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The age- and sex-adjusted incidence rate of Gram-negative bloodstream infection (GN-BSI) is
84.5 per 100,000 person-years in the USA [1]. Recent advancements in diagnostics as well as clinical
and antimicrobial management have reduced the overall case-fatality of GN-BSI to 12–15% [2,3].
GN-BSI accounts for 279,000 cases and 33,500–41,900 deaths annually in the USA based on the
current population. Source control and early initiation of appropriate empirical antimicrobial therapy
remain the most important modifiable variables for improving the clinical outcomes of patients with
GN-BSI [4–6]. However, increasing antimicrobial resistance rates of Gram-negative bloodstream
isolates continues to pose serious challenges to patients, clinicians, and researchers.

This Special Issue on Gram-negative bloodstream infections in Antibiotics highlights the impact of
antimicrobial resistance to first-line agents on the clinical outcomes and antimicrobial management
of GN-BSI. The authors of the studies in this Special Issue examine the effectiveness of different
antimicrobial treatment strategies in BSI due to Gram-negative bacteria with various beta-lactam
resistance mechanisms. They assess the implications of fluoroquinolone and beta-lactam resistance on
the clinical outcomes of patients with GN-BSI. This is particularly important given that beta-lactams
and fluoroquinolones represent the cornerstones of empirical and definitive antimicrobial therapy
for GN-BSI, respectively [7–9]. The recently proposed definition of difficult-to-treat resistance
(DTR) by Kadri and colleagues further enhances the importance of resistance to first-line agents
(e.g., beta-lactams and fluoroquinolones) [2,3,7]. Review articles in the Special Issue discuss the
role of novel antimicrobial agents in the treatment of BSI due to Gram-negative bacteria with DTR.
The results of many investigations in this Special Issue have major implications for antimicrobial
stewardship practices.

Previous studies reported that patients with fluoroquinolone-resistant GN-BSI had higher
mortality and longer hospital length of stay than those with fluoroquinolone-susceptible bloodstream
isolates [10,11]. Notably, most fluoroquinolone-resistant bloodstream isolates, particularly Escherichia
coli ST131, carried antimicrobial resistance genes to other antimicrobial classes and were hence
considered multi-drug resistant (MDR) [11,12]. Suzuki and colleagues went one step further
and demonstrated that fluoroquinolone resistance even in the absence of concomitant phenotypic
beta-lactam resistance still predicted higher mortality in BSI due to E. coli and Klebsiella species [13].
This remarkable work was the first to show the negative impacts of isolated fluoroquinolone resistance
on patients’ clinical outcomes [13]. In this Special Issue of Antibiotics, Suzuki and colleagues demonstrate
that patients with hospital-onset E. coli and Klebsiella species BSI due to either fluoroquinolone or
extended-spectrum cephalosporin-resistant isolates have considerably longer hospital length of stay
than those with BSI due to susceptible isolates [14]. The results of this multicenter matched cohort study
argue that investments in antimicrobial stewardship and infection prevention are clearly justified based
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on the massive clinical and financial burden of fluoroquinolone and extended-spectrum cephalosporin
resistance on the healthcare system in the USA [14].

To ensure maximum efficacy, the Clinical Laboratory Standards Institute (CLSI) followed the
recommendations of the United States Committee on Antimicrobial Susceptibility Testing (USCAST) and
lowered the minimum inhibitory concentration (MIC) susceptibility breakpoints of fluoroquinolones for
Enterobacterales and nonfermenting Gram-negative bacilli [15]. This change has major implications on
antimicrobial management, since fluoroquinolones remain by far the most commonly prescribed agents
for definitive therapy of GN-BSI [8,9]. Shealy and colleagues precisely quantified the potential impacts
of changing fluoroquinolone susceptibility breakpoints in Gram-negative bloodstream isolates [16].
An additional 5% and 8% of patients with BSI due to Enterobacterales and Pseudomonas aeruginosa,
respectively, would not be eligible for fluoroquinolone definitive therapy after the implementation
of the new CLSI susceptibility breakpoints [16]. The study calls for clinical pharmacokinetic and
pharmacodynamic investigations to optimize the dosing of oral beta-lactams in this patient population
and development of novel oral antimicrobial agents to fill this gap [16].

The MERINO trial provided much-needed clarity on the most appropriate antimicrobial therapy
for BSI due to extended spectrum beta-lactamase (ESBL)-producing Enterobacterales [17]. However,
antimicrobial management of BSI due to chromosomally mediated AmpC-producing Enterobacterales
(CAE) remains controversial [18]. Previous literature demonstrated the effectiveness of cefepime in
comparison to carbapenems for the treatment of BSI due to these bacteria [19]. In this Special Issue,
Derrick and colleagues suggest that ceftriaxone may be a treatment option in patients with low-inoculum
BSI due to Enterobacter cloacae and other CAE [20]. This is conceivable, since low-inoculum sources
of GN-BSI are associated with lower mortality [21,22]. This multicenter cohort study is the first to
report the effectiveness of ceftriaxone for BSI due to CAE [20]. The study has major antimicrobial
stewardship implications, since it allows de-escalation of antimicrobial therapy from carbapenems or
cefepime to ceftriaxone in patients with uncomplicated CAE BSI secondary to urinary tract source
without obstruction or central venous catheter infection after catheter removal [20]. The results should
not be extrapolated to patients with more complex sources of GN-BSI, such as pulmonary infections or
multi-loculated intra-abdominal abscesses, due to the increased risk of resistance development and
mortality [21–24].

The Special Issue includes another study that has huge antimicrobial stewardship indications.
Lee and colleagues are the first to report the effectiveness of cefazolin definitive therapy for
community-onset BSI due to susceptible Enterobacterales [25]. Data have been lacking on this topic due
to the frequent updates to cefazolin MIC susceptibility breakpoints by various agencies. The results
of this matched cohort study encourage antimicrobial stewardship practice of the de-escalation
of antimicrobial therapy from broad-spectrum agents to intravenous cefazolin in patients with
cefazolin-susceptible Enterobacterales BSI based on contemporary CLSI breakpoints [25]. This is
crucial, since early de-escalation of antimicrobial therapy reduces the risk of Clostridioides difficile
infection in these patients [26].

While original clinical research studies dominate this Special Issue, it has a fair share of high-quality
basic science and translational research articles. Advancements of whole-genome sequencing (WGS)
techniques have contributed to a better understanding of antimicrobial resistance mechanisms and
improvement of antimicrobial therapy. Shelenkov and colleagues use WGS to define antimicrobial
resistance mechanisms and virulence profiling of predominantly MDR Klebsiella pneumoniae isolates in
the Russian Federation [27]. The incorporation and visualization of genotypic and phenotypic resistance
patterns on one platform represents phenomenal work and sets a high standard for future investigations.
Moreover, the authors describe two new multi-locus sequence typing (MLST)-based sequence types
of K. pneumoniae [27]. In the second basic science article of this Special Issue, Fokam and colleagues
examine iron chelation in murine models of systemic inflammation induced by Gram-positive and
Gram-negative bacterial toxins [28]. This is a timely topic, given the recent development of cefiderocol,
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a novel antimicrobial agent for the treatment of Gram-negative bacteria with DTR that utilizes the iron
transport system.

In addition to original research studies, the Special Issue includes two comprehensive reviews
of the management of Gram-negative bacterial infections. Bassetti and colleagues summarize
various beta-lactam resistance mechanisms and discuss antimicrobial treatment options for BSI
due to Gram-negative bacteria with DTR [29]. The authors objectively review novel antimicrobial
agents, examine the activity of these agent for various antimicrobial resistance mechanisms, and provide
insight into the role of these agents in clinical practice [29]. Since the respiratory tract is one of the most
common sources of Gram-negative bacteria with DTR, Martin-Loeches summarizes current concepts
in the management of community-acquired and ventilator-associated pneumonia in intensive care
units [30]. This is a timely review as well, given recent updates to international management guidelines
on these two topics [31,32].

We hope this Special Issue of Antibiotics will enhance the knowledge and understanding of
researchers and practitioners, improve clinical practice, and incite future innovative basic science,
translational, and clinical research on antimicrobial resistance and GN-BSI.
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