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Abstract: The ability of bacterial pathogens to form biofilms is an important virulence mechanism in
relation to their pathogenesis and transmission. Biofilms play a crucial role in survival in unfavorable
environmental conditions, acting as reservoirs of microbial contamination and antibiotic resistance.
For intestinal pathogen Campylobacter jejuni, biofilms are considered to be a contributing factor in
transmission through the food chain and currently, there are no known methods for intervention.
Here, we present an unconventional approach to reducing biofilm formation by C. jejuni by the
application of D-amino acids (DAs), and L-amino acids (LAs). We found that DAs and not LAs,
except L-alanine, reduced biofilm formation by up to 70%. The treatment of C. jejuni cells with DAs
changed the biofilm architecture and reduced the appearance of amyloid-like fibrils. In addition,
a mixture of DAs enhanced antimicrobial efficacy of D-Cycloserine (DCS) up to 32% as compared
with DCS treatment alone. Unexpectedly, D-alanine was able to reverse the inhibitory effect of other
DAs as well as that of DCS. Furthermore, L-alanine and D-tryptophan decreased transcript levels of
peptidoglycan biosynthesis enzymes alanine racemase (alr) and D-alanine-D-alanine ligase (ddlA)
while D-serine was only able to decrease the transcript levels of alr. Our findings suggest that a
combination of DAs could reduce biofilm formation, viability and persistence of C. jejuni through
dysregulation of alr and ddIA.

Keywords: D-amino acids; Campylobacter jejuni; biofilm; alanine racemase; confocal laser
scanning microscopy

1. Introduction

Human pathogen Campylobacter jejuni is a leading foodborne bacterial cause of diarrheal disease
which, according to the World Health Organization (WHO), occurs annually in approximately 10%
of the world’s population, including 200 million children [1,2]. Campylobacters are increasingly
resistant to antibiotics; this is enhanced by their ability to form biofilms [3-6]. C. jejuni, in particular,
is able to form mono- and mixed-culture biofilms in vitro and in vivo [7], which is recognized as a
contributing factor of C. jejuni transmission through the food chain, where biofilms allow the cells
to survive up to twice as long under atmospheric conditions and in water [8-10]. Campylobacters
exhibit intrinsic resistance to many antimicrobial agents such as cephalosporins, trimethoprim,
sulfamethoxazole, rifampicin and vancomycin, and are listed in WHO list of priority pathogens for new
antibiotics development [3,4,11-16]. Biofilms are known to enhance antimicrobial resistance of many
pathogens [3-5,17]; thus, unconventional approaches to controlling biofilms and improving the efficacy
of currently used antibiotics are urgently needed. Recent investigations into potential antimicrobials
include naturally occurring small molecules such as nitric oxide, fatty acids, and D-amino acids
(DAs) [18-21]. DAs showed an ability to disperse some bacterial biofilms in vitro, such as those formed
by Bacillus subtilis, Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa [22-26]. It is

Antibiotics 2020, 9, 836; doi:10.3390/antibiotics9110836 www.mdpi.com/journal/antibiotics


http://www.mdpi.com/journal/antibiotics
http://www.mdpi.com
https://orcid.org/0000-0001-6372-5197
https://orcid.org/0000-0002-5535-4151
http://dx.doi.org/10.3390/antibiotics9110836
http://www.mdpi.com/journal/antibiotics
https://www.mdpi.com/2079-6382/9/11/836?type=check_update&version=2

Antibiotics 2020, 9, 836 20f 13

well documented that microorganisms preferentially utilize L-amino acids (LAs) over DAs [27,28],
yet naturally occurring DAs have been found in different environments, such as soil, as well as in
human and animals tissues [27]. In addition, many bacterial species secrete DAs in the stationary
growth phase and when encased in biofilms. For example, Vibrio cholerae can produce D-methionine
(D-met) and D-leucine (D-leu), while B. subtilis generates D-tyrosine (D-tyr) and D-phenylalanine
(D-phe) which can accumulate at millimolar concentrations [29,30]. The ability of bacteria to produce
DA is proposed to be a mechanism for self-dispersal of aging biofilms, and DA production may also
inhibit the growth of other bacteria during maturation of mixed biofilms. In a naturally occurring
biofilm, DAs are found to be involved in the regulation of extracellular polymeric saccharide (EPS)
production, for instance, D-tyr reduces the attachment of B. subtilis, S. aureus and P. aeruginosa to
surfaces [23,31-33]. Also, DAs can induce disassembly of matrix-associated amyloid fibrils that link
cells within the biofilm and contribute to the biofilm strength [34]. The effective concentration of DAs
required to inhibit the biofilm formation varies depending on bacterial strain and DAs concentration
ranging between 3 uM and 10 mM and D-Met, D-Trp and D-Ser were shown the most potent to inhibit
the biofilm formation [24,33,35,36]. It is important to note that some DAs exhibit inhibitory or toxic
effects on a number of bacterial species and can interfere with the activities of peptidases and proteases
involved in cell wall synthesis, for example, D-met can be incorporated into the peptidoglycan (PG) of
bacterial cell walls, causing morphological and structural damage [37].

DAs appear to be able to disrupt the biofilms via multiple mechanisms, offering an advantage to
other biofilm dispersal agents which target a single process essential for biofilm formation, indicating
that DAs could form the basis for a potential antibiofilm agent.

This study explores the effect of D and L amino acids, singly and in combination, on inhibition
and dispersion of C. jejuni biofilms, the ability of these compounds to enhance the efficacy of antibiotics
such D-cycloserine as well as potential mechanisms of inhibitory action.

2. Results

2.1. Effect of LAs and DAs on Biofilm Formation by C. jejuni

In order to investigate the effect of LAs and DAs on biofilm formation, different concentrations
of LAs and DAs (1-100 mM) were tested for their ability to disrupt or disperse the Campylobacter
biofilm. Two assays were applied, one to measure the percentage of biofilm inhibition (%) (Inhibition
Assay) and the other to determine the effect on the dispersion of a formed biofilm (Dispersion Assay).
Treatment of C. jejuni culture with DAs showed significant inhibitory effect (p < 0.001) on biofilm
formation. Prescreening of individual LAs and DAs identified four (D-ala, D-met, D-ser, and D-trp)
that had a potent ability to inhibit biofilm formation by C. jejuni (Figure 1). In contrast, the L-form of
those amino acids, except L-ala, had no inhibitory effect, and L-met and L-trp, significantly increased
biofilm formation.

The addition of DAs had a strong inhibitory effect on biofilm formation by C. jejuni in a
dose-dependent manner (Figure 2) where 10 mM of D-trp reduced biofilm formation by 48% and
25 mM by 52%, while 10 mM and 25 mM D-ala reduced biofilm formation by 28% and 32%, respectively.
Interestingly, 50 mM L-ala reduced biofilm by up to 63% as compared to 45% by D-ala at the same
concentration (Figure 2). DAs had a disruptive effect on the existing biofilm where D-ser had the most
significant effect (p < 0.001) on formed biofilm disruption, up to 71%, at 50 mM compared to 1 mM or
10 mM (Figure 2), and the addition of 10 mM D-trp led to 42% disruption of formed biofilm.

Based on the determined concentrations of DAs required to elicit inhibitory or dispersal
effect on biofilms, concentrations of various DAs and LAs between 2 to 25 mM were selected
for subsequent assays.
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Figure 1. Effect of 100 mM D-amino acids (DAs) and L-amino acids (LAs) on C. jejuni 11168-O biofilm.
Inhibition of biofilm formation in the presence of 100 mM of; L-alanine (L-ala), D-alanine (D-ala),
L-serine (L-ser), D-serine (D-ser), L-methionine (L-met), D-methionine (D-met), L-tryptophan (L-trp),
or D-tryptophan (D-trp). All data are mean + Standard errors and were analyzed using an unpaired,
two-tailed Student’s t-test, p < 0.05. The asterisk (*) indicates a statistically significant difference
compared to untreated control.
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Figure 2. Inhibition and dispersion response of C. jejuni 11168-O biofilms in the presence of LAs and
DAs at different concentrations. (A) Inhibition of biofilm formation by different concentrations of
LAs and DAs, (B) Dispersion of the existing biofilm induced by different concentrations of LAs and
DAs. The data is presented as Mean + Standard errors of Percentage of inhibition (Normalized to
untreated control).

2.2. Effect of DAs on Biofilm Formation by Different Campylobacter Strains

In order to elucidate strain-specific responses, C. jejuni 11168-O, C. jejuni 81-176, and C. coli NCTC
11366, were used to confirm the inhibitory effect of D-ala, D-ser, D-met, and D-trp at 10 mM. The effect
of DAs on biofilm formation was strain-dependent, whereas D-ser and D-trp had the greatest inhibitory
effect on biofilm formation by 11168-O, D-ala and D-met were most effective against 81-176, and C. coli
(Figure 3).
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Figure 3. Quantitative analysis of biofilm inhibition of (A) C. jejuni 11168-O, (B) C. jejuni 81-176,

and (C) C. coli NCTC 11366 in the presence of 10 mM of DAs. The data is presented as Mean + Standard
errors of Percentage of inhibition (Normalized to untreated control).

2.3. Effect of the Equimolar Mixture of DAs and LAs on C. jejuni 11168-O Biofilm

Considering that D-ser or D-met, applied at >1mM concentration, induced biofilm dispersal,
while 5 mM L-ala, D-ser, D-met or D-trp had an inhibitory effect, equimolar mixture of DAs and LAs
(1:1) was assessed. Equimolar mixture showed >40% inhibition of C. jejuni 11168-O biofilm formation
(Figure 4). This suggested that using a combination of DAs and LAs, even at lowest concentrations,
could be more potent than application of single DA or LA. The mixture of the four amino acids, L-ala,
D-met, D-ser, D-trp was therefore assessed and a combination of these amino acids at 5:5:2:5 mM was
more effective, with up to 49% inhibition of biofilm formation. Interestingly, the addition of D-ala
decreased this inhibitory effect (Figure 4).
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Figure 4. Effect of the equimolar mixture of DAs and LAs on C. jejuni 11168-O biofilm. All data are
mean + Standard errors and were analyzed using an unpaired, two-tailed Student’s t-test, p < 0.05.
The asterisk (*) indicates a statistically significant difference compared to untreated control.
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2.4. Microscopic Characterization of the Dispersion Effect of DAs on Biofilm

Confocal microscopy showed that mature biofilm of C. jejuni 11168-O has structured appearance
with amyloid-like fibrils which connect the cells within biofilms (Figure 5).

DAPI

Figure 5. The mature biofilm of C. jejuni 11168-O and amyloid-like fibres. C. jejuni biofilm imaged using
dual fluorescence labelling by confocal laser scanning microscopy (CLSM). (a—c) Bacterial cells within
the biofilm (4’,6-diamidino-2-phenylindole (DAPI), blue) and red arrow indicates for amyloid-like
fibrils (Thioflavin T (ThioT), green). (Scale bar = 10 pum).

Microscopic examination of formed biofilms, treated with individual DAs, showed a significant
reduction in biofilm formation and disappearance of amyloid-like fibrils, compared to that of untreated
controls (Figure 6).

Figure 6. Confocal scanning laser microscopy images of C. jejuni 11168-O biofilm in presence of 25 mM
of DAs. C. jejuni biofilm at 48 h, imaged using dual fluorescence labelling by confocal laser scanning
microscopy (CLSM). (a) Untreated, (b) D-ala, (c) L-ala, (d) D-ser, (e) D-met, (f) D-trp. Cells were stained
with 4’,6-diamidino-2-phenylindole (DAPI, blue) and amyloid fibrils by Thioflavin T (ThioT, green)
(Scale bar = 20 um).
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2.5. Expression Level of alr and ddlA in the Presence of LAs and DAs

In order to interrogate the mechanism of inhibitory action of DAs and L-ala, the expression of
C. jejuni PG biosynthesis enzymes alanine racemase (alr) and D-Ala-D-Ala ligase (ddlA) in the presence
and absence of DAs and LAs were examined. Therefore, 25 mM of DAs and LAs was chosen based on
the inhibitory effects as shown in Figure 2. The relative expression of dd! and alr was downregulated
by 1.25 to 4-fold below the cut-off level, respectively, following treatment of cells with 25 mM of L-ala
(Table 1). In contrast, 25 mM of D-ala upregulated the expression of ddl by 10-fold and alr by 38-fold.
Treatment of cells with 25 mM D-trp downregulated the expression level of dd! by 1.65-fold and alr by
3-fold whereas D-ser (25 mM) downregulated the expression of alr by 2.92-fold and upregulated dd! by
2.58-fold. No significant effect on the expression of alr and ddl was observed following treatment with
D-met (Table 1). Interestingly, treatment of cells with D-Cycloserine (DCS) (10 ng/mL), as a positive
control, had a greater effect, downregulating the expression of ddIA with a 7-fold change as compared
to 2.85-fold change for alr. No loss of cell viability could be detected after 2 h exposure to DAs or DCS.

Table 1. Analysis of the relative expression of alr and ddIA genes in the present of LAs and DAs by
real-time PCR (RT-PCR). The relative expression of alr and ddl genes after incubation of C. jejuni 11168-O
cells with 25 mM of LAs and DAs for 2 h.

Fold Change
Upregulated Downregulated
Gene Name  D-ala D-ser D-met L-ala D-ser D-trp DCS
alr 38+7 - - 418+0.3 292+0.2 1.65+03 285+0.2
ddIA 10+2  258+0.6 - 125+ 0.1 - 342+04 715+02

2.6. D-Ala Can Reverse the Inhibitory Effect of DAs and DCS

D-ala has been reported to reverse the antimicrobial efficacy of DCS in Mycobacterium spp. [38,39].
Considering that the minimum inhibitory concentration (MIC) range of DCS for Campylobacter spp
reported being between 0.25—4 ug/mL [40], we tested the effect of sub-inhibitory concentration of
10-50 ng/mL DCS on C. jejuni cells and determined that DCS can reduce C. jejuni growth and biofilm
formation by up to 60-76% (Figures 7 and 8). Furthermore, this effect can be reversed by increasing
the concentration of D-ala from 10 mM to 50 mM (Figure 7A). Combining D-ala with D-ser or with
L-ala also decreased the inhibition of biofilm formation (Figure 7B). In contrast, a combination of DAs
with DCS increased the efficacy of DCS at 10 ng/mL by 32% as compared with DCS treatment alone
(Figure 8).
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Figure 7. Reversal of C. jejuni 11168-O biofilm inhibition by (A) D-Cycloserine (DCS), (B) L-ala and
D-ser in presence of D-alanine (D-ala). The data is presented as Mean + Standard errors of Percentage
of inhibition (Normalized to untreated control).
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Figure 8. Effect of DCS on C. jejuni 11168-O biofilm when combined with a mixture of L-ala, D-ser,
D-met, D-trp (5:5:2:5 mM). The data is presented as Mean =+ Standard errors of Percentage of inhibition
(Normalized to untreated control).

3. Discussion

This study describes the activity of specific small, naturally occurring molecules, DAs, which are
highly effective in preventing and disrupting C. jejuni biofilms, in concert with that previously shown
for B. subtilis, S. aureus and P. aeruginosa [36,41]. While D-met and D-trp were able to inhibit the biofilm
formation of C. jejuni, L-form of those amino acids significantly increased biofilm formation. It is
possible that C. jejuni is able to catabolize L-form of those amino acids [42], which promotes bacterial
growth, and consequently formation of the biofilm. This is consistent with the previous report of
B. subtilis growth inhibition by D-form of Tyr, Leu, and Trp, and the L-form of those amino acids
counteracting this effect [24]. The effect of DAs on inhibition and dispersal of C. jejuni biofilms showed
a concentration-dependent response, with D-ser, D-met and D-trp being most effective in inhibition
and dispersion of the biofilm. We observed that D-met, and D-trp, have a significant effect on triggering
the disassembly of the biofilms at concentrations of >5 mM, similar to that observed for S. aureus and
P. aeruginosa [43]. It is important to note that the inhibitory effect on the growth of C. jejuni by DAs,
except D-met, could be reversed by D-ala, similar to that observed for B. subtilis, M. tuberculosis and
Escherichia coli [38,39,44,45].

The microscopic analysis confirmed the effect of DAs on biofilm formation of C. jejuni,
and particularly, the formation of amyloid-like fibrils within the biofilm matrix. Matrix-associated
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amyloid fibrils had been previously reported to form a part of C. jejuni biofilm [46], and similar
DA-induced disassembly of matrix-associated amyloid fibers of B. subtilis biofilm, had been proposed
as a biofilm-dispersal mechanism [34,41]. Together, these data allow us to speculate that the ability of
DAs to promote the dispersal of formed C. jejuni biofilms, could involve the triggering the disassembly
of matrix-associated amyloid fibrils.

While the mechanisms of antimicrobial and antibiofilm action of DAs, particularly, D-ser, D-met,
and D-trp, are not fully understood, DAs effect on C. jejuni growth and biofilm formation may be
similar to that for Alcaligenes faecalis, where D-met incorporates into PG, causing morphological and
structural damage to the cell wall [30,37,47], and consequently suppresses bacterial growth. To explore
that possibility, we interrogated the effect of DAs and LAs on the expression level of two genes in
C. jejuni; alanine racemase (alr) (Cj0905c), and D-Ala-D-Ala ligase (ddIA) (Cj0798c) [48,49]. Both genes
are encoding enzymes involved in an important step in D-Ala metabolism [44,50], which is essential for
the synthesis of PG of the bacterial cell wall [45,51,52]. Two main reactions are involved in this process,
first the conversion of L-Ala to D-Ala by alanine racemase (alr), and the formation of D-alanyl-D-alanine
dipeptide (D-Ala-D-Ala) from D-ala by D-alanine-D-alanine ligase (ddl) [53]. RT-PCR data showed
that DCS was able to reduce both C. jejuni alr and ddIA expression levels, similarly to L-ala, and D-trp.
Interestingly, D-ser reduced alr expression levels, but not that of ddIA, suggesting that ddIA may not
be the primary target for D-ser or DCS in C. jejuni. Furthermore, the ability of D-ala to reverse the
inhibitory effect of DCS and D-ser suggests that the inhibitory effect of DCS and D-ser on C. jejuni
can be mediated through inhibition of alr alone. In contrast, in M. tuberculosis, both alr and ddl were
reported to be the primary targets of DCS [39], and Halouska et al. [54] suggested that dd] may be a
primary target of DCS, rather than alr.

Itis interesting to note that bacterial PG dipeptide D-Ala-D-Ala, which is generated by D-Ala-D-Ala
ligase (ddlA), is the usual target for vancomycin, but in C. jejuni, PG contains D-Alanyl-D-Lactate
(D-Ala-D-Lac) termini resulting in reduced efficacy of vancomycin by up to 1000-fold. Substitution by
D-alanyl-D-serine (D-Ala-D-ser) termini reduces the efficacy of this antibiotic by up to 7-fold [4,55-58].
This further suggests that alr and not ddIA, is likely to be the primary target for D-ser and DCS in
C. jejuni.

Our results suggest that DAs might have a promising application in enhancing of the activity
antibiotics where the combination of DAs with DCS, synergistically increased the ability of DCS to
inhibit C. jejuni biofilm formation and growth. The enhancement of DCS efficacy with DAs is likely to
lower minimal dose requirement, which would consequently reduce the drug toxicity. DAs had also
been reported to enhance the effectiveness for colistin and ciprofloxacin, when used against biofilms of
P. aeruginosa, and rifampin used against biofilms of clinical isolates of S. aureus [43].

Here we have, therefore, demonstrated that D-alanine (D-ala),L-alanine (L-ala), D-serine (D-ser),
D-methionine (D-met), and D-tryptophan (D-trp) can inhibit and disperse biofilms formed by C. jejuni
and C. coli and that it may be possible to use these DAs to enhance the efficacy of antibiotics
such D-cycloserine. Also, we presented evidence that DAs target alanine racemase (alr) in C. jejuni,
which leads to the inhibition of growth and biofilm formation. This finding may be the key to
understanding the mechanisms of DAs action and also could provide an alternative strategy to control
Campylobacter spp transmission via the food chain.

4. Materials and Methods

4.1. C. jejuni Strains and Growth Conditions

Bacterial strains used in this study were C. jejuni 11168-O (courtesy of Prof. D. G. Newell, Guildford,
UK), C. jejuni 81-176 (courtesy of Prof. Christine Szymanski, University of Alberta, Edmonton, AB,
Canada), and C. coli NCTC 11366 (Griffith University culture collection, Gold Coast, Australia).
Cells were grown at 42 °C microaerobically (85% N3, 10% CO, and 5% O,) on Mueller-Hinton agar
(MHA) and in Mueller-Hinton broth (MHB), supplemented with Trimethoprim (5 pg mL™1) and
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Vancomycin (10 pg mL™1) (TV) (Sigma-Aldrich, Saint Louis, MO, USA). Microaerobic conditions were
established by using Oxoid CampyGen (Thermo Scientific, Scoresby, Australia).

4.2. Chemical and Reagents Used in this Study

L-alanine (L-ala), D-alanine (D-ala), L-serine (L-ser), D-serine (D-ser), L-methionine (L-met),
D-methionine (D-met), L-tryptophan (L-trp), D-tryptophan (D-trp) D- cycloserine were purchased from
Sigma-Aldrich, Saint Louis, MO, USA. Individual stock solutions of 100 mM of DAs were prepared in
Phosphate-buffered saline (PBS) (pH 7.2).

4.3. Biofilm Formation and Dispersion Assays

Overnight cultures of C. jejuni strains were diluted to an ODggg of 0.05, and 2 mL of cell suspension
were dispersed into 24-wells flat-bottom polystyrene tissue culture plates (Geiner Bio-One, Monroe,
NC, USA). Different concentrations of DAs (1-100 mM) were added directly to the culture in the wells
and incubated at 42 °C under microaerobic conditions for 48 h. For dispersion assay, C. jejuni cells
were grown as described above, except no DAs were added. Then PBS containing the appropriate
concentration of DAs (1-100 mM) was added to the wells and plates incubated for further 24 h.
For crystal violet staining, plates were rinsed with water once (gently), dried at 55 °C for 30 min
and stained using modified crystal violet staining method as described previously [59]. Data are
representative of three independent experiments, and values are presented as Mean + Standard errors.
The percentage of biofilm inhibition and dispersion (%) was calculated as described in [60,61] by the
following formula:

% = (controlOP>0 MM _ tagtOD0 nm /01 t1]OD90 nmy 5 900, 1)

4.4. RNA Extraction, cDNA Synthesis and RT-qPCR of Alanine Racemase (alr), D-alanine-D-alanine
Ligase (ddlA)

C. jejuni 11168-O cells were grown overnight microaerobically in MHB at 42 °C. Cells were
collected by centrifuging at 4000 rpm for 15 min. The pellets were suspended in MHB and ODgg
adjusted to 1 (~3 x 10° cells/mL) and subsequently challenged with (1) 25 mM of L-ala, (2) 25 mM
of D-ala, (3) 25 mM of D-ser, (4) 25 mM of D-met oz, (5) 25 mM of D-trp for 2 h; (5) 10 ng/mL of DCS
(below MIC which 250 ng/mL) was used as control. The bacterial survival was confirmed by viable
cells counts after 2 h. Then, cells were collected by centrifugation at 4000 rpm for 15 min and pellets
used for RNA extraction by RNeasy kit according to the manufacturer’s protocol (Bioline, Eveleigh,
Australia). cDNA synthesis and RT-qPCR were performed as previously described [62]. The following
primers sets were used: alr (Cj0905c) forward 3-AGCCAAAAATTTAGGAGTTT-5 and alr reverse
5-GAGGACGATGTGATAGTATT-3, ddl (Cj0798c¢) forward 3-TTATTTTTTGTGATGAAGAAAGAA-5
and sdl reverse 5-GAGTTCTTTTTCTTTTTTATAAGC-3. A gryA gene was used as a housekeeping
control gene, using the primers, gryA forward 3-CCACTGGTGGTGAAGAAAATTTA-5 and gryA
reverse 5-AGCATTTTACCTTGTGTGCTTAC-3. Relative n-fold changes in the transcription of the
examined genes between the treated and non-treated samples were calculated using the relative
quantification (RQ), also known as 2-AACT method, where AACt = ACr (treated sample) — ACr
(untreated sample), ACt = Cr (target gene) — Cr (gyrA), and Cr is the threshold cycle value for the
amplified gene. The fold change due to treatment was calculated as —1/2724CT [63,64]. The data are
presented as Mean + S.D and were calculated from triplicate cultures and are representative of three
independent experiments.

4.5. Confocal Laser Scanning Microscopy

Overnight cultures of C. jejuni cells were diluted to an ODgqg of 0.05, and 3 mL of each sample was
placed into duplicate wells of a 6-well flat-bottom polystyrene tissue culture plate containing a glass
coverslip to enable the formation of biofilm (Geiner Bio-One, Monroe, NC, USA). Thus, 25 mM of LAs
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and DAs were added directly to the wells, and then the plates were incubated at 42 °C microaerobically
for 48 h. After the incubation, MH broth was removed, and the wells were gently washed with PBS
solution twice to remove planktonic cells. The coverslips were carefully removed by using sterile
needle and forceps to new 6-well plates and fixed using 5% formaldehyde solution for 1 h at room
temperature. Then, the coverslips were gently washed with 2 mL of PBS and prepared for staining
with fluorescent dyes.

4.6. Staining of C. jejuni Cells

The fluorescent DNA-binding stain DAPI (Sigma Aldrich, Saint Louis, MO, USA) was used to
visualize cell distribution as described previously [65]. Thioflavin T (ThT) (Sigma Aldrich, Saint Louis,
MO, USA) at 20 uM was then used to treat the coverslips for 30 min. ThT emits green fluorescence
upon binding to cellulose or amyloids [66,67]. The coverslips then were mounted on glass slides using
the mounting medium (Ibidi GmbH, Martinsried, Germany) and sealed with transparent nail varnish.
Microscopy (Nikon A1R+) (Griffith University) was performed with two coverslips per sample from at
least two separate experiments. All images were processed using Image]J analysis software version 1.5
(National Institutes of Health, Bethesda, MD, USA).

4.7. Statistical Analysis

Statistical significance of data generated in this study was determined using two tailed Student’s
t-test, GraphPad Prism (GraphPad Software version 8.0.0 for Windows, GraphPad Software, San Diego,
CA, USA). p <0.05 was considered statistically significant.

5. Conclusions

To summarize, this study suggests that (i) DAs show the inhibitory effect at millimolar
concentrations on biofilm formation by C. jejuni; (ii) DAs can trigger C. jejuni biofilm-disassembly;
(iii) a combination of DAs can enhance the efficacy of DSC,(iv) DAs inhibit growth and biofilm
formation of C. jejuni by repressing the expression of alr. The data described here contribute to the
understanding of the mechanisms involved in biofilm dispersion and inform on identification of
potential antimicrobial drug targets.
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