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Abstract: Essential oils (EOs) and honeybee products (e.g., honey and propolis) are natural mixtures
of different volatile compounds that are frequently used in traditional medicine and for pathogen
eradication. The aim of this study was to evaluate the antibacterial properties of tea tree (Melaleuca
alternifolia) EO (TTEO), Rosmarinus officinalis EO (ROEO), manuka-based gel, and propolis against
23 strains of Staphylococcus pseudintermedius (SP) isolated from canine pyoderma. Antimicrobial
resistance screening was assessed using a panel of nine antimicrobial agents coupled with a PCR
approach. An aromatogram was done for both EOs, using the disk diffusion method. The minimum
inhibitory concentration (MIC) was determined for all the compounds. Among the 23 SP strains,
14 (60.9%) were multidrug-resistant (MDR), 11 strains (47.8%) were methicillin-resistant (MRSP),
and 9 (39.1%) were non-MDR. The mean diameter of the inhibition zone for Melaleuca and Rosmarinus
were 24.5 ± 8.8 mm and 15.2 ± 8.9 mm, respectively, resulting as statistically different (p = 0.0006).
MIC values of TTEO and ROEO were similar (7.6 ± 3.2% and 8.9 ± 2.1%, respectively) and no
statistical significances were found. Honeybee products showed lower MIC compared to those of EOs,
0.22 ± 0.1% for Manuka and 0.8 ± 0.5% for propolis. These findings reveal a significant antibacterial
effect for all the tested products.
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1. Introduction

Staphylococcus pseudintermedius (SP) is a Gram-positive bacterium that can act both as a skin
commensal or a pathogen and is nowadays considered one of the main causative agents of canine
pyoderma [1,2]. It is also able to cause ear, wound, and post-surgical infections in domestic animals,
particularly in dogs [3–5]. From the first documented identification of this pathogen [6], SP was
considered to be exclusive to animals until [7] described the first case of human infection. As it
belongs to the Staphylococcus genus, SP can easily exchange genomic material [8,9], and in this
context, the spread of antibiotic resistance genes (ARG) is a huge challenge for both human and
animal health [10–13]. The evolution of methicillin-resistant SP strains (MRSP, mecA-positive) rapidly
emerged as a significant health problem in veterinary medicine because of the molecular mechanism
responsible for β lactam-resistance (SCCmec element) that is transferable between different species
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of staphylococci [14–16]. Furthermore, MRSP strains are often resistant to more than three classes of
antibiotics (multidrug-resistant (MDR)). This antibiotic resistance applies to all classes of antimicrobials,
and is mainly mediated by resistance genes carried by mobile genetic elements (MGE) [13,17].
Some resistances (e.g., to fluoroquinolone) are linked to single nucleotide polymorphism (SNP) [18].
Nowadays, the zoonotic potential of SP is under constant investigation, and different authors have
studied its virulence factors, including its ability to form biofilms [3,13,19].

For centuries, humans have used natural products to treat common diseases, as a natural
medication, or as a supplement in diets [20–23]. Essential oils [EOs) represent the principal components
of aromatherapy, and up to 17,000 different species of plants from 60 different families (e.g., Lamiaceae,
Rutaceae, Myrtaceae, Zingiberaceae, and Asteraceae) produce them [24,25]. EOs are defined as volatile
mixtures of organic compounds derived from steam distillation of plants (flowers, seeds, leaves,
and roots) [26–29]. The antimicrobial properties of EOs depend on terpenes, terpenoids, and aromatic
and aliphatic groups, which are the main constituents of oils after the process of distillation.

Different studies investigated the antimicrobial properties of EOs and found that Gram-positive
bacteria are more susceptible than Gram-negative bacteria [25]. Tea tree EO (TTEO) is derived from
the distillation of leaves and twigs of Melaleuca alternifolia, which contains the following different
volatile compounds: terpine-4-ol (≥30%), teripene (about 20%), α-terpinene (about 8%), ρ-cymene
(about 8%), α-pinene (about 3%), terpinolene (about 3%), and 1,8-cineol (≤15%) [30]. In terms
of medical and aromatic value, rosemary (Rosmarinus officinalis L.) is of considerable importance.
Major volatile components of rosemary essential oil (ROEO) include alpha-pinene (24%), camphen (9%),
camphor (11%), verbenon (15%), p-cymene (8%), and 3-octanone (6%) [24].

Honey is a natural product derived from honey bees, with high nutritional values for human
health, in particular antioxidant, bacteriostatic, anti-inflammatory, and antimicrobial properties, as well
as wound and sunburn healing effects [28]. Manuka honey is a monofloral honey (Manuka tree),
with unique properties, mainly antimicrobial [31]. Its antimicrobial properties regard the ability to
inhibit bacterial growth of both Gram-positive and Gram-negative bacteria, including Staphylococcus
aureus, Streptococcus pyogenes, Pseudomonas aeruginosa, and Escherichia coli, making Manuka honey a
broad-spectrum agent [32,33]. Manuka honey is classified using a system known as the Unique Manuka
Factor (UMF), which indicates the equivalent concentration of phenol (%, w/v) needed to obtain the
same antibacterial activity as honey [31]. The UMF is directly proportional to the honey’s antibacterial
properties; different researchers have found that bacteriostatic ability shown by different grades of
manuka honey is evident at concentrations of 10% and 20% [34,35]. Propolis (also known as bee glue),
is a sticky, resinous substance produced by honey bees from different plants [36]. This product consists
of 45–55% plant resin, 25–35% wax, 5–10% essential and aromatic oils, 5% pollen, and 5% of other
natural products [37].

As a primary outcome, this study aimed to evaluate the antibacterial effects of the following
natural products: tea tree and rosemary essential oils, manuka honey-gel, and propolis against strains of
Staphylococcus pseudintermedius isolated from canine pyoderma. Secondary outcomes are the evaluation
of the antibiotic resistance profile and virulence potential to better understand the possible zoonotic
potential of the isolates.

2. Results

2.1. Antibacterial Activity of Natural Products

2.1.1. Aromatogram

The antibacterial abilities of EOs used are summarized in Figure 1. All datasets had a Gaussian
distribution as resulted from four different tests: Anderson–Darling test, D’Agostino and Pearson
test, Shapiro–Wilk test, and Kolmogorov–Smirnov test. Inhibition diameters of TTEO (24.5 ± 8.8 mm)
resulted in statistical significance (p = 0.0006) from those of ROEO (15.2± 8.9 mm) (Figure 1A). The same
statistical trend was maintained between MDR (N = 14) and non-MDR (N = 9) strains (Figure 1B).
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In detail, the statistical significances between TTEO and ROEO in the MDR group and non-MDR group
were p = 0.035 and p = 0.0056, respectively. One MDR strain did not show a measurable diameter for
each of the EOs; the same finding was observed for one non-MDR strain that was considered resistant
to rosemary oil.

Antibiotics 2020, 9, x 3 of 13 

 

same statistical trend was maintained between MDR (N = 14) and non-MDR (N = 9) strains (Figure 

1B). In detail, the statistical significances between TTEO and ROEO in the MDR group and non-MDR 

group were p = 0.035 and p = 0.0056, respectively. One MDR strain did not show a measurable 

diameter for each of the EOs; the same finding was observed for one non-MDR strain that was 

considered resistant to rosemary oil. 

 

Figure 1. Aromatogram of tea tree and rosemary essential oils. Data are expressed using box and 

whisker plot, min to max values are presented by vertical lines, while median and mean are within 

the plot as horizontal line and “+”, respectively. An unpaired t-test was used to determine (A) 

statistical significances among the 23 Staphylococcus pseudintermedius (SP) strains; (B) stratification of 

the results over multidrug-resistant (MDR) (N = 14) and non-MDR (N = 9) strains. (* p-value between 

0.05 and 0.01; ** p-value< 0.01, *** p-value< 0.001). 

2.1.2. MIC of Natural Products 

The minimum inhibitory concentrations of the EOs (%; v/v), manuka-based gel, and propolis are 

shown in Figure 2. Each of the datasets resulted in non-normal distributions, and a non-parametric 

test (Mann–Whitney test) was used to check statistical significances. Statistical analysis for EOs did 

not find any difference between all the strains (Figure 2A). TTEO had a mean minimum inhibitory 

concentration (MIC) value of 7.6 ± 3.2%, while ROEO had a value of 8.9 ± 2.1%. Furthermore, the same 

statistical trend was found among MDR and non-MDR strains (Figure 2B). 

 

Figure 1. Aromatogram of tea tree and rosemary essential oils. Data are expressed using box and
whisker plot, min to max values are presented by vertical lines, while median and mean are within the
plot as horizontal line and “+”, respectively. An unpaired t-test was used to determine (A) statistical
significances among the 23 Staphylococcus pseudintermedius (SP) strains; (B) stratification of the results
over multidrug-resistant (MDR) (N = 14) and non-MDR (N = 9) strains. (* p-value between 0.05 and
0.01; ** p-value < 0.01, *** p-value < 0.001).

2.1.2. MIC of Natural Products

The minimum inhibitory concentrations of the EOs (%; v/v), manuka-based gel, and propolis are
shown in Figure 2. Each of the datasets resulted in non-normal distributions, and a non-parametric
test (Mann–Whitney test) was used to check statistical significances. Statistical analysis for EOs did
not find any difference between all the strains (Figure 2A). TTEO had a mean minimum inhibitory
concentration (MIC) value of 7.6 ± 3.2%, while ROEO had a value of 8.9 ± 2.1%. Furthermore, the same
statistical trend was found among MDR and non-MDR strains (Figure 2B).
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are represented by horizontal and “+”, respectively; MIC are expressed as percentage volume per
volume. t-test and one-way ANOVA followed by multiple comparison found no statistical significance
between the two essential oils (EOs) (A) and among MDR and non-MDR strains (B). However, the
same statistical tests found significative differences for honeybee products with lower MIC compared
to those of EOs and a greater antibacterial ability. In particular, manuka-based gel (C) was statistically
different compared to propolis even among MDR strains (D). (*** p-value < 0.001).

Manuka-based gel (C) showed lower MIC (v/v) values (0.22 ± 0.1%) compared to those of propolis
(0.8 ± 0.5%), resulting in statistical significance (p < 0.0001). Among MDR strains (D), manuka was
statistically different from propolis (p-value < 0.0001).

Figure 3 shows the logarithmic transformation of MIC values to allow better visualization of the
results. Multiple comparisons with Kruskal–Wallis test were performed.
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Figure 3. One-way ANOVA and multiple comparison test between MIC for different natural products.
The box and whisker plot refers to the logarithmic transformation of raw data to improve the correlation
of data with different magnitude. Data are presented as min to max, the horizontal line (within each
plot) refers to median, while “+” indicates mean. (*** p-value < 0.001).

Each of the EOs were statistically different from both manuka and propolis (p-value < 0.0001),
displaying higher MIC values. Moreover, manuka-based gel was the natural product with the lowest
MIC, resulting in a statistical significance compared to propolis (p-value < 0.0001).

2.2. Resistance to Antimicrobial Agents

Twelve (52.2%) of the isolates were resistant to amoxicillin and amoxicillin + clavulanic acid,
11 (47.8%) to clindamycin, 14 (60.9%) to cefovecin, 8 (34.8%) to tetracyclines, 13 (56.5%) to enrofloxacin,
and 10 (43.5%) to marbofloxacin.

Among the 23 SP strains, the majority (14/23, 60.9%) were resistant to more than 3 pharmacological
categories and were classified as MDR. In particular, 11/14 (78.6%) were resistant to oxacillin and
harbored the mecA gene [coding the penicillin binding protein 2a] (MRSP strains); the remaining 3/14
(21.4%) were considered as methicillin-susceptible SP (MSSP). Nine strains out of 23 (39.1%) were
susceptible to antibiotics (not MDR); 6/9 (66.7%) to all the molecules, whereas 3/9 (33.3%) showed a
multifaceted susceptibility pattern. The amplification of ARG confirmed such profiles (Table 1).
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Table 1. Phenotypic and genotypic features of SP isolates.

No. of
Isolates Antimicrobial Resistance Profile Resistance Genes Detected Enterotoxin

Genes Detected a
Other Toxin

Genes Detected a
Biofilm Genes

Detected a MLST a SCCmec Type a

6 Susceptible - se-int; sec2 siet icaA; icaD ST 44 -
5 OX-AMC-AML-CL-ENR-MAR mecA; blaZ; tetM;aacA-aphD se-int; sec siet; lukS/F-I icaA2; icaD5 ST 1062; ST 713 IV1; II-III4

4 OX-AMC-AML-CL-CVN-TE-ENR-MAR mecA; blaZ; tetM;tetK; aacA-aphD se-int3; sec siet; lukS/F-I3 icaA; icaD ST 1062; ST 712 IV1; II-III3

2 TE tetM se-int; sec1 siet icaA; icaD ST 108 -
2 TE-ENR-MAR-CVN tetK sec1 siet icaA1; icaD ST 127; ST 100 -
1 CVN blaZ se-int siet icaA; icaD ST 28 -
1 OX-AMC-AML-CL-CVN-TE-ENR mecA; blaZ; tetM sec siet; lukS/F-I icaA; icaD ST 71 -
1 AMC-AML-CVN-ENR blaZ se-int siet icaD ST 71 IV
1 OX-AMC-AML-CVN- TE-ENR-MAR mecA; blaZ; tetM siet icaA; icaD ST 26 IV

For antibiotic abbreviations, refer to Section 5.4.1. a Superscript indicates the number of strains with a specific virulence gene or genetic characteristic. The lack of this indication means that
all the strains have this particular finding.
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2.3. Genotyping

The genetic characteristics of the 23 SP strains, together with other information (antibiotic resistance
profile and dissemination of virulence genes), are reported in Table 1. The MultiLocus Sequence Type
(MLST) showed eight different sequence types (STs): ST71, ST106, ST44, ST100, ST28, ST127, ST108,
and ST26. The most frequently found ST was ST71 in 7/23 (30.4%) strains, followed by ST 106 in 4/23
(17.4%), and ST44 in 6/23 (26.1%). The MDR strains belong to STs 71, 106, and 26, while the strains
susceptible to all the antibiotic molecules were classified as ST44. The remaining isolates included one
isolate belonging to ST100, one to ST28, two to ST108, one to ST127, and one to ST26.

Among the 23 strains, we applied the SCCmec typing to 11 isolates (47.8%) because of
methicillin-resistant strains. Two SCCmec types were found: II-III and IV. The most prevalent
was SCCmec type II-III, identified in 7/11 (63.6%) of the strains, while the remaining 4/11 (36.4%) were
classified as SCCmec type IV.

2.4. Virulence Factors

Summary of PCR-analysis of the 23 SP strains is shown in Table 1. Bicomponent leukocidin
(lukS/F-I) was found in 10/23 (43.5%) strains; all of them were MDR. Furthermore, 14/23 (60.9%) strains
were seccanine-positive and 18/23 (78.3%) were se-int-positive, and species-specific exfoliative toxin (siet)
was amplified in all the isolates. Biofilm-related gene icaA [intercellular adhesion gene A] was found
in 16/23 (69.5%) isolates, while icaD [intercellular adhesion gene D] was found in all the strains. Table 2
reports the detailed dissemination of predicted virulence factors among MDR and non-MDR strains.

Table 2. Dissemination of virulence genes among MDR and non-MDR strains.

Virulence Genes MDR (N = 14) Non-MDR (N = 9) p

lukS/F-I 10/14; (71.4%) 0/9; (0%) -
seccanine 11/14; (78.6%) 3/9; (33.3%) 0.03

se-int 9/14; (64.3%) 9/9; (100%) 0.0427
siet 14/14; (100%) 9/9; (100%) -
icaA 7/14; (42.8%) 9/9; (100%) 0.011
icaD 14/14; (100%) 9/9; (100%) -

Yates’s chi-squared test was used to compare proportion of virulence determinants between MDR (N = 14) and
non-MDR (N = 9) strains.

3. Discussion

Antimicrobial resistance remains one of the most crucial challenges to be solved in both human
and veterinary medicine. The use of natural products to treat common infectious diseases is one of the
oldest practices in human history [25,29]. This study investigated the antimicrobial properties of two
EOs and two honeybee products against S. pseudintermedius strains isolated from canine pyoderma.
Clonal relatedness confirmed the findings of previous studies in which MRSP ST71 is considered the
most prevalent in Europe, even though a novel MRSP clone (ST106) is rapidly spreading in North
Europe (Norway) [8,13,38–40]. The identification of ST 44 as one of the main STs susceptible to the
majority of antibiotic molecules, with a prevalence of 26.1%, was in accordance with the study of
Gharsa (2013); this author analyzed 55 SP strains—all of them were MSSP, and 27% were susceptible to
all the antibiotics tested [40]. MRSP represents 47.8% of our strains; the pattern of antibiotic resistance
was similar to those reported by [17], with multiple resistances against β-lactams, tetracyclines,
and fluoroquinolones. Resistance to methicillin was confirmed by mecA amplification, and SCCmec
typing showed two main SCCmec types, both found in the literature: SCCmec II-III and IV. The SP
strains that harbor these two chromosomal cassettes are thought to be more susceptible to zoonotic
transmission, as found in the study by [11].

Essential oils and honeybee products are widely used in veterinary medicine as arthropod
repellents, for topical administration (e.g., shampoo), and as antimicrobials and antifungals [41–44].



Antibiotics 2020, 9, 344 7 of 14

It was already known that the antimicrobial abilities of EOs are strictly dependent on the environmental
characteristics that affect plant development [25,29,45]. On the basis of the results from the aromatogram,
tea tree EO was able to generate larger inhibition zones compared to those of rosemary. One explanation
for this result could be the unique and peculiar chemical composition of tea tree oil that gives it its
broad-spectrum antibacterial abilities [25,30,46,47]. Tea tree EO showed in vitro antibacterial properties
against Porphyromonas gingivalis, Porphyromonas endodontalis, S. aureus, E. coli, Streptococcus mutans,
and Listeria monocytogenes [25,30,46,47]. The ability to inhibit bacterial growth was studied by the
determination of MICs for both EOs. However, no statistical significances were found among the two
oils. In the literature, the scientific evidence about the topical use of tea tree against SP is poor, but
rosemary is currently used. Our results seem to be partially concordant with the available literature [48].
Rosemary essential oil showed antimicrobial properties against L. monocytogenes, E. coli, and Salmonella
enterica Serovar Enteritidis [45,49]. Among the two honeybee products tested (manuka-based gel
and propolis), our results demonstrated a high rate of concordance with the literature [30,34,50].
Manuka-based gel was found to have the lowest MIC, making this product one of the most promising
natural antimicrobials. The mean MIC value was 0.22 ± 0.1%, lower than those reported by [50],
who used essential oil of Leptospermum scoparium (manuka) against MRSP and MSSP and found
MIC values of 2% and 8%, respectively. In another study on S. aureus, the authors of [34] found an
evident inhibitory effect of honey at concentrations of 10% and 20%. It has to be noted that our tested
product was not pure manuka honey, but a commercial preparation for topical use to promote wound
healing. The mean MIC value for propolis was slightly higher than that of manuka, at 0.8 ± 0.5%.
In the literature, it is reported that propolis shows antibacterial effects against both Gram-positive and
Gram-negative bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), but also that it is
effective against fungi and yeast [51–53].

Independently of their genetic background or resistance profile, we detected a variety of virulence
factors among our SP collection. One of the most interesting findings is that MDR strains did not
necessarily harbor more virulence factors. Specific enterotoxin se-int and biofilm-producing gene icaD
were found in all non-MDR strains, with significantly less prevalence in the MDR group. These results,
taken together, should suggest paying attention, not only to antibiotic-resistance but also to the
virulence potential of the strains that could easily become zoonotic agents.

4. Conclusions

Essential oils and honeybee-derived products should be considered a potential alternative to
conventional antibiotics; in some cases, they represent the raw materials for antibiotics production.
This in vitro study demonstrated the strong antibacterial properties of these products against
S. pseudintermedius. However, more precise in vivo studies should be designed to fully characterize
their properties and understand the potentially dangerous effect that some essential oils could have
after systemic administration.

5. Materials and Methods

5.1. Bacterial Isolation and Idenfication

SP strains from 23 different dogs, with clinical symptoms referable to canine pyoderma,
were collected from clinical samples (cutaneous swabs) submitted for routine microbiological
diagnosis to the Microbiology and Mycology laboratory of the Department of Veterinary Medicine,
University of Milan. After collection, swabs underwent a standardized laboratory workflow for
bacterial identification. The samples were plated on Tryptic Soy Agar (TSA; ThermoFisher, Milan, Italy)
+ 5% of defibrinated sheep blood (ThermoFisher, Milan, Italy) and were incubated aerobically at 37 ◦C
for 24 h. Suspected staphylococcal colonies were identified by conventional methods (Gram staining,
catalase test), and isolated colonies were subcultured on Mannitol Salt Agar (MSA; ThermoFisher,
Milan, Italy) and incubated aerobically at 37 ◦C for 24 h. The phenotypic identification of SP was
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also confirmed at a genetic level by restriction fragment length polymorphism analysis (RFLP-PCR),
as described previously [54], and by the amplification of the thermonuclease gene (nuc) using specific
primer pairs, as found in the literature [55]. Pure cultures were stored in 25% glycerol (Carlo Erba,
Milan, Italy) at −20 ◦C.

5.2. DNA Extraction

Pure cultures in 25% glycerol were thawed at room temperature and grown in brain heart infusion
agar (BHI; Microbiol, Cagliari, Italy) at 37 ◦C for 24 h. Three to four isolated colonies, from each culture,
were removed, and DNA was extracted using the boiling method described in the literature [56].
The purity and concentration of nucleic acid was checked using Qubit (ThermoFisher, Milan, Italy).

5.3. Molecular Typing and Clonal Relatedness

Two standard molecular typing techniques were used to analyze the genetic correlation of SP strains:
MultiLocus Sequence Typing (MLST) and SCCmec Typing. MLST was performed using the 7-gene
MLST workflow found in the Staphylococcus pseudintermedius MLST database (https://pubmlst.org/

spseudintermedius/). The amplification of 7 specific genes (ack [acetate kinase], cpn60 [chaperonin 60],
fdh [formate dehydrogenase], pta [phosphoacetyltransferase,], purA [adenylosuccinate synthetase],
sar [sodium sulfate symporter], and tuf [elongation factor]) was carried out as described by [57].
Sequences were aligned using the National Center for Biotechnology (NCBI) nucleotide database
to obtain the number of alleles. Sequence types (STs) were attributed as found in the literature [58],
and using the online tool (https://pubmlst.org/spseudintermedius/).

A specific set of multiplex PCRs was used to assign SCCmec type I-IV among MRSP strains only;
the amplification conditions, as well as the primer pairs used, were the same as those reported in the
literature [59,60].

5.4. Antimicrobial Susceptibility Testing

5.4.1. Kirby-Bauer Disk Diffusion and Detection of Antimicrobial Resistance Genes (ARG)

Susceptibility to 9 antimicrobial agents was performed using the Kirby-Bauer disk diffusion
method, according to the Clinical and Laboratory Standard Institute guidelines [61]. Antimicrobials
tested were amoxicillin + clavulanic acid (AMC; 20 + 10 µg), amoxicillin (AML; 30 µg), oxacillin (OX;
1 µg), cephalexin (CL; 30 µg), cefovecin (CVN; 30 µg), clindamycin (DA; 10 µg), enrofloxacin (ENR;
5 µg), marbofloxacin (MAR; 5 µg), and tetracycline (TE; 30 µg).

The presence of the following ARGs (mecA [methicillin resistance gene A], blaZ [beta lactamase
resistance gene Z], tetM [tetracycline resistance gene M], tetK [tetraycline resistance gene K],
aacA-aphD [aminoglycosides resistance]) was studied using two multiplex PCRs with primer pairs and
amplification conditions found in the literature [62,63].

5.5. Aromatogram of Tea Tree and Rosmarinus Officinalis

Essential oils of tea tree (TTEO) and Rosmarinus officinalis (ROEO) were purchased in a local
pharmacy in Milan. To assess the antimicrobial activity of these EOs, we used a modification of
the classical disk diffusion method (aromatogram), following a protocol by [64]. Five microliters
of each essential oil (TTEO and ROEO) were impregnated into sterile paper disks (6 mm diameter,
ThermoFisher, Milan, Italy) and placed onto Mueller–Hinton agar plates (ThermoFisher, Milan, Italy)
previously inoculated with 108 (Colony Forming Unit per milliliter) CFU/mL suspension of each SP
strain. The plates were then incubated aerobically at 37 ◦C for 24 h. After incubation, the antibacterial
activity was evaluated by measuring the diameter of inhibitory zones in millimeters and expressed
as mean ± SD. Four sterile paper disks were used for each EOs on the same agar plates, and two
independent plates for each bacterial strain were used to evaluate the effects of a single EO.

https://pubmlst.org/spseudintermedius/
https://pubmlst.org/spseudintermedius/
https://pubmlst.org/spseudintermedius/
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5.6. Minimum Inhibitory Concentration (MIC)

5.6.1. Tea Tree and Rosmarinus Officinalis

The minimum inhibitory concentration (MIC) for TTEO and ROEO was determined by following
the microdilution method according to the Clinical and Laboratory Standard Institute guidelines [61].
As found in the literature [48], a 1% solution of Tween 80 (Merck, Milan, Italy) in Mueller–Hinton broth
(ThermoFisher, Milan, Italy) was used to stabilize EOs; 100 µL was dispersed in the first column of a
96-well plate, and twofold serial dilutions (range from 10% to 0.019% v/v) were then created with a
multichannel pipette. Proper suspensions of SP strains (equivalent to 0.5 McFarland standard) were
prepared in sterile saline solution (0.9%) and, after dilution to 106 UFC/mL, were transferred to the
microdilution plate. The test was performed in duplicate for each strain on the same plate. After aerobic
incubation at 37 ◦C for 24 h, we found MIC to be the lowest concentration able to inhibit visible bacterial
growth. To facilitate this interpretation, we loaded 10 µL of 0.01% aseptic resazurin solution (viability
marker) in each well (one of the two replicates) and further incubated them aerobically at 37 ◦C for 2–4 h,
as done in the literature [65]. The identification of metabolically active bacteria was made, focusing on
the change in color of the viability marker, with purple-pink wells indicating viable bacteria, and blue
ones indicating metabolic stasis.

5.6.2. Manuka Honey-Based Gel and Propolis

Manuka Honey-Based Gel

A commercially available manuka honey-based gel (Medihoney, Comvita) was used to determine
the MIC value using the microdilution assay. In preliminary experiments (data not shown) focused on
the handling of this viscous product, we concluded that a pre-warming step at 56 ◦C was necessary to
avoid an incomplete dissolution of the manuka honey. A 40 mg/mL (1%, w/v) stock solution of manuka
honey gel was obtained by dissolving this product in sterile Mueller–Hinton broth (ThermoFisher,
Milan, Italy). After the preparation of bacterial suspensions and loading of the microtiter plate,
we found the final concentration of the tested product in the first well to be 10 mg/mL (1%), and from
the second until the tenth, we performed a 1:2-fold dilution (range from 1% to 0.0019%). The test was
performed in duplicate for each strain on the same plate to assess the viability assay further.

Propolis

A natural preparation of propolis in ethanol was purchased from a local pharmacy in Milan,
which was used to study the antibacterial properties of this honeybee product. The concentration
of ethanol was thought to be about 96%, on the basis of other food supplements that use ethanol as
a solvent. To rule out the possibility that the bactericidal effect of propolis was due to the ethanol
in which it was dissolved and not to the natural product itself, we performed a preliminary set of
experiments (data not shown) to determine the MIC for 96% ethanol. Similarly, as for the honey-based
gel, the propolis also underwent a preliminary pre-warming step at 56 ◦C immediately before use to
allow its complete solubilization. The MIC was calculated according to the Clinical and Laboratory
Standards Institute (CLSI) guidelines [42]. The final concentration of propolis in the first well was
about 25%, with a range from 25% to 0.048%. The test was performed in duplicate for each of the
strains on the same plate. Incubation was performed aerobically at 37 ◦C for 24 h. Due to the natural
brownish color of the product, which made the determination of the MIC difficult, we performed the
viability assay, as previously described.

5.7. Detection of Virulence Factors

All SP strains were tested by PCR for the presence of the enterotoxins (seccanine, se-int), exfoliative
toxin (siet), bicomponent leukocidin (lukS/F-I), and biofilm forming genes belonging to ica locus (icaA
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and icaD); primers pairs, as well as amplification conditions, were the same as those reported in the
literature [66–70].

5.8. Statistical Analysis

Statistical analysis and graphic representation were performed using GraphPad Prism (version 8.0.1
for Windows, GraphPad Software, San Diego, CA, USA, www.graphpad.com). Anderson–Darling,
D’Agostino and Pearson, Shapiro–Wilk, and Kolmogorov–Smirnov tests were used to assess the
normality of data. One-way ANOVA and multiple comparison tests of the data were performed to
verify statistical significances between essential oils and honeybee products.
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