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Abstract: The aims of the present study were: (a) to determine the mechanism of action of taurolidine
against bacterial species associated with periodontal disease, and (b) to evaluate the potential
development of resistance against taurolidine as compared with minocycline. After visualizing
the mode of action of taurolidine by transmission electron micrographs, the interaction with
most important virulence factors (lipopolysaccharide (LPS), Porphyromonas gingivalis gingipains,
Aggregatibacter actinomycetemcomitans leukotoxin), was analyzed. Then, 14 clinical isolates from
subgingival biofilm samples were transferred on agar plates containing subinhibitory concentrations
of taurolidine or minocycline up to 50 passages. Before and after each 10 passages, minimal inhibitory
concentrations (MICs) were determined. Increasing MICs were screened for efflux mechanism.
Taurolidine inhibited in a concentration-dependent manner the activities of LPS and of the
arginine-specific gingipains; however, an effect on A. actinomycetemcomitans leukotoxin was not
detected. One P. gingivalis strain developed a resistance against taurolidine, which was probably
linked with efflux mechanisms. An increase of MIC values of minocycline occurred in five of the 14
included strains after exposure to subinhibitory concentrations of the antibiotic. The present results
indicate that: (a) taurolidine interacts with LPS and gingipains, and (b) development of resistance
seems to be a rare event when using taurolidine.

Keywords: taurolidine; mechanisms of action; development of resistance; minocycline;
periodontal pathogens

1. Introduction

According to the latest reported data about 42% of the non-institutionalized U.S. population has
been diagnosed of periodontitis [1]. Periodontitis is a chronic inflammatory disease, which destructs
the tooth’s supporting tissues. In the pathogenesis of periodontitis, the host inflammatory response to
subgingival bacteria leading to a pathogenic microbiota plays a central role [2]. Among the pathogenic
microbiota, Porphyromonas gingivalis has been postulated to act as so called “key stone pathogen” [3]
with its major virulence factors are cysteine proteases called gingipains [4]. Other bacteria involved
in pathogenesis of periodontitis are Tannerella forsythia [5] and Aggregatibacter actinomycetemcomitans,
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which synthetizes a leukotoxin [6]. A. actinomycetemcomitans strains differ in their ability to produce
leukotoxin; e.g., highly leukotoxin-producing strains (JP2-clone) have a deletion in the promotor
region [7].

Antimicrobials are frequently used for the treatment of periodontitis. The adjunctive use of
chlorhexidine digluconate may additionally improve the clinical outcomes obtained with conventional
mechanical debridement [8], while the use of adjunctive systemic antibiotics appears to be beneficial
in the treatment of severe cases of periodontitis [9]. However, the long-term clinical benefit following
the use of antibiotics is still unclear [10]. The topical use of minocycline microspheres (a tetracycline
derivative) in conjunction with nonsurgical periodontal therapy has been shown to result in additional
clinical improvements compared with nonsurgical periodontal therapy alone [11].

One potential alternative antimicrobial agent is taurolidine. Taurolidine is a derivative of the
amino acid taurine, as an antimicrobial, it has been proven to be safe and effective for prevention
of central venous catheter infection [12]. In vitro-studies indicate an antimicrobial activity against
oral microorganisms also when those are organized in a biofilm [13,14]. Its potential application
in dentistry has been discussed for several years. It has been shown that rinsing with 2% of taurolidine
solution depressed growth of dental biofilm by about 50% [15]. In previous “in vitro” experiments
we have evaluated some potential antimicrobial effects of taurolidine. We have shown that the minimal
inhibitory concentrations (MIC)s of taurolidine were all below 1 mg/mL taurolidine with the exception
of Candida albicans [13]. One percent of taurolidine inhibited clearly the formation of 12-species biofilms;
however, the effect on an established biofilm was as limited as that of minocycline [16]. In an ex-vivo
model using subgingival biofilm samples from periodontitis patients, the decrease of bacterial counts
in biofilms was 0.87 log10 cfu, corresponding to 86.5% following the application of 3% taurolidine gel
after 60 min [17].

The development of resistance against antimicrobials is meanwhile a global problem, with
more than half a million deaths annually being attributed to infections caused by antibiotic-resistant
micro-organisms [18]. This is dependent on the used antibiotic; i.e., the relationship is strong when
quinolones are used and rather weak when beta-lactams were applied [19]. In addition, a considerable
number of studies have reported the development of resistance to commonly used antiseptics,
and partly, cross-resistance with antibiotics was also found [20]. The increasing prevalence and spread
of antimicrobial resistant bacteria are the natural consequence of genetic bacterial evolution. The more
frequently an antimicrobial agent is used, the higher is the probability of resistance formation [21].

Antimicrobial agents’ resistance in bacteria can be of different origin, with a distinction
between intrinsic and acquired resistance mechanisms. Intrinsic resistance mechanism is a natural
property of microorganisms. Acquired resistance mechanism is based on a genetic modification of the
bacterium [22] and it can occur as the result of a mutation or the ingestion of foreign resistance genes.
Besides the genetic potential of the microorganism, a present selection pressure of an antimicrobial
is of importance, e.g., mutations can be induced by acclimating bacteria to increasing concentrations
of antimicrobial agents [22]. Gene transfer, such as the acquisition of extra-chromosomal gene elements
by transposons or plasmids, can occur within a few hours [23]. Bacterial antimicrobial resistance
mechanisms are based on target alteration, impermeability, enzymatic modification or destruction
and efflux [24], in case of resistance to biocides (e.g., chlorhexidine) membrane modification or efflux
is involved [25].

The aims of this follow-up study were: a) to determine in more detail the mode of action
of taurolidine against bacterial species being associated with periodontal disease, and b) to verify
a potential development of resistance against taurolidine as compared to that against minocycline.
Our data of the present study suggest an inhibition of lipopolysaccharide (LPS) and of P. gingivalis
gingipains by taurolidine. In comparison with minocycline, the development of resistance to taurolidine
was rare in the in-vitro experiments.
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2. Results

2.1. Visualization of Taurolidine Action

Differences of transmission electron micrographs (TEM) of P. gingivalis ATCC 33,277 and T. forsythia
Be13237 without and with 2 h exposure to 1% taurolidine were small (Figure 1). After exposure
to taurolidine, a decomposition of the cytoplasm leading to unstained areas within the P. gingivalis
cells was visible (Figure 1).
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Figure 1. Transmission electron micrographs (TEM) images of Porphyromonas gingivalis ATCC 33277
and Tannerella forsythia Be13237 after treatment with 1% taurolidine for 2 h, in comparison to its control.
P. gingivalis shows a decomposition of the cytoplasm leading to unstained areas (arrowheads).
For T. forsythia, no difference could be found. Scale bars: 200 nm.

2.2. Interaction with Most Important Virulence Factors

Taurolidine inhibited concentration-dependent the endotoxic activity of Escherichia coli LPS,
P. gingivalis LPS, and of P. gingivalis ATCC 33,277 and A. actinomycetemcomitans Y4. (As P. gingivalis
LPS has less endotoxin activity [26], a higher concentration was used in comparison with E. coli LPS.)
Statistically significant differences were always found when comparing 1% taurolidine with control.
In contrast, 16 µg/mL of minocycline did not have any effect (Figure 2).
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Figure 2. Endotoxin activity (endotoxin units (EU), mean ± SD) measured by Limulus amebocyte
lysate assay of Escherichia coli (E.c.) LPS, Porphyromonas gingivalis (P.g.) LPS as well as P. gingivalis ATCC
33277 and Aggregatibacter actinomycetemcomitans Y4, without and with 2 h pre-exposure to 0.01%, 0.25%,
1% taurolidine (TAU) and 16 µg/mL minocycline (MINO). * p < 0.05, ** p < 0.01 vs. respective control.

Next, the effect of taurolidine on viability of monocytic MONO-MAC-6 cells measured by MTT
assay was determined. The results underline the toxicity of purified A. actinomycetemcomitans leukotoxin;
the viability of the cells was 17%, after 1 h and 8.4% after 20 h related to the non-treated cells. Between the
two used bacterial strains, the Be12206 strain belonging to the JP2 clone (well-known for being highly
leukotoxic) decreased the viability of the cells to 12.3% after 20 h of incubation. An inhibitory effect
of the added antimicrobials (both taurolidine in three concentrations and 16 µg/mL minocycline)
on toxicity of leukotoxin to MONO-MAC-6-cells was not seen (Figure 3). In contrast, in this assay
an exposure to taurolidine clearly decreased the MTT activity, the effect was visible for 0.25% and 1%
of taurolidine already after 1 h and for all three used concentrations after 20 h (each p < 0.01).
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Figure 3. MTT activity (mean ± SD) of monocytic MONO-MAC-6 cells after infection with different
Aggregatibacter actinomycetemcomitans strains (Be12206, Be14207), after addition of leukotoxin (ltx,
4 µg/mL) and exposure to 0.01%, 0.25%, and 1% taurolidine (TAU) as well as to 16 µg/mL minocycline
(MINO). * p < 0.05, ** p < 0.01 vs. respective control.

Taurolidine blocked the activity of the purified P. gingivalis arginine specific cysteine protease
(RgpB). Using bacterial strains of P. gingivalis, the results were different. Applying 1% taurolidine
to P. gingivalis ATCC 33277 and J374-1, the measured arginine-specific amidolytic activity clearly
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decreased, whereas 0.01% did not exert any effect on the enzyme activity. In contrast, when using
the HG66 strain, nearly no arginine-specific amidolytic activity was found already after bacterial
culture was exposed to 0.01% taurolidine. Results for minocycline were similar for the purified
gingipain and the HG66 strain, but there was no inhibition of gingipain activity when using the ATCC
33277 and the J374-1 strains (Figure 4).
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Figure 4. Arginine specific amidolytic activity (Arg act) measured by ∆ abs 405 nm after addition
of taurolidine (TAU; a,c,e,g) and minocycline (MINO; b,d,f,h) in different concentrations to 10 nM RgpB
(a,b), Porphyromonas gingivalis ATCC 33277 (c,d), P. gingivalis J374-1 (e,f) and P. gingivalis HG66 (g,h).
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2.3. Potential Development of Resistance

Analyzing a potential development of resistance, an increase of MIC of taurolidine was found
only against one P. gingivalis strains after 20 passages. But it is of interest to note that four strains,
among them the two included T. forsythia strains, became more susceptible to the antimicrobial after
certain passages (both T. forsythia after 10 passages, one P. gingivalis after 20 passages and Streptococcus
constellatus after 50 passages; Table S1). Resistance development against minocycline was found in five
of the 14 included strains after exposure to subinhibitory minocycline (Table S2).

Next, strains exhibiting an altered susceptibility after certain passages were characterized further.
The increase of the MIC of taurolidine against one strain (P. gingivalis J374-1) might be linked to efflux
mechanisms. It seems that this strain contains several efflux pumps. After removing antimicrobial
pressure for three passages, MIC values were equal or close to baseline values (Table 1).
Efflux mechanisms might play also a role in two A. actinomycetemcomitans strains showing an increase
in resistance against minocycline. It is obviously not of importance in the other three strains with
increased MIC values. Removing antimicrobial pressure for a few passages did not revert the increased
MIC values of minocycline (Table 2).

Table 1. MIC of taurolidine (% w/v) of strains with changed MIC values after 50 passages on subinhibitory
concentrations of taurolidine. Presented are MIC values before and after 50 passages, after addition of
efflux inhibitors reserpine, NMP, CCCP, verapamil (only strain showing increase of MIC) as well as
after additional three passages on agar plates free of antimicrobials.

Strain Baseline
After

50
Pass.

With 20
µg/mL

Reserpine

With 50
µg/mL
NMP

With 10
µg/mL
CCCP

With 100
µg/mL

Verapamil

After 3
pass. w/o

Taurolidine

P. gingivalis J374-1 0.025 0.1 0.013 0.013 0.006 0.006 0.025
S. constellatus

BeTa7-1 0.1 0.025 n.d. n.d. n.d. n.d. 0.05

T. forsythia Be13237 0.025 ≤0.003 n.d. n.d. n.d. n.d. 0.025
T. forsythia Be13216 0.025 ≤0.003 n.d. n.d. n.d. n.d. 0.013

pass. = passages; n.d. = not done.

Table 2. MIC of minocycline (µg/mL) of strains with changed MIC values after 50 passages
on subinhibitory concentrations of minocycline. Presented are MIC values before and after 50 passages,
after addition of efflux inhibitors reserpine, NMP, CCCP, verapamil, as well as after additional three
passages on agar plates free of antimicrobials

Strain Baseline
After

50
pass.

With 20
µg/mL

reserpine

With 50
µg/mL
NMP

With 10
µg/mL
CCCP

With 100
µg/mL

verapamil

After 3
pass. w/o

MINO

Streptococcus oralis
JM933 1 4 4 4 4 4 4

A. actinom. OMZ
444 1 32 8 ≤0.5 ≤0.5 8 32

A. actinom. Be14207 8 32 8 16 32 4 32
Fusobacterium

nucleatum BeTa9-1 1 4 4 4 4 4 4

T. forsythia Be13216 0.5 2 2 2 2 2 2

pass. = passages; A. actinom. = A. actinomycetemcomitans.

In the TEM images of P. gingivalis J374-1, highly dense particles are visible after exposure
to subinhibitory taurolidine. Within the bacterial cells, dense structures are located in the cells.
TE micrographs of T. forsythia Be13237 show dense structures surrounded by a halo attached to the
outer membrane (Figure 5).
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Figure 5. TEM images of Porphyromonas gingivalis J374-1ATCC 33,277 and Tannerella forsythia Be13237
after 50 passages on agar plates containing subinhibitory concentrations of taurolidine in comparison
to its control. P. gingivalis J374-1 (a strain becoming more resistant to taurolidine) shows dense particles
within cytoplasma (arrowheads). For T. forsythia Be13237 (a strain becoming more susceptible) dense
structures at the cell wall surrounded by a halo (arrow) were be found. Scale bars: 200 nm.

3. Discussion

In the present study, the mode of action of taurolidine against bacterial species associated with
periodontitis and the potential development of resistance were analyzed.

The inhibition of endotoxin activity suggests a potential interaction of taurolidine with the bacterial
cell wall. Taurolidine is active against gram-positive and gram-negative bacteria [27]. Taurolidine
undergoes several hydrolysis reactions, first a cationic taurolidine is formed [28], which may attack
the negatively charged bacterial cell wall. This is a mechanism known for other antimicrobials,
e.g., charged chlorhexidine binds to the bacterial cell membranes [29]. For taurolidine, non-isolable
carbinolamine is the major bactericidal compound, the antimicrobial activity originates from the
methylene iminium ion production [30]. An endotoxin-inactivation has been discussed for many years
as taurolidine inhibited concentration-dependent the expression of inflammatory cytokines induced by
LPS in peripheral blood mononuclear cells [31]. In contrast, no clear reactivity of taurolidine and its
derivatives with peptidoglycan was found [28].

In our study, taurolidine neutralized the endotoxic activity of LPS. This included the LPS derived
from E. coli and P. gingivalis LPS, which showed less endotoxin activity. P. gingivalis synthesizes two
types of LPS, the O-LPS with O-antigens, and an anionic A-LPS with nonphosphorylated penta-acylated
and nonphosphorylated tetra-acylated species, the latter one is less active in stimulating cytotokine
production in MONO-MAC-6 cells than total P. gingivalis LPS [26].

LPS of A. actinomycetemcomitans is involved in the secretion of its leukotoxin, an LPS with altered
O-antigen polysaccharide leads to an increase of membrane-bound leukotoxin [32]. However, in our
study, we have failed to show an inhibition of leukoxin activity by taurolidine. The MTT tetrazolium
salt colorimetric assay described by Mosmann (1983) was used to measure viability of MONO-MAC-6
cells; it confirmed the toxicity of leukotoxin and of a highly-leukotoxic A. actinomycetemcomitans
belonging to the JP2 clone. Viability of the MONO-MAC-6 cells decreased after being in contact with
taurolidine. The observed toxicity is in contrast to a report using peripheral blood monocytes where no
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toxicity was found up to 10% taurolidine [31]. The difference might be explained by the origin of cells.
Although MONO-MAC-6 cells are very similar in their expression profile to mature monocytes they
originate from a leukemia patient [33].

Except for the A. actinomycetemcomitans leukotoxin, we focused on a potential interaction with
P. gingivalis gingipains. Gingipains are membrane-associated proteases functioning in proteolytic
processing of nutrients, adhesion to host cells, evasion of immune response and more attributes [34,35].
The arginine specific amidolytic activity of the purified cysteine protease RgpB and of different strains
was clearly inhibited until blocked by taurolidine. Total blocking was found when RgpB and bacterial
culture of the HG66 strain were exposed to 1% taurolidine. Thus, it can be concluded that taurolidine
inhibits directly gingipain activity. The HG66 strain is the only exception of all P. gingivalis strains
where gingipains are not glycosylated and bound to outer membranes or outer membrane vesicles
but released in a non-glycosylated soluble form into extracellular milieu [4].

In the present study, we compared the potential development of resistance of taurolidine versus
minocycline on species being associated with periodontitis. Exposing microbial strains to subinhibitory
concentrations of an antimicrobial for certain passages is a widely used method to evaluate the potential
of an antimicrobial for development of resistance [36,37]. The results have shown an increase of MIC
of taurolidine against only one P. gingivalis strain (374-1), whereas a resistance development against
minocycline was found in five of the 14 included strains after exposure to subinhibitory concentrations
of the respective antimicrobial.

The increase of resistance of taurolidine against one strain (P. gingivalis J374-1) might be linked to
efflux mechanisms. The efflux seems to be a first line of defense against an antimicrobial by pumping
out the antimicrobial and decreasing its level within the bacterial cell [38]. Efflux pumps can be
switched on when even low concentrations of an antimicrobial are in the cell, leading to an adaptive
resistance, and expression is downregulated when the antimicrobial agent is absent [38]. The process
of active efflux is one of the important mechanisms of resistance against antibiotics but also against
antiseptics [39]. A Chryseobacterium indologenes strain, which was isolated from oral biofilm up-regulated
expression of an efflux-pump system in the presence of chlorhexidine digluconate [40]. Higher MIC
values of chlorhexidine digluconate against Pseudomonas aeruginosa and Staphylococcus aureus strains
were decreased by adding efflux pump inhibitors [41]. Efflux pumps belong to five families, regarding
antimicrobial resistance the ABC pumps in gram-positive bacteria and the RND pumps in gram-negative
bacteria are most important [42]. All used inhibitors on efflux pumps increased the sensitivity of the
P. gingivalis J374-1 strain to taurolidine. Among the used inhibitors, 1-(1-naphthylmethyl)piperazine
(NMP) and carbonyl cyanide 3-chlorophenylhydrazone (CCCP) are known to inhibit RND pumps,
whereas reserpine and verapamil act on non-RND pumps [43,44]. This leads to the assumption that
both RND and non RND-pumps were involved in the adaptive resistance. After three passages of
P. gingivalis J374-1 on media free of antimicrobials, the MIC of taurolidine, the MICs, became lower than
at baseline, which suggests a certain activity of the pumps already before antimicrobial’s exposure.

Interestingly, a few strains became more susceptible to taurolidine when being exposed to
subinhibitory concentrations of the antimicrobial. However, this phenomenon is difficult to explain.
TEM images depicted areas of halos closed to cell bacterial cell wall leading to the assumption
of an enrichment of the antimicrobial there. This might be supported by the fact that the higher
susceptibility got lost after a few passages of the strain on agar plates without antimicrobials.

A resistance development against minocycline was found in five of the 14 included strains
after exposure to subinhibitory minocycline. As doxycycline, minocycline belongs to the second
generation of tetracylines, an antibiotic class, which target is the small subunit of bacterial ribosome
where t-RNA binds to the respective nucleic acids of mRNA [45]. Acquired resistance is linked
with efflux pumps, but also bacterial proteins removing tetracylines from its binding site, enzymes
degrading tetracyclines or mutations within 16S rRNA preventing binding of tetracyclines to ribosomes
exist [45]. Resistance to tetracyclines among oral strains is reported differently. Recently about 30% of
Streptococcus intermedius and S. constellatus strains and 47% of the A. actinomycetemcomitans were reported
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to be resistant against doxycycline [46,47]. In contrast, less than 10% of A. actinomycetemcomitans
strains isolated from aggressive periodontitis patients in Great Britain showed a resistance against
tetracyclines [48] and MIC90 values were generally low for P. gingivalis and for F. nucleatum [49]. In two
(both A. actinomycetemcomitans strains) out of the five strains with higher MIC values to minocycline,
the efflux mechanism seem to play a role; in one strain this might be related mainly to RND pumps,
in the other strain only to non-RND pumps. In the other three strains (one T. forsythia, one F. nucleatum
and one oral streptococcus), other mechanisms, which have not been investigated in detail, may
account for the increased MIC values. However, it is of interest to note that removing antimicrobial
pressure for a few passages did not revert the increased MIC values. In a previous study, most oral
bacteria survived transitory 2–8-fold MIC values of minocycline but finally, the MIC values were not
different from those at baseline (at the highest one step) [50].

4. Materials and Methods

4.1. Antimicrobials

In all experiments, taurolidine 2% solution (Geistlich Pharma AG, Wolhusen, Switzerland) was
used and diluted until to the necessary dilution. As positive control minocycline (Sigma-Aldrich,
Buchs, Switzerland) and as negative control dH2O were used.

4.2. Microorganisms

Several oral bacterial strains (laboratory strains and clinical isolates; mainly P. gingivalis and
A. actinomycetemcomitans) were included in the experiments (Table S3). The clinical isolates (4
P. gingivalis, 3 A. actinomycetemcomitans, 2 T. forsythia, 2 Fusobacterium nucleatum, 4 oral streptococci)
were obtained from subgingival biofilm samples. Samples were only obtained from individuals who
did not receive antibiotic treatment 2 months prior to the date of collecting. Culturing subgingival
biofilm and isolation of respective bacterial strains was approved by the Ethical Committee of the
Canton Bern (KEK 096/15). Without removing of supragingival biofilm, sterile paper point (ISO 50)
were inserted into the periodontal pocket for 30 s. Then, the pooled paper points were placed into
1 mL of reduced transport fluid. After culturing on tryptic-soy-agar-plates with 5% of sheep blood
(Oxoid, Basingstoke, GB) under anaerobic conditions for 8 d, colonies typical for the respective species
were isolated and subcultivated. Identity was confirmed by PCR using species-specific primers [51].

Bacterial strains were kept frozen at −80 ◦C. About one week before experiments, they were
subcultured and passaged 2–3 times on tryptic-soy-agar plates with 5% of sheep blood.

4.3. Cells

Monocytic cells of human origin (MONO-MAC-6; DSMZ no. ACC 124) were maintained in RPMI
1640 medium containing 10% fetale bovine serum (FBS). For experiments, cells were used in M199
media without FBS (Invitrogen; Carlsbad, CA, USA).

4.4. TEM Images after Exposure to 1% Taurolidine

Two bacterial strains (P. gingivalis ATCC 33277, T. forsythia B13237) were included. They were
suspended to a density of about McFarland 4 in nutrient broth (Wilkins–Chalgren broth (Oxoid)
supplemented with 5 mg/L β-NAD and 10 mg/L NAM (both Sigma-Aldrich, Buchs, Switzerland))
without and with 1% of taurolidine. After an incubation for 2 h in an anaerobic atmosphere at 37 ◦C,
these bacteria were prepared for transmission electron microscopy (TEM).

For TEM, bacteria suspensions were fixed with 0.5% formaldehyde and 2% glutaraldehyde in
0.1 M cacodylate buffer (pH 7.4) for 30 min. After washing 3-fold with 0.1 M cacodylate buffer 10 min
each and post-fixating with 1% osmiumtetroxide for 1 h, dehydration in ascending ethanol series (30%,
50%, 70%, 80%, 90%, 100%, 10 min each) was performed. Moreover, after, the 50% stage post-staining
with 2% uranylacetate in 50% ethanol for 2 h in the dark was conducted. Afterwards, the samples
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were embedded in epoxy resin (Araldite) and sectioned using a Leica Ultracut E (Leica, Wetzlar,
Germany). Ultrathin sections (60 nm thickness) were mounted on filmed Cu grids (Formvar/carbon
film, Quantifoil Micro Tools GmbH, Jena, Germany), post-stained with lead citrate for 5 min, and
studied in a transmission electron microscope (EM 900, Zeiss, Oberkochen, Germany) at 80 kV and
magnifications of 3000× to 20,000×. All preparation steps were performed at room temperature.

4.5. Interaction with Bacterial Virulence Factors

To determine a potential effect of taurolidine on lipopolysaccharide (LPS), 10 pg and 100 pg LPS
originated from Escherichia coli (Sigma-Aldrich) and 10 ng LPS from P. gingivalis (InvivoGen, Toulouse,
France) were used. Taurolidine in the final concentrations of 0.01% w/v, 0.25% w/v and 1% w/v and as
control 16 µg/mL minocycline were added to the LPS for 2 h at 37 ◦C. Thereafter, endotoxin activity
was measured by Limulus amebocyte lysate assay (LAL) QCL-1000TM test (Lonza, Basel, Switzerland)
according to the manufacturer’s recommendation. Moreover, the two bacterial strains P. gingivalis
ATCC 33277 and A. actinomycetemcomitans Y4 (about 108/mL) were exposed to the same concentrations
of antimicrobials for 2 h before measuring endotoxin activity.

The leukotoxin was purified as described by Kachlany et al. [52], by adding a final centrifugation
using 10 kDa centrifugal filter to remove proteins of lower weights. Leukotoxin in a concentration
of 4 µg/mL and two A. actinomycetemcomitans strains (108/mL in M199 media) were exposed to three
concentrations of taurolidine (0.01% w/v, 0.5% w/v, 1.5% w/v) and to 16 mg/mL minocycline for 2 h
before monocytic cells (106/mL in M199 media) were added in a ratio 1:1. A. actinomycetemcomitans
leuktoxin is well known to affect viability of leukocytes, such as monocytes [6].) Viability of
MONO-MAC-6 cells was determined after 1 h and 20 h of incubation at 37 ◦C with 5% of CO2 by using
((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium) MTT assay according to
Mosmann [53], which quantifies the amount of MTT reduced by the cells to its formazan derivative.

Experiments on LPS and leukotoxin activity were made in independent triplicates. One-way
ANOVA with post-hoc Bonferroni compared different antimicrobials with controls each. Further, t-test
was used to find differences in viability of MONO-MAC-6 cells after exposing A. actinomycetemcomitans
strains and leukotoxin with non-stimulate cells (only controls). A difference with a p-value of <0.05
was considered as being statistically significant each.

A direct inhibitory effect on gingipain activity was assessed by adding three concentrations of
taurolidine (0.01% w/v, 0.25% w/v, 1% w/v) and of minocycline (0.5 µg/mL, 16 µg/mL, 128 µg/mL)
for 2 h to 10 nM activated RgpB (being an arginine-specific gingipain; the RgpB was kindly
provided by Jan Potempa, Jagiellonian University Krakow, Poland). Thereafter, P. gingivalis strains
(108/mL Wilkins–Chalgren broth) were exposed to the same concentrations of the antimicrobials
for 2 h (anaerobic atmosphere, 37 ◦C) before measuring arginine specific amidolytic activity in the
suspensions by adding the chromogenic N-α-benzoyl-DL-arginine-p-nitroanilide (BApNA) substrate
(Sigma-Aldrich), USA), with a final concentration of 2 mM in the assay buffer (0.2M Tris-HCl,
0,1M NaCl, 5 mM CaCl2, pH 7.6, supplemented with 10 nM cysteine hydrochloride solution
in a ratio 1:1. The absorbance was read at 405 nm (37 ◦C) at 30 s intervals for 1 h by using a
spectrophotometer (BioTek EL808, BioTek, Luzern, Switzerland).

4.6. Potential Development of Resistance

Initially, all clinical isolates were included in this experiment. However, the A. actinomycetemcomitans
Be12206 strain did not survive the passages. Therefore, only results from 14 strains were available.
The method was adapted to the procedures made before [37,54]. For that, strains were transferred on
Wilkins–Chalgren agar plates (Oxoid) containing 1/4–1/8 of the MICs of taurolidine or minocycline
up to 50 passages of the respective strain (about one passage each five days). Before and after each
10 passages, MICs were determined again by agar dilution technique (Wilkins–Chalgren agar plates
plus respective concentration of the antimicrobial). If there was an increase or decrease of MICs after
passaging, the concentration of the antimicrobial was adapted. Further strains with altered MICs
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were passaged 3 times on media free of antimicrobials to see the stability of the altered MIC. Strains
showing changed MIC before and after 50 passages with subinhibitory concentrations of taurolidine
were prepared for TEM and SEM, as described above.

Strains with increased MICs were screened for potential efflux resistance mechanisms. The efflux
inhibitors 50 µg/mL NMP, 10 µg/mL CCCP, 100 µg/mL verapamil, and 20 µg/mL reserpine (all inhibitors
Sigma-Aldrich) were added to the nutrient media (Wilkins–Chalgren broth) together with antimicrobials.
The MICs were determined after 18 h of incubation.

5. Conclusions

Taurolidine interacts with LPS of periodontopathogens and inhibits the activity of gingipains.
Since the development of resistance against taurolidine occurs very rarely when compared with that
induced by minocycline, further studies are warranted to evaluate its potential use in the treatment
of periodontal and peri-implant infections.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6382/9/4/166/s1,
Table S1: Minimal inhibitory concentration (MIC) of taurolidine (% w/v) determined at baseline and after certain
passages on agar plates containing subinhibitory concentrations of the compound; Table S2: Minimal inhibitory
concentration (MIC) of minocycline (µg/mL) at baseline and after certain passages on agar plates containing
subinhibitory concentrations of the compound; Table S3: Strains included in the experiments.
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