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Abstract: A minimum inhibitory concentration (MIC) derived algorithm, predictive of carbapenemase
production, was developed using a challenge set (n = 92) of Pseudomonas aeruginosa (PA), including
carbapenemase-producing (CP), cephalosporinase and/or efflux/porin mutation, and wild-type
isolates. Broth microdilution MICs to clinically relevant anti-pseudomonal agents were utilized.
The algorithm was applied to 1209 clinical PA isolates from a US surveillance program. Confirmatory
genotypic (Xpert® Carba-R assay) and phenotypic (mCIM/eCIM) testing for carbapenemases was
conducted on algorithm-derived isolates. With the algorithm, carbapenem resistance alone resulted
in poor specificity to identify CP-PA (54%) within the challenge set of isolates. Inclusion of
cefepime, ceftazidime, and piperacillin/tazobactam non-susceptibility resulted in a specificity
of 66%. Ceftolozane/tazobactam resistance further improved specificity (89%). Of the 1209
isolates, 116 met criteria (carbapenem-resistant and non-susceptibility to cefepime, ceftazidime,
and piperacillin/tazobactam) for confirmatory testing. Carba-R and mCIM/eCIM identified five
(all blaVIM-positive) and seven carbapenemase-producing isolates, respectively. This MIC algorithm
combined with genotypic/phenotypic carbapenemase testing is a pragmatic and streamlined approach
to identify CP-PA.

Keywords: carbapenemases; Pseudomonas aeruginosa; molecular diagnostics; susceptibility testing;
phenotypic carbapenemase testing; antimicrobial susceptibility testing

1. Introduction

Carbapenem-resistance among Pseudomonas aeruginosa is mediated by several resistance
mechanisms, including drug efflux, porin loss, inducible AmpC, and carbapenemase activity,
resulting in difficult-to-treat infections [1–4]. The introduction of new β-lactam–β-lactamase inhibitor
combinations has improved the management of carbapenem-resistant P. aeruginosa (CRPA); however,
certain enzymatic resistance mechanisms still remain a challenge [5,6].

Globally, carbapenemase-producing P. aeruginosa prevalence and diversity is largely based
on geography [1]. For example, 20% of doripenem-non-susceptible P. aeruginosa from Europe
harbored carbapenemase genes compared with 77% of carbapenem-resistant P. aeruginosa in certain
regions of Latin America [7,8]. A recent report from the US National Healthcare Safety Network
highlighted approximately 2% of CRPA harbored carbapenemases [3]. Similarly, 4.3% of CRPA in a
Canadian surveillance study were carbapenemase producers [9]. Carbapenemase production among
P. aeruginosa is problematic as carbapenemase genes tend to be located on transmissible genetic material.
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This is especially troubling as many frequently encountered carbapenemases, such as some Verona
integron-encoded metallo-β-lactamase (VIM) harboring clones, are plasmid mediated, which can
result in rapid spread, even in the absence of antibiotic selective pressure [10,11]. Locally, detection of
carbapenemase-producing CRPA impacts infection control and therapeutic strategies as these infections
are associated with nosocomial spread, limited treatment options, and increased mortality [12–14].

Several tests to detect carbapenemase activity have been evaluated; however, they can be laborious
and/or have slower turn-around time (i.e., phenotypic tests such as modified carbapenem inactivation
method (mCIM) or CarbaNP) or are cost-prohibitive (i.e., genotypic testing) [15]. The majority of
screening algorithms aimed at increasing the likelihood of detecting carbapenemase production
among organisms have been evaluated in Enterobacterales [16–18] but are limited for P. aeruginosa [19].
A pragmatic algorithm using antimicrobial susceptibility results readily available in the clinical
laboratory may help identify P. aeruginosa isolates most likely to produce carbapenemases to optimize
laboratory time and resources.

The purpose of this study was to (1) develop an algorithm that would streamline the use
of confirmatory carbapenemase detection methodologies and (2) apply this algorithm to clinical
P. aeruginosa isolates from a US surveillance study.

2. Results

2.1. Algorithm Development

From the challenge set (Table S1), imipenem and meropenem resistance alone poorly differentiated
carbapenemase-producing from non-carbapenemase-producing P. aeruginosa isolates (sensitivity: 100%,
95%CI 94–100%; specificity: 54%, 95%CI 37–71%). All carbapenemase-producing isolates were resistant
to ceftolozane/tazobactam while, as expected, ceftazidime/avibactam resistance was carbapenemase
class dependent. Table 1 describes the sensitivity and specificity of different antimicrobial susceptibility
testing criteria when applied to the challenge set.

All carbapenemase-positive isolates demonstrated resistance to carbapenems and
non-susceptibility to cefepime, ceftazidime, and piperacillin/tazobactam (sensitivity: 100%, 95%CI
94–100%; specificity: 66%, 95%CI 48–81%). Surprisingly, applying stricter criteria of resistance
to all agents (i.e., carbapenems, cefepime, ceftazidime, piperacillin/tazobactam) failed to capture
10 carbapenemase-producing isolates from the challenge set, resulting in a decrease in sensitivity
(sensitivity: 83%, 95%CI 70–91%), with all 10 isolates testing intermediate to piperacillin/tazobactam.
Inclusion of ceftolozane/tazobactam resistance to the carbapenem-resistant and non-susceptibility to
cefepime, ceftazidime, and piperacillin/tazobactam criteria increased specificity without compromising
sensitivity (specificity: 89%, 95%CI 73–97%). Adding ceftazidime/avibactam resistance further
increased specificity (91%) but compromised sensitivity (86%) because the challenge set included
Klebsiella pneumoniae carbapenemase (KPC)-harboring isolates to which ceftazidime/avibactam
was susceptible. In an effort to develop a pragmatic screening algorithm that can be easily
adopted, a final susceptibility criterion of carbapenem-resistant, cefepime-, ceftazidime-, and
piperacillin/tazobactam-non-susceptible was selected for further clinical application given that
ceftolozane/tazobactam and ceftazidime/avibactam susceptibility testing may not be universally
available. Figure 1 depicts the antimicrobial susceptibility derived-algorithm for carbapenemase
screening of P. aeruginosa.
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Table 1. Characteristics of the challenge set of 92 P. aeruginosa isolates utilized in algorithm development.

Susceptibility
Carbapenemase

Producers,
n = 57

Non-Carbapenemase Producers, Test Performance

Cephalosporinase or
Efflux/Porin Mutation, n = 20 Wild Type, n = 15 Sensitivity, % (95% CI) Specificity, % (95% CI)

IPM + MEM- Resistant 57 (100%) 15 (75%) 1 (7%) 100% (94–100%) 54% (37–71%)

IPM + MEM- Resistant
AND

FEP + CAZ + TZP- Non-Susceptible
57 (100%) 12 (60%) 0 (0%) 100% (94–100%) 66% (48–81%)

IPM + MEM- Resistant
AND

FEP + CAZ + TZP- Resistant
47 (82%) 6 (30%) 0 (0%) 83% (70–91%) 83% (66–93%)

IPM + MEM- Resistant
AND

FEP + CAZ + TZP- Non-Susceptible
+ CZA- Resistant

49 (86%) 8 (40%) 0 (0%) 86% (74–94%) 77% (60–90%)

IPM + MEM- Resistant
AND

FEP + CAZ + TZP- Non-Susceptible
+ C/T- Resistant

57 (100%) 4 (20%) 0 (0%) 100% (94–100%) 89% (73–97%)

IPM + MEM- Resistant
AND

FEP + CAZ + TZP- Non-Susceptible
+ C/T- Resistant + CZA- Resistant

49 (86%) 3 (15%) 0 (0%) 86% (74–94%) 91% (77–98%)

IPM = imipenem; MEM = meropenem; FEP = cefepime; CAZ = ceftazidime; TZP = piperacillin/tazobactam; CZA = ceftazidime/avibactam; C/T = ceftolozane/tazobactam; Sensitivity and
Specificity = calculated based on prediction the criteria accurately identify carbapenemase production; 95%CI = 95% confidence interval.
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Figure 1. Algorithm for carbapenemase detection in Pseudomonas aeruginosa. The percent (number
of isolates meeting current criteria/ number meeting preceding criteria) refers to application of the
algorithm to the surveillance program evaluated. mCIM, modified-carbapenem inactivation method;
eCIM, EDTA-modified carbapenem inactivation method.

2.2. Application of Algorithm against Clinical P. aeruginosa Isolates

From the 1209 clinical isolates from the US surveillance study, 230 (19%) were imipenem and
meropenem resistant. Application of the screening algorithm resulted in 116 (10%) P. aeruginosa isolates
meeting criteria for higher probability of carbapenemase production (Table 2). As a result, all 116 isolates
underwent confirmatory genotypic and phenotypic testing for evidence of carbapenemase production.

Table 2. Performance of algorithm after application to 1209 clinical P. aeruginosa isolates from a US
surveillance study.

Algorithm-Derived Screening Criteria Number Meeting
Criteria

Carbapenemase
Producers Detected

Carbapenemase
Producers Missed by

Criteria

IPM + MEM- Resistant
AND

FEP + CAZ + TZP- Non-Susceptible
116 7/116 0

IPM + MEM- Resistant
AND

FEP + CAZ + TZP- Non-Susceptible +
CZA- Resistant

43 7/43 0

IPM + MEM- Resistant
AND

FEP + CAZ + TZP- Non-Susceptible +
C/T- Resistant

21 6/21 1 *

IPM + MEM- Resistant
AND

FEP + CAZ + TZP- Non-Susceptible +
C/T- Resistant + CZA-Resistant

19 6/19 1 *

IPM = imipenem; MEM = meropenem; FEP = cefepime; CAZ = ceftazidime; TZP = piperacillin/tazobactam; CZA =
ceftazidime/avibactam; C/T = ceftolozane/tazobactam. * Genotype: blaOXA-2, blaOXA-50, and PAO.
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Genotypic testing with Xpert® Carba-R revealed five isolates (4%) that harbored carbapenemases.
All isolates were VIM-positive and were initially submitted to the surveillance study from four different
medical centers. The five VIM-harboring isolates were resistant to cefepime, ceftazidime, meropenem,
and imipenem while non-susceptible to piperacillin/tazobactam.

Phenotypic testing with mCIM identified positive carbapenemase production among seven isolates
(6%). Furthermore, the EDTA-modified carbapenem inactivation method (eCIM) test classified five of
these seven isolates as producing metallo-dependent enzymes, concordant with genotypically identified
VIM-harboring isolates. Whole-genome sequencing of the two mCIM-positive, eCIM-negative isolates
demonstrated evidence of a blaGES-20 gene in one isolate, a previously documented carbapenemase [20].
The second mCIM-positive strain harbored blaOXA-2, blaOXA-50, and PAO. Notably neither OXA-2 nor
OXA-50 enzymes are thought to be carbapenemases but together may contribute to antimicrobial
resistance or the isolate contains a carbapenemase that is outside of the known database. Based on
genotypic and phenotypic testing, seven isolates were categorized as carbapenemase-producing in this
collection of P. aeruginosa from US medical centers.

3. Discussion

The incidence of CRPA is on the rise, and currently, genotypic or phenotypic confirmation of
carbapenemase production is recommended to initiate infection control measures [21]. Given the
heterogeneous resistance mechanisms harbored by P. aeruginosa, we sought to develop a practical
screening algorithm using susceptibility testing to streamline genotypic and phenotypic carbapenemase
testing for the identification of carbapenemase production among clinical P. aeruginosa isolates, especially
as carbapenem resistance in P. aeruginosa in the United States is largely driven by alterations in oprD [22].
Genotypic and phenotypic carbapenemase testing methods identified five and seven P. aeruginosa
isolates with evidence of carbapenemase activity respectively, from an algorithm-derived group of
isolates from US centers (n = 116).

All five metallo-β-lactamase producing CRPA identified in our study harbored the blaVIM gene.
This finding is concordant with previous reports where blaVIM are the most common carbapenemase
genotypes among P. aeruginosa reported in the US [3,23]. Two additional isolates identified by the
algorithm tested positive on mCIM (indicative of carbapenemase enzyme production), negative
on eCIM (indicative of the absence of a metallo-dependent enzyme), and negative on Carba-R.
This phenotype tends to describe enzyme subtypes not identified with current Carba-R probe targets,
and subsequent whole-genome sequencing (WGS) testing detected one isolate harboring OXA-2,
OXA-50, and PAO, while the second harbored a GES-20 carbapenemase. The first isolate lacked
any enzymology consistent with known carbapenemases, which may indicate additive resistance
mechanisms can produce false-positive mCIM results. This finding was similar to what has been noted
by Simner and colleagues; in their multicenter analysis, an isolate with the same genotype tested mCIM
positive at 8 of the 10 testing sites [24]. The Guiana-Extended-Spectrum β-lactamase (GES)-harboring
isolate, a known carbapenemase, may represent a growing clinical challenge. The prevalence of
GES-producing P. aeruginosa varies by geography, and while several reports from Mexico and Canada
have been published, there are limited data evaluating this enzymology in the US [9,25,26]. Furthermore,
blaGES is not a genotypic target on any of the three current FDA-approved platforms [27–29]. Based on
our findings from this US surveillance study, GES enzymes may be an underappreciated contributor
to carbapenem resistance among P. aeruginosa but can be characterized by pairing the developed
algorithm with mCIM. However, the developed algorithm will still be a useful starting point to guide
definitive carbapenemase testing using future iterations of molecular diagnostics or other validated
phenotypic screens.

The current algorithm was designed to be a simple tool that incorporates routinely utilized
anti-pseudomonal β-lactam susceptibilities and increases the likelihood of detecting carbapenemase
production with definitive carbapenemase testing given that resistance to carbapenems alone is
not evidence of carbapenemase activity in P. aeruginosa [4]. Of note, aztreonam was not included
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in the phenotypic algorithm as it may not be routinely reported by laboratories, and although
it is stable to metallo-β-lactamase degradation, it is labile to co-expressed Extended-Spectrum
β-lactamases (ESBLs) and cephalosporinases [30]. A global surveillance study found only 25%
of isolates harboring Class B enzymes test as aztreonam-susceptible [31]. Incorporation of susceptibility
testing to the newer antimicrobial agents, i.e., ceftolozane/tazobactam and ceftazidime/avibactam,
to the algorithm provides further specificity. Based on our challenge set, and other published
data [6,32], most carbapenemases render ceftolozane/tazobactam resistant, while ceftazidime/avibactam
resistance is carbapenemase class dependent. Depending on local epidemiology of carbapenemase
classes (i.e., high prevalence of KPC-producers), addition of ceftazidime/avibactam resistance may
decrease the sensitivity of testing criteria. Nonetheless, addition of both agents aids in risk-stratifying
isolates for carbapenemase detection testing, significantly improving test sensitivity and specificity.
Additionally, both ceftolozane/tazobactam and ceftazidime/avibactam have therapeutic utility against
carbapenem-resistant P. aeruginosa and thus warrant susceptibility testing [2,33]. Unfortunately,
despite ceftolozane/tazobactam and ceftazidime/avibactam being available on commercially utilized
automated susceptibility testing systems in the United States, both are categorized as selective reporting
by Clinical and Laboratory Standards Institute (CLSI) [34]. Furthermore, some institutions utilize reflex
testing criteria, which may lead to delays in testing and reporting. Hence, our algorithm was based
on routinely reported agents (i.e., ceftazidime, cefepime, and piperacillin/tazobactam) for use when
ceftolozane/tazobactam and ceftazidime/avibactam testing is delayed or unavailable. Newer agents such
as imipenem-relebactam and meropenem-vaborbactam may be useful for carbapenemase-detection
screening and warrant further evaluation [2,35]. Notably, the addition of vaborbactam offers no
advantage to meropenem alone for P. aeruginosa [35].

How frequently a microbiology laboratory performs genotypic and phenotypic testing to detect
carbapenemase-producing organisms will depend on local prevalence rates. However, given the
rising incidence of carbapenem-resistant P. aeruginosa isolates, prioritizing isolates to undergo
confirmatory carbapenemase testing is essential to avoid unnecessary utilization of laboratory
resources. Previous testing algorithms to identify carbapenemase-producing organisms have generally
focused on Enterobacterales. In addition, prior algorithms involved specialized testing methods not
routinely used in the clinical laboratory (i.e., temocillin disks) [16–18]. When considering P. aeruginosa,
Samuelson and colleagues coupled ceftazidime minimum inhibitory concentration (MIC)≥ 8, imipenem
MICs > 8, and four phenotypic methods limited to metallo-β-lactamase detection only [19]. Sixty-two
carbapenem-resistant P. aeruginosa isolates were tested, and two metallo-β-lactamase producing isolates
were detected [19]. Notably, the addition of ceftazidime and imipenem susceptibility criteria decreased
the number of tests run and increased the positive predicted value of each phenotypic test evaluated [19].
A recent publication described the implementation of a carbapenemase testing algorithm including
P. aeruginosa. The authors utilized non-susceptibility to meropenem and non-susceptibility to either
ceftazidime or cefepime to cascade ceftolozane/tazobactam and ceftazidime/avibactam MIC testing
with or without genotypic carbapenemase testing, depending on non-susceptibility to both agents [36].
Our data add to this approach; in our challenge set we found implementation of genotypic testing
upon resistance to ceftolozane/tazobactam resulted in high sensitivity. Additionally, our data suggest
non-susceptibility to cefepime, ceftazidime, and piperacillin/tazobactam may be a reasonable starting
point to initiate genotypic testing while awaiting ceftolozane/tazobactam and ceftazidime/avibactam
MICs to hasten infection control measures. The different testing criteria presented in our data provide
clinicians and clinical laboratories options for implementing criteria-driven carbapenemase testing to
meet the organization’s needs and priorities (i.e., broader testing with quicker result vs. stricter testing
with longer time to result).

A strength of this study is the algorithm derivation from a challenge set of P. aeruginosa isolates
harboring diverse genotypic profiles, allowing application in regions with various carbapenem
prevalence rates. Importantly, the sensitivity and specificities of each MIC testing criteria are predicated
on the robustness of the challenge set, and subsequent test performance, specifically positive and
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negative predictive values, will vary in different clinical settings. This algorithm was designed as a
starting point for prioritizing carbapenemases detection workflows for P. aeruginosa isolates, and local
validation using local standards for MIC testing is warranted.

In conclusion, the application of an algorithm incorporating conventional susceptibility testing
can be utilized to stratify P. aeruginosa isolates to undergo additional genotypic and phenotypic
carbapenemase detection methods. As the prevalence and diversity of carbapenemase-producing
P. aeruginosa expands across the globe, adoption of screening algorithms in tandem with molecular
testing will provide tremendous value in characterizing resistance mechanisms.

4. Materials and Methods

4.1. Algorithm Development

4.1.1. Bacterial Isolates

A challenge set of 92 P. aeruginosa isolates displaying diverse genotypic profiles: New Delhi
metallo-β-lactamase (NDM) (n = 10); imipenemase (IMP) (n = 10); Verona integron-encoded
metallo-β-lactamase (VIM) (n = 10); Klebsiella pneumoniae carbapenemase (KPC) (n = 8); Sao Paulo
metallo-β-lactamase (SPM) (n = 10); Guiana-Extended-Spectrum β-lactamase (GES) (n = 9), meropenem
or imipenem-resistant strains with known genotypic cephalosporinase or efflux/porin mutation (n = 20),
and wild-type isolates (n = 15), was evaluated. Genotypic profiles were previously determined by PCR
or whole-genome sequencing. Isolates were obtained from the CDC-FDA Antimicrobial Resistance
Bank (Atlanta, GA, USA) and the Center for Anti-Infective Research and Development isolate repository.

4.1.2. Antimicrobial Susceptibility Testing

Broth microdilution tests were performed on each P. aeruginosa isolate from the challenge
set in concordance with CLSI standards [34]. The antimicrobial agents tested were obtained as
laboratory-grade powders. All broth microdilution trays were prepared, and MIC testing was conducted
at the Center for Anti-Infective Research and Development. Minimum inhibitory concentrations (MICs)
to cefepime, ceftazidime, piperacillin/tazobactam, meropenem, imipenem, ceftolozane/tazobactam,
and ceftazidime/avibactam were obtained and interpreted per CLSI standards [34].

4.2. US Surveillance Study

4.2.1. Organism Collection

A total of 1209 P. aeruginosa isolates were submitted from 36 medical centers from around the
United States to be utilized in a national antimicrobial susceptibility surveillance study (2016–2017) [37].
Approval was obtained from all sites or a waiver was obtained from local institutional review boards.
Patients had to be at least 18 years old for study inclusion and isolate submission. These clinical
P. aeruginosa isolates were prospectively collected from blood and respiratory samples and identified by
the microbiology laboratory of each participating hospital via automated systems including VITEK®

(bioMérieux), BD PhoenixTM Automated Microbiology System (Becton Dickinson), MicroScan®

(Beckman Coulter), and Matrix-Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF)
(VITEK® MS Healthcare, bioMérieux) [37]. Antimicrobial susceptibility testing was conducted at the
Center for Anti-Infective Research and development by broth microdilution as described above.

4.2.2. Phenotypic and Genotypic Carbapenemase Testing

Based on the antimicrobial susceptibility testing results of the challenge cohort, isolates
that were carbapenem (meropenem and imipenem) resistant plus cefepime, ceftazidime,
and piperacillin/tazobactam non-susceptible per CLSI guidelines [34] were selected for confirmatory
phenotypic (mCIM/eCIM) and genotypic testing.
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The modified carbapenem inactivation method (mCIM) and the EDTA-modified carbapenem
inactivation method (eCIM) were conducted on each isolate as previously described [24,34,38]. Results were
interpreted for mCIM and eCIM testing as defined previously by measuring the diameter of the zone of
inhibition around each disk [34,38]. Quality control isolates included two negative controls (K. pneumonia
ATCC 1706 and P. aeruginosa ATCC 27853), one serine-carbapenemase control (K. pneumoniae ATCC 1705,
KPC positive), and a metallo-β-lactamase positive control (K. pneumoniae CDC Bank #505, NDM-positive).

The Xpert® Carba-R assay (Cepheid, Sunnyvale, CA, USA) was utilized to detect the presence
of five common carbapenemase enzyme genotypes (blaNDM, blaIMP, blaVIM, blaKPC, and blaOXA-48 like).
Testing was conducted per device package insert although subcultures were not performed in the
presence of meropenem disks. Quality control assessments were conducted once-weekly during
testing using the Xpert® Carba-R QC Panel M219 (Main Molecular Quality Control, Saco, ME, Lot:
D03JAN19B and E03JAN19B).

Any isolate with discordant results between mCIM/eCIM and Carba-R assay underwent
whole-genome sequencing (WGS). WGS was performed as follows: Each P. aeruginosa isolate was
grown overnight prior to nucleic acid extraction using Qiagen DNeasy Blood and Tissue Kit (Qiagen,
Valencia, CA, USA), and DNA concentrations were quantified using the NanoPhotometer system
(Implen, Munich, Germany). Sequencing libraries were then then prepared using Nextera XT (Illumina,
San Diego, CA) kit, quantified with the Qubit 4 Fluorometer using the dsDNA High Sensitivity
Assay Kit (Invitrogen, Carlsbad, CA, USA), and finally sequenced with the Illumina MiSeq (Illumina,
San Diego, CA, USA) sequencer. All testing was in compliance with manufacturer instructions.
The resulting genomes were analyzed using the Center for Genomic Epidemiology (CGE) ResFinder
online tools (https://cge.cbs.dtu.dk/services/ResFinder/) [39].

4.3. Statistical Analysis

The sensitivity and specificity values with their respective 95% confidence intervals (CI) to predict
carbapenemase-production were calculated using IBM SPSS Version 23 (Armonk, NY).
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