed up to 2880 min to release most of the content of the nanoparticle (Figure 4). It is
possible that a fraction of the total peptide was embedded on the nanoparticle surface, being rapidly
dissociated, while the residual peptide remains inside of the nanoparticle and it is slowly released once
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PLGA is hydrolyzed. This releasing profile was very similar to that obtained by other authors using
different active principles encapsulated [18,32,35].
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Figure 4. In vitro release of G17NP (N) and G19NP (•). Release profile of polymeric nanoparticles
under the same incubation conditions, 37 ◦C, pH 7.4 and 50 rpm.

2.5. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal
Concentration (MBC)

Antimicrobial activity assays were performed using nanoparticles of 8 µg AMP/mg PLGA ratio,
which presented the highest peptide loading and encapsulation efficiency (Table 2). The growth of
E. coli O157:H7 and MRSA were evaluated in the presence of free AMPs (G17 and G19), encapsulated
AMPs (G17NP and G19NP) and empty nanoparticles (NP) in the range of 0.2 to 100 µM of AMP.
Both antimicrobial peptides G17 and G19, showed a very similar growth inhibition activity against
E. coli O157:H7 and MRSA, with MIC50 of 12.5 and 1.5 µM, respectively. On the other hand, peptide
nanoencapsulation in PLGA decreased the MIC50 up to four times (3.13 µM) for G17NP and G19NP
against E. coli O157:H7, while against MRSA, the MIC50 of the G17NP and G19NP decreased 7 and 2
times, respectively (Table 3). At low peptide concentration, peptide-nanoparticles presented a higher
antimicrobial activity than that of the free peptides against both strains; however, the increase in the
inhibition along the peptide concentration, in both tested strains, was higher for free peptides than for
peptide-nanoparticles. This effect was more remarkable when G17NP was tested against MRSA, which,
at 0.2 µM of peptide-NP, was inhibited by around 30% of bacterial growth, while at 100 µM, it obtained
an inhibition of <70%. The results of MIC90 and MBC also showed a lower increase in the activity of
the encapsulated peptide compared to the free peptide activity. Moreover, it was found that G17 and
G17NP presented a higher antibacterial activity against E. coli and G19 and G19NP showed a higher
activity against MRSA. It is possible that the higher antibacterial activity of AMP-NPs compared to
AMPs is related to the increase in the focal concentration of the peptide on the bacterial membrane [18].
On the other hand, the lower activity at higher peptide concentrations may be due to the release rate
of the AMP from the nanoparticle, since the hydrolysis process of the PLGA can take several hours
(Figure 4). It was found that empty nanoparticles (NPs) had no effect on the cell viability of E. coli
O157:H7 and MRSA (Figure 5).
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Table 3. Antimicrobial activity of free and encapsulated G17 and G19.

Microorganism E. coli O157:H7 MRSA

Compound MIC50 (µM) MIC90 (µM) MBC (µM) MIC50 (µM) MIC90 (µM) MBC (µM)

G17 12.5 20 70 1.5 12.5 100
G17NP 3.13 25 >100 0.2 12.5 25

G19 12.5 20 70 1.5 6.5 70
G19NP 3.13 20 100 0.7 20 100

NP >100 >100 >100 >100 >100 >100Antibiotics 2020, 9, x 9 of 15 

 
Figure 5. Antimicrobial activity of G19NP, G19 and NP against E. coli (A) and MRSA (B). (■) G17NP, 
(□) G17, (▲) Empty nanoparticle, (●) G19NP, (○) G19. Data are the mean ± SD (n = 3). 

Table 3. Antimicrobial activity of free and encapsulated G17 and G19. 

Microorganism E. coli O157:H7 MRSA 

Compound 
MIC50 

(µM) 
MIC90 

(µM) 
MBC 
(µM) 

MIC50 

(µM) 
MIC90 

(µM) 
MBC 
(µM) 

G17 12.5 20 70 1.5 12.5 100 
G17NP 3.13 25 >100 0.2 12.5 25 

G19 12.5 20 70 1.5 6.5 70 
G19NP 3.13 20 100 0.7 20 100 

NP >100 >100 >100 >100 >100 >100 

Figure 5. Antimicrobial activity of G19NP, G19 and NP against E. coli (A) and MRSA (B). (�) G17NP,
(�) G17, (N) Empty nanoparticle, (•) G19NP, (#) G19. Data are the mean ± SD (n = 3).



Antibiotics 2020, 9, 384 9 of 14

Peptide G17 presented higher antibacterial activity against E. coli O157:H7 than the activity of
peptide G19; on the contrary, peptide G19 exhibited higher antibacterial activity against MRSA than
peptide G17, with a MIC50 of G17 and G19 peptides against E. coli O157:H7 and MRSA comparable
to the most potent natural peptides such as LL-37, Plectasin or Nisin [36–38]. By encapsulating both
peptides in PLGA nanoparticles, the antibacterial activity was increased several times. These results
were similar to those reported for the encapsulation of other antibiotics to protect them, increasing
their antibacterial activity and decreasing their cytotoxicity [28,32].

Moreover, antimicrobial activity of the nanoencapsulated peptides AMP-NP (G17NP and G19NP)
against E. coli O157:H7 and MRSA allowed them to release both peptides in a prolonged way and inhibit
the bacterial growth at lower peptide concentrations for a long time. This may be due to the increase in
the local concentration of peptides on the bacterial surface, resulting in a higher antimicrobial activity
because of electrostatic interactions between cationic nanoparticles and anionic membranes of the
Gram-negative and Gram-positive bacteria [39,40].

3. Materials and Methods

3.1. Materials

Fmoc-L-amino acids and the Rink-amide 4MBHA resin were purchased from Chempep and Merck
Novabiochem, respectively. The reagents used for the encapsulation of the peptide such as PLGA
50:50 (average mol wt 30,000–60,000 Da), the surfactant agent, poloxamer 407 (POL) purified nonionic
were purchased from Sigma-Aldrich (USA). All reagents and solvents used for peptide synthesis and
nanoencapsulation were of analytical grade. Strains of MRSA and E. coli O157:H7 were acquired at the
microorganism collection of the Pontificia Universidad Javeriana from Colombia (CMPUJ certified
by World Federation of Culture Collection). The maintenance and the microbiological assays were
performed in Brain Heart Infusion (BHI) medium, Luria–Bertani (LB) and Müeller–Hinton (MH) media,
respectively. All culture media were acquired from MERCK.

3.2. Peptide Synthesis and Characterization

Peptides G17 and G19 were synthesized via multiple solid phase peptide synthesis, using
substituted rink amide 4MBHA resin (100–200 mesh; loading: 0.63 mmol g−1), and following the
procedure reported by Houghten [41,42]. The Fmoc group was removed by using piperidine (20%
v/v in DMF), and each amino acid was coupled using a 4-fold excess of Fmoc-protected amino acid
and HOBt/HBTU in the presence of DIPEA for 1 h. Once the synthesis of the amino acid sequence
was finished, the peptides were removed from the resin by treatment with tri-fluoroacetic acid
(TFA)/tri-isopropyl-silane (TIS)/ethanedithiol/H2O for 2 h and the peptides were precipitated with
cold diethyl ether [18,43]. The peptides were desalted by gel exclusion chromatography using G-10
columns (Amersham, USA), and purified by reverse phase-high performance liquid chromatography
(RP-HPLC) (Jasco Co, Tokyo, Japan) using a Zorbax Eclipse XDB C18 semipreparative column, with
water acetonitrile (ACN) gradients containing 5 mM HCl as previously reported by Wadhwani et
al. [44]. Finally, the molar mass and secondary structure of purified peptides were determined by
MALDI-TOF mass spectrometry and circular dichroism, respectively [45].

3.3. Preparation of Polymeric NPs

The AMP encapsulated nanoparticles were synthesized using the double emulsion solvent
diffusion method (DES-D) proposed by Cohen-Sela [35] with some modifications. A first emulsion
was prepared using a solution of peptide, dissolved in 0.05 M phosphate buffer (pH = 7.4), and
dispersing 10% PLGA (w/v) in ethyl acetate (EtAc) in a ratio of peptide solution to PLGA dispersion
of 2:1. This mixture was homogenized using an ultrasonic processor at 80% of maximum potency
(Cole-Parmer 130-Watt Ultrasonic Processors) configured in 2 pulses of 2 s separated by a rest interval
of 5 s. The resulting primary emulsion was added to a 0.05 M buffer phosphate (pH = 7.4) containing
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20% of Poloxamer 407 in a ratio of buffer/emulsion of 5:1. This mixture was homogenized again using
the previously mentioned protocol. Subsequently, EtAc was eliminated by evaporation under reduced
pressure using a rotary evaporator (Heidolph Hei-VAP) during 15 min at reduced pressure of 100 mbar.
Finally, the nanoparticles were purified using an Amicon Ultra-15 (30,000 MW) ultrafiltration tube by
centrifugation at 5000 g during 10 min at 4 ◦C (Thermo Scientific IEC CL31R multispeed) to eliminate
the free peptide and the residues from the synthesis.

3.4. Physicochemical Properties of Encapsulated Antimicrobial Peptides (AMP-Nps)

Hydrodynamic size and surface charge of the peptide nanoparticles were determined by dynamic
light scattering (DLS) and laser doppler electrophoresis (LDE), using a particle size analyzer based on
laser diffraction (Malvern Zetasizer 1000HS, Malvern Instruments, Malvern, UK). A set of experiments
was performed varying the amount of peptide from 0.125 µg up to 16 µg for each mg of PLGA in
order to determine the possible variations in hydrodynamic size, surface charge and encapsulation
efficiency. Results were presented as means of experiments performed in triplicate± standard deviation.
According to the previous results, the best nanoparticles were dried at room temperature and gold
coated in order to improve the image quality; these NPs were analyzed by scanning electron microscopy
(SEM) using a FEI Quanta 650 microscope to determine the nanoparticle morphology.

3.5. Determination of Peptide Loading and Encapsulation Efficiency of AMP-Nps

The peptide encapsulation efficiency in these nanoparticles was determined using both a direct
and indirect method. In the direct method, a volume of peptide loaded nanoparticles was dried on
a rotary evaporator (Heidolph Hei-VAP precision) for 15 min at 20 mbar. The pellet was dissolved
in dichloromethane (DCM) and stirred at room temperature to break the nanoparticles and release
the peptide. Subsequently, DCM was eliminated at reduced pressure and the released peptide was
re-suspended in 25 mM phosphate buffer, pH 7.0 [46]. In the indirect method, the amount of peptide
that was not encapsulated during the nanoparticle purification was quantified. The peptide collected
by both methods was quantified by reverse phase high efficiency liquid chromatography (RP-HPLC)
using a C18 column, equilibrated with two solvent systems: 30% (A) H2O type 1 with 0.01% TFA and
70% (B) ACN with 0.01% TFA in runs of 15 min using an ultraviolet detector (DAD) at a wavelength of
280 nm [47]. Alternatively, the peptide was quantified by spectrophotometry at λ = 280 nm, recorded
in a UV-VIS spectrophotometer (Shimadzu UV-1800) and compared with a calibration curve of the
peptide dissolved in 25 mM phosphate buffer, pH 7.0 [46]. The encapsulation efficiency (Equation (1))
was defined as the ratio between the amount of encapsulated peptide and the total amount of the
peptide loaded for the encapsulation [48].

Encapsulation Efficency =
Encapsulated peptide (µg)
Total loaded peptide (µg)

× 100 (1)

Moreover, in order to determine the maximum loading capacity of PLGA, AMP encapsulations
were performed using different µg peptide/mg PLGA ratios (ranging from 0.125 to 16 µg/mg),
determining encapsulated peptide as described previously. Peptide loading was calculated using as
the ratio of amount encapsulated antimicrobial peptide and PLGA polymer (Equation (2)). All the
tests were carried out by triplicate (n = 3).

Peptide loading =
Encapsulated peptide (µg)

PLGA total (mg)
(2)

3.6. In Vitro Release of Peptide from Nps

Ten Eppendorf tubes with 1 mL of nanoparticles synthesized with a ratio of 8 µg AMP per mg
PLGA, were dispersed in 25 mM buffer phosphate, pH 7.0 and Eppendorf test tubes, these tubes
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were incubated at 37 ◦C and shaken at 80 rpm in an orbital shaker (Thermo Scientific MaxQ 4000).
At different times, the peptide released in the Eppendorf was recovered by centrifugation using an
Amicon of 30,000 MW ultrafilter separated by RP-HPLC and quantified as described above.

3.7. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal
Concentration (MBC)

The antimicrobial activity of free and encapsulated peptide was evaluated by the broth micro
dilution method described in previous works [18,49]. Briefly, a pre-inoculum of E. coli O157:H7 in
LB and MRSA in MH were grown at 37 ◦C for 12 h at 200 rpm; then, the culture of each strain was
set at 0.5 in a McFarland scale (108 CFU ml−1); 100 µL aliquots of these cell suspensions were mixed
with 100 µL of AMP-NPs or empty NP solutions at different concentrations in a 96 well microplate
and incubated at 37 ◦C in an orbital shaker (200 rpm for 8 h). The bacterial growth kinetics of these
microbial cultures was performed by measuring changes of absorbance at 595 nm over time in an Elisa
reader for these cultures (Bio-Rad, iMark). The controls were: (1) culture media, (2) culture media
plus bacteria, (3) culture media, bacteria and ofloxacin and (4) culture media, bacteria and empty NPs.
MIC50 was defined as the lowest concentration of AMP-NPs inhibiting 50% of the bacterial growth
of these bacterial strains. After incubation for 8 h, 100 µL of these bacterial cultures were poured in
900 µL of BHI, incubated at 37 ◦C for 24 h; then, 10 µL of these cultures were seeded over BHI-agar
petri dishes, incubated for 1 day at 37 ◦C and the appearance of colonies were determined. The MBC
was the lowest nanoparticle concentration producing >99.9% reduction of colony-forming units (CFU).

3.8. Statistical Analysis

Normalized data were expressed as the mean ± SEM and analyzed using the Statistica software
(StatSoft Inc., Tulsa, OK, USA). The analysis of variance (one-way ANOVA) and Student’s t-test
comparisons were used to assess statistical significance at p < 0.05.

4. Conclusions

In this work, it was possible to design a new peptide (G19) that demonstrated strong antibacterial
activity against E. coli O157:H7 and MRSA (values of MIC 50 in ranges of 12.5 and 1.5 µM, respectively).
Peptide G19 presented a higher antimicrobial activity against MRSA than the previously published
G17. This makes the two peptides more powerful than natural peptides such as LL-37, plectasin,
or nisin.

There are multiple challenges regarding the design and incorporation of antimicrobial peptides
into nanoparticulate systems. This work explored a new encapsulation methodology for both peptides
that differs from the one evaluated for G17 in Cruz et al. This new methodology allows us to improve
the loading capacity and the antimicrobial activity (MIC50) of the peptides encapsulated by 2–4 times.
The improvement in the antimicrobial activity must be related to the increase in the local peptide
concentration at the bacterial surface.

Finally, the new G19 antimicrobial peptide has great antimicrobial potential, which can be
improved through nanoencapsulation strategies, with an efficient and gradual release of the active
compound. The peptides evaluated here make good candidates for further in vivo studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6382/9/7/384/s1,
Figure S1: MALDI-ToF mass spectra of G17 (A) and G19 (B) the samples were prepared using a matrix of
α-cyano-4-hydroxycinnamic acid (CHCA), the peptide was deposited on the target by the double layer method,
that is, a saturated matrix base, followed by the sample and finally a second matrix layer, Figure S2: Circular
dichroism spectra of G17 (A) and G19 (B) under simulated membrane conditions in 30% (v/v) trifluoroethyl alcohol
(TFE) solution.
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