1 Supplementary Figures and Tables

- 2 **Fig. S1**. Alignment of Genomic Islands (GIs) (marked by the region between green arrows) described in *A*.
- 3 baumannii LAC-4 [11] with those in A. baumannii AB030. Twelve different GIs have been described A.
- 4 baumannii LAC-4: GI1 (a), GI2 (b), GI3 (c), GI4 (d), GI5 (e), GI6 (f), GI7 (g), GI8 (h), GI9 (i), GI10 (j), GI11 (k),
- 5 and GI12 (l). Genes of interest are listed in red font, genes that are similar in both strains are listed in black
- 6 font, and genes that are found in only one of the two strains are listed in gray font.
- 7 Fig. S2. Insertion Sequence (IS regions) in AB030 and LAC-4 genomes as predicted by ISfinder. Presence of
- 8 the IS region is indicated by red and the absence by blue.
- 9 **Fig. S3.** Presence of *bla*OXA in *A. baumannii* AB030 and LAC-4 (a) and alignment of each of the three genes
- 10 with published sequences of *bla*OXA-65 and *bla*OXA-68 [39] (b).
- 11 **Fig. S4**. Presence of *bla*ADC in *A. baumannii* AB030 and LAC-4.
- 12 Fig. S5. Presence of aminoglycoside phosphotransferase (APH) encoding genes, *APH*(3")-Ib and *APH*(6)-
- 13 Id in *A. baumannii* AB030 and LAC-4.
- 14 Fig. S6. Catalase activity of AB030 and LAC-4, in comparison to ATCC 17978. Catalase activity toward
- 15 H₂O₂ in overnight cultures was determined using a Clark oxygen electrode connected to a Gilson oxygraph.
- 16 Values were normalized to the dry weight of bacteria. Results represent data from two independent
- 17 experiments. Statistical analysis was carried out using the two-way analysis of variance (ANOVA).

Fig. S1b

A. baumannii AB030 (4335793bp)/- strand (2248639 - 2242017) 7 links

Fig. S1c

A. baumannii AB030 (4335793bp)/- strand (1825717 - 1816608) 8 links 1.825M 1.824M 1.823M 1.822M 1.821M 1.819M 1.818M 1.817M 1.82M IX87_RS09330 IX87_RS09320 IX87_RS09350 IX87_RS09340 IX87_RS09345 IX87_RS09325 IX87_RS09335 IX87_RS09315 A. baumannii LAC_4 (3954354bp)/+ (940403 - 951920) reference 0.946M 0.947M 0.944M 0.948M 0.949M 0.95M 0.951M 0.941M 0.942M 0.943M 0.945M TnpB RR41_RS04545 RR41_RS04580 RR41_RS04590 ComEC-like RR41_RS04550 RR41_RS04585 ISAba25 IS66-family RR41_RS04595 RR41_RS19225 RR41_RS04575

A. baumannii AB030 (4335793bp)/- strand (1487833 - 1458277) 12 links 1.46M 1.48M 1.47M IX87_RS07510 IX87_RS07630 IX87_RS07590 X87_RS07495 IX87_RS07550 IX87_RS07525 IX87_RS07625 IX87_RS07575 IX87_RS07520 IX87_RS07470 IX87_RS07545 IX87_RS07500 IX87_RS07565 1X87 R507490 IX87_RS07620 IX87_RS07540 IX87_RS07515 IX87 RS07615 IX87_RS07535 IX87 R507560 IX87_RS07505 RS07485 ₩ IX87_RS07480 IX87_RS07610 IX87 R507555 IX87_RS07530 IX87_RS07605 IX87_RS07465 IX87_RS07600 IX87_RS07460 IX87_RS07595 IX87_RS07585 IX87_RS07580 IX87_RS07570 A. baumannii LAC_4 (3954354bp)/+ (1228291 - 1260201) reference 1.23M 1.26M 1.24M 1.25M RR41_RS05980 RR41_RS05955 RR41_RS05885 RR41_RS05930 R41_RS06000 RR41_R\$05845 RR41_RS05890 RR41_RS05960 RR41_RS05935 RR41_RS06005 RR41_RS05850 RR41_RS06045 Phage protein RR41_RS05855 RR41_RS05905 RR41 RS05940 RR41_RS06010 RR41_RS06050 RR41_RS05990 RR41_RS05970 RR41_RS06020 RR41_RS19260 RR41_RS05915 RR41_RS05945 RR41_RS05995 Phage protein RR41_RS06025 RR41_RS05950 **RR41** RS05860 Phage protein RR41_RS05865 RR41_RS05925 RR41 RS06030 RR41_RS05965 RR41_RS05870 RR41 RS06040 RR41_RS05875 RR41_RS05880 RR41 RS05895 RR41 RS05900 RR41_RS05910 6

Fig. S1e

Fig. S1i

A. baumannii AB030 (4335793bp)/+ strand (218967 - 231319) 7 links

Fig. S1j

Fig. S11

IS1001 IS1001 IS1006 IS1006 IS1006 IS1006 IS1008 IS1008 IS1236 IS12010 IS120010 IS1200 IS1200 IS1200 IS1200 IS1200 IS1200 IS1200 IS1200 IS1200	
	LAC-4
	AB030

				In LAC-4 genome				
Island no.	Island start	Island end	Length	Query coverage	E-value	Identity		
1	190685	202245	11560	38%	0	99.98%		
2	268005	281740	13735	57%	0	95.69%		
3*	324734	335547	10813	100%	0	99.59%		
4	362940	404411	41471	24%	0	99.20%		
5	476867	482761	5894	70%	0	98.84%		
6	765527	804448	38921	55%	0	96.33%		
7	833867	843701	9834	100%	0	97.59%		
8	1032352	1039273	6921	79%	0	99.13%		
9	1091422	1113975	22553	64%	0	94.74%		
10	1142438	1147839	5401	47%	0	98.28%		
11	1181466	1191022	9556	86%	0	98.34%		
12	1487849	1496718	8869	4%	2.00E-168	90.93%		
13	1546090	1563347	17257	41%	0	91.52%		
14	1926318	1973925	47607	61%	0	99.38%		
15	2049753	2059704	9951	12%	0	94.81%		
16	2202807	2211488	8681	33%	0	99.12%		
17*	2458526	2467319	8793	8%	0	99.87%		
18*	2538454	2578240	39786	53%	0	99.82%		
19	2658176	2665482	7306	37%	0	96.55%		
20	2959816	2973667	13851	0%	0	0.00%		
21	3536698	3579918	43220	66%	0	99.37%		
22	3661157	3698129	36972	0%	0	0.00%		
23	3855311	3859508	4197	0%	0	0.00%		
24	3904427	3951898	47471	17%	0	91.59%		
25	3987855	3995562	7707	15%	0	93.26%		
26	4062202	4067925	5723	0%	0	0.00%		
27	4305821	4328706	22885	53%	0	94.22%		

19 **Table S1.** Predicted Genomic Islands present in AB030 as identified by Islandviewer.

20 *identified as resistance islands

	Phage sequences in AB030												
								Phage +			In LAC-4	genome	
		Completeness			Total	Phage	Hypothetical	Hypothetical	Phage		Query		
Region	Length	(score)	Specific keyword	Position	proteins	proteins	protein	protein	species	GC	coverage	E-value	Identity
1	28.6Kb	incomplete(60)	capsid, head	685-29364	54	37	15	96.20%	6	39.35%	53%	0	93.17%
2	16Kb	incomplete(60)	transposase, plate	195334-211374	19	11	8	100%	6	34.70%	80%	0	99.96%
3	9Kb	incomplete(30)	tail, transposase	241417-250505	11	7	4	100%	5	39.72%	91%	0	97.94%
4	23.1Kb	incomplete(40)	plate, transposase, integrase	263065-286249	32	17	12	90.60%	14	37.84%	74%	0	97.29%
5	53.8Kb	intact(150)	integrase, lysin, tail, head, portal	341980-395833	51	32	19	100%	21	40.15%	28%	0	98.47%
6	6.4Kb	incomplete(60)	transposase, head	576125-582561	9	7	0	77.70%	4	38.90%	75%	0	97.66%
7	49.1Kb	questionable(84)	integrase, tail, capsid, head	908821-957987	72	61	10	98.60%	16	39.85%	56%	0	88.57%
8	61.8Kb	intact(150)	integrase, transposase, tail, capsid, head	1086365-1148174	77	56	19	97.40%	17	38.82%	60%	0	93.73%
9	38.1Kb	questionable(90)	tail, capsid, head, plate	1461384-1499530	43	26	16	97.60%	17	40.81%	62%	0	95.65%
10	50.1Kb	intact(106)	integrase, tail, capsid, head, transposase	1544078-1594217	73	62	10	98.60%	12	39.29%	46%	0	91.50%
11	23.3Kb	incomplete(50)	tail, capsid, head	2036334-2059704	35	24	11	100%	13	41.75%	45%	0	95.65%
12	27Kb	intact(100)	head, portal, tail	3672382-3699422	31	24	7	100%	15	40.72%	6%	0	78.91%
13	43.2Kb	intact(150)	transposase, portal, head, tail, plate	4187963-4231200	56	41	14	98.20%	25	38.27%	12%	0	97.82%
14	17.6Kb	incomplete(30)	tail	4318067-4335678	20	19	1	100%	3	40.83%	58%	0	94.29%

Table S2. Predictions for the presence of phage sequences in the genomes of AB030 and LAC-4.

24

				Phage sequen	ces in LA	C-4								
								Phage +	Phage +			In AB030 genome		
		Completeness			Total	Phage	Hypothetical	Hypothetical	Phage		Query			
Region	Length	(score)	Specific keyword	Position	protein	protein	protein	protein	species	GC	coverage	E-value	Identity	
1	10.3Kb	incomplete(50)	transposase, head	941541-951920	11	9	0	81.80%	7	40.44%	76%	0	99.28%	
2	31.2Kb	questionable(80)	head, capsid, tail	1226738-1258017	29	18	9	93.10%	13	40.63%	80%	0	95.65	
3	41.5Kb	intact(100)	transposase, integrase, head, capsid, tail	1569705-1611225	62	47	12	95.10%	12	38.64%	66%	0	93.17%	
4	22.1Kb	incomplete(50)	plate, transposase, integrase, lysin	1716956-1739082	12	9	3	100%	8	36.31%	85%	0	99.11%	
5	10Kb	incomplete(60)	integrase, transposase	1941409-1951435	11	6	1	63.60%	3	39.55%	8%	4.00E-68	82.88%	
6	29.8Kb	incomplete(20)	integrase	3028581-3058412	31	17	11	90.30%	12	35.66%	58%	0	95.64%	

- 27 **Table S3.** Antibiotic susceptibility (µg/mL) assay of AB030 and LAC-4. Different classes of antibiotics were
- tested against AB030 and LAC-4 via broth dilution method. MIC values indicating resistance according to
- 29 the CLSI guidelines are shown in bold.

	AMK	GEN	CHL	CRO	CIP	LVX	IPM	MEM	FEP	TGC
AB030	64	>32	1	>64	>16	16	>32	>32	>64	>16
LAC-4	32	16	1	≥256	16	≤2	≤2	4	16	≤0.25

30 AMK Amikacin; FEP Cefepime; CHL Chloramphenicol; CRO Ceftriaxone; CIP Ciprofloxacin; IPM

31 Imipenem; GEN Gentamicin; LVX Levofloxacin; MEM Meropenem; TGC Tigecycline

Category	Virulence factors	Related genes	LAC-4	AB030
Adherence	Outer membrane protein	ompA	RR41_RS03275	IX87_RS10825
		pgaD	RR41_RS06830	IX87_RS06615
	PNAG (Polysaccharide	pgaC	RR41_RS06825	IX87_RS06620
	poly-IN-	рдаВ	RR41_RS06820	IX87_RS06625
	acetyigiucosamine)	pgaA	RR41_RS06815	IX87_RS06630
		csuE	-	IX87_RS06890
		csuD	-	IX87_RS06895
D: ('1		csuC	-	IX87_RS06900
Biofilm	Csu pili	csuB	-	IX87_RS06905
formation		csuA	-	IX87_RS06910
		csuA/B	-	IX87_RS06915
	AdeFGH efflux	adeF	RR41_RS06070	IX87_RS07440
	pump/transport	adeG	RR41_RS06065	IX87_RS07445
	autoinducer	adeH	RR41_RS06060	IX87_RS07450
	Biofilm-associated protein	bap	-	IX87_RS22220*
	Phospholipase C	plc	DD41 DC07450	IX87_RS14485;
Enzyme			KK41_K507450	IX87_RS06060
	Phospholipase D	plcD	RR41_RS02620	IX87_RS11390
			RR41_RS18545;	IX87_RS14615;
			RR41_RS18560;	IX87_RS14605;
			RR41_RS18650;	IX87_RS14580;
			RR41_RS18550;	IX87_RS14590;
			RR41_RS18525;	IX87_RS14625;
			RR41_RS18540;	IX87_RS14610;
			RR41_RS18635;	IX87_RS14575;
Immune	Cansule	Undetermined	RR41_RS18565;	IX87_RS14520;
evasion	Cupsule	ondetermined	RR41_RS18645;	IX87_RS14620;
			RR41_RS18530;	IX87_RS14560;
			RR41_RS18640;	IX87_RS14570;
			RR41_RS18655;	IX87_RS14630;
			RR41_RS18570;	IX87_RS14555;
			RR41_RS18520;	IX87_RS14565;
			RR41_RS18625;	IX87_RS14545;
			RR41_RS18620;	IX87_RS14535;

Table S4. Presence of virulence genes in AB030 and LAC-4.

			RR41_RS18630;	IX87_RS14585;
			RR41_RS18575;	IX87_RS14530;
			RR41_RS18535;	IX87_RS14540;
			RR41_RS18610;	IX87_RS14550;
			RR41_RS18615	IX87_RS14525
		lpsB	RR41_RS16825	IX87_RS16395
		lpxL	RR41_RS16820	IX87_RS16400
		lpxB	RR41_RS12535	IX87_RS18825
	LPS	<i>lpxA</i>	RR41_RS08095	IX87_RS21220
		lpxD	RR41_RS08085	IX87_RS21230
		<i>lpxM</i>	RR41_RS04575	IX87_RS09335
		lpxC	RR41_RS00855	IX87_RS13380
		Undetermined	RR41_RS08485	IX87_RS00950
		Undetermined	RR41_RS08490	IX87_RS00945
		Undetermined	RR41_RS08495	IX87_RS00940
		Undetermined	RR41_RS08500	IX87_RS00935
	Heme utilization	Undetermined	RR41_RS08505	IX87_RS00930
		Undetermined	RR41_RS08510	IX87_RS00925
		Undetermined	RR41_RS08515	IX87_RS00920
		hemO	RR41_RS08520	IX87_RS00915
		Undetermined	RR41_RS08525	IX87_RS00910
		Undetermined	RR41_RS08530	IX87_RS00905
		basJ	RR41_RS05535	IX87_RS08395
		basI	RR41_RS05530	IX87_RS08400
Iron uptake		basH	RR41_RS05525	IX87_RS08405
		barB	RR41_RS05520	IX87_RS08410
		<i>barA</i>	RR41_RS05515	IX87_RS08415
		basG	RR41_RS05505	IX87_RS08425
		basF	RR41_RS05500	IX87_RS08430
	Acinetobactin	entE	RR41_RS05495	IX87_RS08435
		basD	RR41_RS05490	IX87_RS08440
		basC	RR41_RS05485	IX87_RS08445
		bauA	RR41_RS05480	IX87_RS08450
		bauB	RR41_RS05475	IX87_RS08455
		bauE	RR41_RS05470	IX87_RS08460
		bauC	RR41_RS05465	IX87_RS08465
		bauD	RR41 RS05460	IX87_RS08470

		basB	RR41_RS05455	IX87_RS08475
		basA	RR41_RS05450	IX87_RS08480
		bauF	RR41_RS05445	IX87_RS08485
		abaI	-	IX87_RS14815
	Quorum sensing	abaR	-	IX87_RS14825
Regulation	Two-component system	bfmR	RR41_RS15530	IX87_RS17690
		bfmS	RR41_RS15525	IX87_RS17695
Serum resistance	PbpG	pbpG	RR41_RS17785	IX87_RS15425
Stress adaptation	Catalase	katA	-	IX87_RS20175

*detected using BLASTn.