

Molecular Characterization of the *Burkholderia cenocepacia dcw* Operon and FtsZ Interactors as New Targets for Novel Antimicrobial Design

Gabriele Trespidi ⁺, Viola Camilla Scoffone ⁺, Giulia Barbieri, Giovanna Riccardi, Edda De Rossi ^{*} and Silvia Buroni ^{*}

Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy; gabriele.trespidi01@universitadipavia.it (G.T.); viola.scoffone@unipv.it (V.C.S.); giulia.barbieri@unipv.it (G.B.); giovanna.riccardi@unipv.it (G.R.)

- * Correspondence: edda.derossi@unipv.it (E.D.R.); silvia.buroni@unipv.it (S.B.)
- ⁺ These authors contributed equally to this work.

Supplementary figures

Figure S1. Representation of the distal genes of the *dcw* cluster. The black arrows represent the primers used for the amplification of the fragments tested for their promoter activity.

Figure S2. Electrophoretic mobility shift assay of the MraZ protein. (A) The gel represents the band shift using a constant BS2-6-Fam DNA amount (0.34 pmoles) and increasing quantities of MraZ. (B) The bars indicate the relative quantification of the percentage of the bound DNA obtained by densitometry analysis in function of the protein concentration. (C) Demonstration of the specificity of the binding of MraZ to the fragment BS2, using a fixed amount of protein (300 pmoles) and BS2-6-Fam (0.34 pmoles) (lane 1), a 20X excess of non-labeled BS2 fragment which competes for the binding of MraZ (lane 2) , or a 20X concentration of non-specific, non-labeled competitor (a 250 bp *cepI* fragment) (lane 3). (D) The bars indicate the relative quantification of the percentage of the bound DNA of the corresponding lanes obtained by densitometry analysis.

Supplementary tables

Primer	Sequence 5'- 3'	Expected fragment
mraZRTfor1	GTGTTCCAAGGGGCGTCGGC	661bp

mraWRTrev1	GCATCCTTGATGCCCTGCGCCGTCT	
mraWRTfor1	AAGTCGTACTAGACGCGGCA	F001
ftsLRTrev1	TCGAGATCGGCTGCATTTTCAGCGA	503bp
ftsLRTfor1	GCCTCAATATCTTCCTGCTG	-001
ftsIRTrev1	CCTGCTTCTGATAGAACGCG	5096р
ftsIRTfor1	GGGTAGCGGCGCAAAGCATA	
murERTrev1	CGGGCATCCCGGTGCCGAGCGT	514bp
murERTfor1	GGCTCGAGTCGGTCAATGGC	F (1)
murFRTrev1	ATCAGGCGGGCGGCTTCGCCG	561bp
murFRTfor1	AAGATGGAGCGCGTGGTCGA	F10
mraYRTrev1	ACAGCCCGATCACCGATTGC	512bp
mraYRTfor1	ACCTGCTGTTCCCGCACATC	F7 11
murDRTrev1	CCTCGCGGGTATCGGCAATA	571bp
murDRTfor1	TCGACATGTTCACGAACTAC	E20ha
ftsWRTrev1	GTTCACGCCCTTGCCGACAT	529bp
ftsWRTfor1	ACGATGCTCGTGTGGCTGTC	E91hp
murGRTrev1	GGTGCCGCCTGCCATCACCA	5810p
murGRTfor1	AGGCTACCGACGAAGTCGCG	E (Place
murCRTrev1	GAACGACGCATCCGACTCGT	2000p
murCRTfor1	CTGGCGCTGGCGGAGTTCAA	E 4 Alexe
ddlRTrev1	GAACAACACTGCCACCTTGC	544bp
ddlRTfor1	CGCGACGCACGACAAGATCG	E10hrs
ftsQRTrev1	CGCCAACACGAGCAGCAGCA	512bp
ftsQRTfor1	GGCAGGCATGCGGTTCCTGAC	E E 7hra
ftsARTrev1	CCCGTCACGATGTGCACCTTC	557 bp
ftsARTfor1	AAGACATCAAGGTCGGCTACGGGAT	(16hp
ftsZRTrev1	TGGTCTCGGTTTCCAGCATT	6160p
ftsZRTfor1	GAAGAAGCAGCAGTCGGCAC	501h-
BCAL3456RTrev1	AATCCGAAGATCACCACCCG	581bp
BCAL3456RTfor1	CAAATTCGAAGTGAGCGATG	573bp

lpxCRTrev1

TCGACATACAGGTTGTCGAT

Table S1: List of primers used for the transcription analysis of the *dcw* operon, and expected length of the PCR fragments.

Primer	Sequence 5'- 3'	Restriction site
dcwPROMOfor1_2	GGTATCGAT <u>AAGCTT</u> ACGCCCGTCTGGGCCGTCT T	HindIII
dcwPROMOrev2	TCTAGCTAG <u>AAGCTT</u> TTTCCGCTCTCCCGTTCAGG	HindIII
dcwPROMOfor2_2	GGTATCGAT <u>AAGCTT</u> ATTCGTCAAAAAAGCGGG CC	HindIII
murCPROMOfor1	GGTATCGAT <u>AAGCTT</u> CATTCAACAGAAGGCATG AC	HindIII
ddlPROMOrev1	TCTAGCTAG <u>AAGCTT</u> ACGTCGTTCCGTTCCTGCG T	HindIII
ftsQPROMOfor1	GGTATCGAT <u>AAGCTT</u> ATGTGGAACAACGTTCGCC A	HindIII
ftsQPROMOrev1	TCTAGCTAG <u>AAGCTT</u> AAAGTGCTCTTGCGTGTGA T	HindIII
ftsAPROMOfor1	GGTATCGAT <u>AAGCTT</u> ATGAGCAAAGACTACAAG GA	HindIII
ftsAPROMOrev1	TCTAGCTAG <u>AAGCTT</u> GATGTCGACCAGCACCAC GC	HindIII
ftsAPROMOfor2	GGTATCGAT <u>AAGCTT</u> GGCGGCGGCACGACGGAC AT	HindIII
ftsAPROMOrev2	TCTAGCTAG <u>AAGCTT</u> TGTTGCCTCCGTCAAGAGA A	HindIII
mraZBS1for	GATTGGCGCCGGGGTGGCGT	
mraZBS1rev	GGAGCGGCCCGCTTTTTTGA	
mraZBS2for	AAGTTGCACTAGCTCATTCA	
mraZBS2rev	TTTCCGCTCTCCCGTTCAGG	
mraZpET28aFOR	ATGGGTCGC <u>GGATCC</u> CTGGAAGTTCTGTTCCAGG GGCCCaTGTTCCAAGGGGCGTCGGC	BamHI
mraZpET28aREV	TGCGGCCGC <u>AAGCTT</u> TCAGAACGTGAAATTCTTC A	HindIII
sulApBADM41for	TTCAGGGCG <u>CCATGGgg</u> CTGGAAGTTCTGTTCCA GGGGCCCCACCCGCCCTCGCC	NcoI
sulApBADM41rev	ACGGAGCTC <u>GAATTC</u> TCAGGCGACGGCGCC	EcoRI
ftsASUMOfor	GAGAACAGATTGGTGGTATGAGCAAAGACTACA AGGA	
ftsASUMOrev	ATACCTAAGCTTGTCTTCAGAAGTTGCTCAGGAA CC	
ZipASUMOFor	GAGAACAGATTGGTGGTTGGCAGGGCGCGAAAG TGCGGCGC	

ZipASUMORev	ATACCTAAGCTTGTCTTTACTGGCTGAAGAGGCG GCGCGTGAC	
mraZBSNSfor	ACACGAACTCGCGGCGGATC	
mraZBSNSrev	TTGCGGCAGCGGCATGTCCT	
mraZRACErev1	CATTCCCAACAACATGACTT	
RA1	GACCACGCGTATCGATGTCGAC(T)16	
mraZRACErev2	CGGAAACAGCAACAGGCAGC	
RA2	GACCACGCGTATCGATGTCGAC	
mraZRACErev3	GTCACAGTCACCCGTCCTTC	

Table S2: List of primers used for gene and promoter sequences cloning into plasmids, EMSA and 5'-RACE. The restriction site is underlined and the prescission protease sequence is in blue.

Plasmid	Description	Source
pSU11	<i>E. coli-Burkholderia</i> shuttle vector containing <i>lacZ</i> reporter gene downstream of the MCS, Gm ^r	Jenul <i>et al.,</i> 2018
pSU11-161	pSU11 containing the <i>dcw</i> predicted promoter sequence in a 161 bp fragment	This study
pSU11-289	pSU11 containing the <i>dcw</i> predicted promoter sequence in a 289 bp fragment	This study
pSU11-ftsQp	pSU11 containing the DNA sequence of the gene <i>ddl</i>	This study
pSU11-ftsAp	pSU11 containing the DNA sequence of the gene <i>ftsQ</i>	This study
pSU11-ftsZp1	pSU11 containing the first half of the <i>ftsA</i> gene sequence	This study
pSU11-ftsZp2	pSU11 containing the second half of the <i>ftsA</i> gene sequence	This study
pET28a	Expression vector IPTG inducible, Kan ¹	Novagen
pET28a-MraZ	pET28a containing MraZ coding sequence	This study
pBADM-41	Expression vector for toxic or unstable proteins, containing MBP fusion, controlled by <i>araBAD</i> promoter, Amp ^r	Laboratory collection
pBADM-41-SulA	pBADM-41 containing SulA coding sequence	This study
pETSUMO	Expression system incorporating a SUMO fusion, IPTG inducible, Kan ^r	Invitrogen
pETSUMO-FtsA	pETSUMO containing FtsA coding sequence	This study
pETSUMO-ZipA	pETSUMO containing ZipA coding sequence	This study
pUT18	Derivative of pUC19. A MCS allows construction of in- frame fusions at the N-terminal end of the T18 polypeptide under the control of a lac promoter.	Karimova <i>et al.,</i> 1998

	Derivative of pUC19. A MCS allows construction of in-	
pUT18C	frame fusions at the C-terminal end of the T18	Karimova et al., 1998
	polypeptide under the control of a lac promoter.	
	Derivative of pSU40. A multicloning site sequence	
ъVTЭ	(MCS) allows construction of in-frame fusions at the	Varimanus et al 1009
рк125	N-terminal end of the T25 polypeptide under the	Karimova et ul., 1998
	control of a lac promoter.	
	Derivative of pSU40. A MCS allows construction of in-	
pKNT25	frame fusions at the C-terminal end of the T25	Karimova et al., 1998
•	polypeptide under the control of a lac promoter.	
	pUT18 containing the T18 fused to the C-terminal end	
pUT 18FtsZ	of FtsZ	This study
	pUT18C containing the T18 fused to the N-terminal	
pUT18CFtsZ	end of FtsZ	This study
	pKT25 containing the T25 fused to the N-terminal end	
pKT25FtsZ	of FtsZ	This study
	pKNT25 containing the T25 fused to the C-terminal	
pKNT25FtsZ	end of FtsZ	This study
	pUT18 containing the T18 fused to the C-terminal end	
pUT18FtsA	of FtsA	This study
	nUT18C containing the T18 fused to the N-terminal	
pUT18CFtsA	end of FtsA	This study
	nKT25 containing the T25 fused to the N-terminal end	
pKT25FtsA	of Fts A	This study
	pKNT25 containing the T25 fused to the C terminal	
pKNT25FtsA	and of Ets A	This study
	pLIT18 containing the T18 fused to the C terminal and	
pUT18FtsE	points containing the 118 fused to the C-terminal end	This study
	OI FISE	
pKNT25FtsE	pKN125 containing the 125 fused to the C-terminal	This study
-	end of FtSE	-
pUT18FtsQ	pU118 containing the 118 rused to the C-terminal end	This study
	Of FtsQ	
pKNT25FtsQ	pKN125 containing the 125 fused to the C-terminal	This study
1	end of FtsQ	5
pUT18FtsI	pUT18 containing the T18 fused to the C-terminal end	This study
1	of Ftsl	5
pUT18CFtsI	pUT18C containing the T18 fused to the N-terminal	This study
1	end of Ftsl	5
pKT25FtsI	pK125 containing the 125 fused to the N-terminal end	This study
Γ	of FtsI)
pKNT25FtsI	pKNT25 containing the T25 fused to the C-terminal	This study
P1011201101	end of FtsI	The statey
pUT18FtsN	pUT18 containing the T18 fused to the C-terminal end	This study
periorent	of FtsN	The study
nUT18CFtsN	pUT18C containing the T18 fused to the N-terminal	This study
r · · · · · · · · · · · · · · · · · · ·	end of FtsN	ino staty
nKT25FteN	pKT25 containing the T25 fused to the N-terminal end	This study
P111201 (31)	of FtsN	ins study
nKNT25FteN	pKNT25 containing the T25 fused to the C-terminal	This study
PININI 2017181N	end of FtsN	THIS SHULY

pUT18ZipA	pUT18 containing the T18 fused to the C-terminal end of ZipA	This study
pUT18CZipA	pUT18C containing the T18 fused to the N-terminal end of ZipA	This study
pKT25ZipA	pKT25 containing the T25 fused to the N-terminal end of ZipA	This study
pKNT25ZipA	pKNT25 containing the T25 fused to the C-terminal end of ZipA	This study
pUT18SulA	pUT18 containing the T18 fused to the C-terminal end of SulA	This study
pKNT25SulA	pKNT25 containing the T25 fused to the C-terminal end of SulA	This study
pUT18ZapA	pUT18 containing the T18 fused to the C-terminal end of ZapA	This study
pUT18CZapA	pUT18C containing the T18 fused to the N-terminal end of ZapA	This study
pKT25ZapA	pKT25 containing the T25 fused to the N-terminal end of ZapA	This study
pKNT25ZapA	pKNT25 containing the T25 fused to the C-terminal end of ZapA	This study
	Table S3: List of plasmids used in this work.	

TableS4

Strain	Genotype	Source
Escherichia coli		
DH5a	F-, φ80dlacZΔM15 Δ(lacZYA-argF)U169, endA1, recA1, hsdR17(rk·mk⁺), supE44, thi-1, ΔgyrA96, relA1	Laboratory stock
BL21(DE3)	F ⁻ , $ompT$, $hsdS_B(r_B-m_B-)$, gal , dcm (DE3)	Laboratory stock
TOP10	F , mcrA, Δ (mrr-hsdRMS-mcrBC), φ80lacZ Δ M15, Δ lacX74, recA1, araD139, Δ (ara-leu)7697, galU, galK λ - rpsL(Str ¹), endA1, nupG	Laboratory stock
XL1Blue	recA1, endA1, gyrA96, thi-1, hsdR17, supE44, relA1, lac [F´ proAB laclªZ∆M15 Tn10 (Tet¹)].	Laboratory stock
BTH101	F-, cya-99, araD139, galE15, galK16, rpsL1 (Str¹), hsdR2, mcrA1, mcrB1	Euromedex
Burkholderia cenocepacia		
J2315	Wild type strain	Laboratory stock
K56-2	Wild type strain	Laboratory stock

Table S4: List of strains used in this work.

Primer	Sequence 5'- 3'	Restriction site
--------	-----------------	------------------

• • • • • • •		
FtsZpUT18pKNT25For	GATTACGCC <u>AAGCTT</u> GATGGAATTCGAAATGCTG GA	HindIII
FtsZpUT18pKNT25Rev	GGTACCCGG <u>GGATCC</u> TCGTCAGCCTGCTTGCGCA GGAAAG	BamHI
FtsZpUT18CFor	GACTCTAGA <u>GGATCC</u> CATGGAATTCGAAATGCT	BamHI
FtsZpUT18CRev	GAATTCGAGCTC <u>GGTACC</u> CGGTCAGCCTGCTTGC GCAGGAAAG	KpnI
FtsZpKT25For	GACTCTAGA <u>GGATCC</u> CATGGAATTCGAAATGCT GGA	BamHI
FtsZpkT25Rev	CTTAGTTACTTA <u>GGTACC</u> CGGTCAGCCTGCTTGC GCAGGA	KpnI
SulApUT18pKNT25For	GATTACGCC <u>AAGCTT</u> GATGCACCCCGCCCTCGCC CATCCTG	HindIII
SulApUT18Rev	CGGTACCCGG <u>GGATCC</u> TCGGCGACGGCGCCGGC GATCGTGGCC	BamHI
SulApKNT25Rev	GTACCCGG <u>GGATCC</u> TCGGCGACGGCGCCGGCGA TCGTGGCC	BamHI
SulApUT18CpKT25For	GACTCTAGA <u>GGATCC</u> CATGCACCCCGCCCTCGCC CATCCT	BamHI
SulApUC18CRev	GTTATATCGAT <u>GAATTC</u> GAGGCGACGGCGCCGG CGATCGTGGCC	EcoRI
SulApKT25Rev	GTTACTTA <u>GGTACC</u> CGGGCGACGGCGCCGGCGA TCGTGGCC	KpnI
FtsApUT18pKNT25For	GATTACGCC <u>AAGCTT</u> GATGAGCAAAGACTACAA GGATC	HindIII
FtsApUT18pKNT2Rev	TTCGAGCTC <u>GGTACC</u> CGGAAGTTGCTCAGGAAC C	KpnI
FtsApUT18CpKT25For	GACTCTAGA <u>GGATCC</u> CATGAGCAAAGACTACAA GGATC	BamHI
FtsApUT18CRev	GAATTCGAGCTC <u>GGTACC</u> CGGAAGTTGCTCAGG AACCATTCC	KpnI
FtsApKT25Rev	GTTACTTA <u>GGTACC</u> CGGAAGTTGCTCAGGAACC ATTCC	KpnI
ZipApUT18pKNT25For	GATTACGCC <u>AAGCTT</u> GATGGACGAGTTGACACT CGGTTTG	HindIII
ZipApUT18pKNT25Rev	CGGGGATCC <u>TCTAGA</u> GTCTGGCTGAAGAGGCGG CGCGTGA	XbaI
ZipApUT18CpKT25For	GACTCTAGA <u>GGATCC</u> CATGGACGAGTTGACACT CGGTTTG	BamHI
ZipApUT18CRev	GAATTCGAGCTC <u>GGTACC</u> CGCTGGCTGAAGAGG CGGCGCGTGAC	KpnI
ZipApKT25Rev	GTTACTTA <u>GGTACC</u> CGCTGGCTGAAGAGGCGGC GCGTGAC	KpnI
ZapApUT18pKNT25For	GATTACGCC <u>AAGCTT</u> GATGAGCACCAAGCAGAT CGAAGTCT	HindIII
ZapApUT18pKNT25rev	GTACCCGG <u>GGATCC</u> TCCTGCGTCTCGTGCTGTGC GAGC	BamHI
ZapApUT18CpKT25For	GACTCTAGA <u>GGATCC</u> CATGAGCACCAAGCAGAT CGAAGTCT	BamHI

ZapApUT18CRev	CGAGCTC <u>GGTACC</u> CGCTGCGTCTCGTGCTGTGCG AGC	KpnI
ZapApKT25Rev	GTTACTTA <u>GGTACC</u> CGCTGCGTCTCGTGCTGTGC GAGC	KpnI
FtsEpUT18pKNT25For	GATTACGCC <u>AAGCTT</u> GATGATCCGCCTCGAACGC ATCGAC	HindIII
FtsEpUT18pKNT25Rev	GTACCCGG <u>GGATCC</u> TCGAACGCCGGCACGCCTT GCGCGAG	BamHI
FtsEpUT18CpKT25For	GACTCTAGA <u>GGATCC</u> CATGATCCGCCTCGAACG CATCGAC	BamHI
FtsEpUT18CRev	CGAGCTC <u>GGTACC</u> CGGAACGCCGGCACGCCTTG CGCGAG	KpnI
FtsEpKT25Rev	GTTACTTA <u>GGTACC</u> CGGAACGCCGGCACGCCTTG CGCGAG	KpnI
FtsQpUT18pKNT25For	GATTACGCC <u>AAGCTT</u> GATGTGGAACAACGTTCG CCAAC	HindIII
FtsQpUT18pKNT25Rev	GTACCCGG <u>GGATCC</u> TCCTTCTTGCGCTTGTCGGT ATCG	BamHI
FtsQpUT18CpKT25For	GACTCTAGA <u>GGATCC</u> CATGTGGAACAACGTTCG CCAAC	BamHI
FtsQpUT18CRev	CGAGCTC <u>GGTACC</u> CGCTTCTTGCGCTTGTCGGTA TCG	KpnI
FtsQpKT25Rev	GTTACTTA <u>GGTACC</u> CGCTTCTTGCGCTTGTCGGTA TCG	KpnI
FtsIpUT18pKNT25for	GATTACGCC <u>AAGCTT</u> GATGAAGCCGTCCCAGAA GCGC	HindIII
FtsIpUT18pKNT25rev	GTACCCGG <u>GGATCC</u> TCTCGAACTACTCCTGGTGA ATTAC	BamHI
FtsIpUT18CFor	CAGGTCGAC <u>TCTAGA</u> GATGAAGCCGTCCCAGAA GCGC	XbaI
FtsIpUT18CRev	GTTATATCGAT <u>GAATTC</u> GATCGAACTACTCCTGG TGAATTAC	EcoRI
FtsIpKT25For	GGGTCGAC <u>TCTAGA</u> GATGAAGCCGTCCCAGAAG CGC	XbaI
FtsIpKT25Rev	AACGACGGCC <u>GAATTC</u> TCATCGAACTACTCCTG GTGAATTAC	EcoRI
FtsNpUT18pKNT25For	GATTACGCC <u>AAGCTT</u> GGTGCTGGGCCTGATCGTC GGCCTCG	HindIII
FtsNpUT18pKNT25Rev	GTACCCGG <u>GGATCC</u> TCCTGCTTCGTGAAGCGGAT CACC	BamHI
FtsNpUT18CpKT25For	GACTCTAGA <u>GGATCC</u> CGTGCTGGGCCTGATCGTC GGCCTCG	BamHI
FtsNpUT18CRev	CGAGCTC <u>GGTACC</u> CGCTGCTTCGTGAAGCGGATC ACC	KpnI
FtsNpKT25Rev	GTTACTTA <u>GGTACC</u> CGCTGCTTCGTGAAGCGGAT CACC	KpnI
pUT18pKNT25CheckFor	CTTTATGCTTCCGGCTCG	
pUT18CheckRev	GTTCGCGATCCAGGCCGC	
pKNT25CheckRev	GCGTAACCAGCCTGATGCG	

pUT18CCheckFor	GTCACCCGGATTGCGGCG	
pUT18CCheckRev	GTGTCGGGGCTGGCTTAAC	
pKT25CheckFor	GCAGTTCGGTGACCAGCGG	
pKT25CheckRev	GCAAGGCGATTAAGTTGGG	

Table S5: List of primers used for cloning the divisome genes into the BACTH plasmids. Therestriction site is underlined.